

- Confidential, 19 pages -

Corporate Design

2016

t3rn Baseline Security Assurance
Threat model and hacking assessment report

V1.0, 15 Mar 2024

Aarnav Bos aarnav@srlabs.de

Haroon Basheer haroon@srlabs.de

Kevin Valerio kevin@srlabs.de

Mostafa Sattari mostafa@srlabs.de

Abstract. This work describes the result of a thorough and
independent security assurance audit of the t3rn parachain
platform performed by Security Research Labs. Security Research
Labs is a consulting firm that has been providing specialized audit
services in the Polkadot ecosystem since 2019, including for the
Substrate and Polkadot projects. During this study, t3rn provided
access to relevant repositories for the research team. The code of
t3rn was verified to assure that the business logic of the product is
resilient to hacking and abuse.

The research team has identified a variety of security issues ranging
from high to low severity, in areas such as authorization,
benchmarking, and runtime configuration. Considering these
findings, it is recommended that the t3rn team prioritize the
mitigations of these issues in their upcoming updates, beginning
with the highest severity issues. Addressing these vulnerabilities
systematically will minimize the risks to their network's
functionality, business logic, and exposure to potential attacks
significantly.

Furthermore, t3rn may adhere to Substrate's best practices and
security guidelines during the remediation and future development
process to prevent the recurrence of such issues. Additionally, a
shift towards a high code quality and security-first mindset is
recommended for the t3rn developers in future developments. This
includes the adoption of secure coding practices, better repository
management, and improvements in documentation. These
measures will enhance long-term evolution, maintainability, and
the overall security posture of the codebase.

Additionally, this report also emphasizes the importance of
conducting regular security audits to ensure continuous
improvement and adherence to security best practices.

mailto:aarnav@srlabs.de
mailto:haroon@srlabs.de
mailto:kevin@srlabs.de
mailto:mostafa@srlabs.de

t3rn Baseline Security Assurance Confidential, Page 2 of 19

Das Logo Horizontal

— Pos / Neg

3

Content

1 Disclaimer… .. 3
2 Motivation and scope ... 4
3 Methodology .. 4
4 Threat modeling and attacks ... 6
5 Findings summary ... 9
6 Detailed findings .. 10

6.1 Implementation error allows attackers to impersonate any CircuitRole 10
6.2 Extrinsic allows takeover of gateway's escrow account 11
6.3 Underweight extrinsics may cause block production timeout. 12
6.4 General benchmarking mismatch across multiple extrinsics 12
6.5 Extrinsics that have default weights should be properly benchmarked 13
6.6 Insecure randomness algorithm for Attester's shuffling 13
6.7 Overlapping values for IsTeleporter and IsReserve .. 14
6.8 IdentityFee used to configure WeightToFee ... 15
6.9 Incorrect benchmarks for dependency pallets ... 15
6.10 Lack of authorization in extrinsic exposes potential for spamming 16

7 Evolution suggestions .. 16
7.1 Address currently open security and broader design issues 17
7.2 Further recommended best practices .. 18

8 Bibliography ... 19

t3rn Baseline Security Assurance Confidential, Page 3 of 19

Das Logo Horizontal

— Pos / Neg

3

1 Disclaimer

This report describes the findings and core conclusions derived from the audit
conducted by Security Research Labs within the agreed-on timeframe and scope as
detailed in Chapter 2.Please note that this report does not guarantee that all existing
security vulnerabilities were discovered in the codebase exhaustively and that
following all evolution suggestions described in Chapter 7 may not ensure all future
code to be bug free.

t3rn Baseline Security Assurance Confidential, Page 4 of 19

Das Logo Horizontal

— Pos / Neg

3

2 Motivation and scope

Blockchains evolve in a trustless and decentralized environment, which by its own
nature could lead to security issues. Ensuring availability and integrity is a priority for
t3rn. As such, a security review of the project should not only highlight the security
issues uncovered during the audit process, but also bring additional insights from an
attacker’s perspective, which the t3rn team can then integrate into their own threat
modeling and development process to enhance the security of the product.

The t3rn blockchain is built on top of Substrate. Like other Substrate-based
blockchain networks, the t3rn code is written in Rust, a memory safe programming
language. Substrate-based chains utilize three technologies: a WebAssembly
(WASM) based runtime, decentralized communication via libp2p, and a block
production engine.

The t3rn runtime consists of multiple modules compiled into a WASM Binary Large
Object (blob) that is stored on-chain. Nodes execute the runtime code either natively
or will execute the on-chain WASM blob.

The core business logic of t3rn is to provide a platform and protocol to facilitate
reversible, interoperable execution across blockchains. This includes transaction
validation, consensus mechanisms specific to t3rn, and the execution of smart
contracts in a way that they can operate across different blockchain platforms
withing the defined security constraints.

Security Research Labs collaborated with the t3rn team to create an overview
containing the runtime modules in scope and their audit priority. The in-scope
components and their assigned priorities are reflected in Table 1. During the audit,
Security Research Labs used a threat model to guide efforts on exploring potential
security flaws and realistic attack scenarios.

Repository Priority Component(s) Reference

t3rn

High circuit [1]

Medium runtime configuration
pallet-attesters
pallet-rewards
pallet-account-manager

Low pallet-portal
pallet-xdns
pallet-clock

eth2-light-client High eth2-light-client [2]

Table 1. In-scope t3rn components with audit priority

3 Methodology

This report details the baseline security assurance results for the t3rn parachain with
the aim of creating transparency in four steps, namely, threat modeling, security
design coverage checks, implementation baseline check and finally remediation
support:

t3rn Baseline Security Assurance Confidential, Page 5 of 19

Das Logo Horizontal

— Pos / Neg

3

Threat Modeling. The threat model is considered in terms of hacking incentives, i.e.,
the motivations to achieve the goals of breaching the integrity, confidentiality, or
availability of t3rn parachain nodes. For each hacking incentive, hacking scenarios
were postulated, by which these goals could be achieved. The threat model provides
guidance for the design, implementation, and security testing of t3rn. Our threat
modeling process is outlined in Chapter 3.

Security design coverage check. Next, the t3rn design was reviewed for coverage
against relevant hacking scenarios. For each scenario, the following two aspects were
investigated:

a. Coverage. Is each potential security vulnerability sufficiently covered?

b. Underlying assumptions. Which assumptions must hold true for the design
to effectively reach the desired security goal?

Implementation baseline check. As a third step, the current t3rn implementation
was evaluated for openings whereby any of the defined hacking scenarios could be
executed.

To effectively review the t3rn codebase, we derived our code review strategy based
on the threat model that we established as the first step. For each identified threat,
hypothetical attacks were developed and mapped to their corresponding threat
category, as outlined in Chapter 4.

Prioritizing by risk, the codebase was assessed for present protections against the
respective threats and attacks as well as the vulnerabilities that make these attacks
possible. For each threat, the auditors:

1. Identified the relevant parts of the codebase, for example the relevant
pallets and the runtime configuration.

2. Identified viable strategies for the code review. Manual code audits, fuzz
testing, and manual tests were performed where appropriate.

3. Ensured the code did not contain any vulnerabilities that could be used to
execute the respective attacks, otherwise, ensured that sufficient protection
measures against specific attacks were present.

4. Immediately reported any vulnerability that was discovered to the
development team along with suggestions around mitigations.

We conducted a hybrid strategy utilizing a combination of code review and dynamic
tests (e.g., fuzz testing) to assess the security of the t3rn codebase.

While fuzz testing and dynamic tests establish a baseline assurance, the focus of this
audit was a manual code review of the t3rn codebase to identify logic bugs, design
flaws, and best practice deviations. Security Research Labs reviewed the t3rn
repository up to the commit d8654548 and eth2-light-client up to the commit
1da666d7. The approach of the review was to trace the intended functionality of the
runtime modules in scope and to assess whether an attacker can
bypass/misuse/abuse these components or trigger unexpected behavior on the
blockchain due to logic bugs or missing checks. Since the t3rn codebase is entirely

t3rn Baseline Security Assurance Confidential, Page 6 of 19

Das Logo Horizontal

— Pos / Neg

3

open source, it is realistic that a malicious actor would analyze the source code while
preparing an attack.

Fuzz testing is a technique to identify issues in code that handles untrusted input,
which in t3rn's case is extrinsics in the runtime. (Note that the network part is
handled by Substrate, which was not in scope for this review, but is built with a strong
emphasis on security and where fuzz testing is also used). Fuzz testing works by
taking some valid input for a method under test, applying a semi-random mutation
to it, and then invoking the method under test again with this semi-valid input.
Through repeating this process, fuzz testing can unearth inputs that would cause a
crash or other undefined behavior (e.g., integer overflows) in the method under test.
The fuzz testing methods written for this assessment utilized the test runtime
Genesis configuration as well as mocked externalities to execute the fuzz test
effectively against the extrinsics in scope.

Remediation support. The last step is supporting the t3rn development team with
the remediation process of the identified issues. Each finding was documented and
published with mitigation recommendations. Once the mitigation solution is
implemented, the auditors verify the fix to ensure that it mitigates the issue and does
not introduce other bugs.

During the audit, the eth2-light-client private GitHub repository [2] was used for
sharing the finding. We also used a Slack channel for asynchronous communication,
weekly status updates on the fuzzing and code review progress along with identified
issues.

4 Threat modeling and attacks

The goal of the threat model framework is to be able to determine specific areas of
risk in t3rn’sblockchain system. Familiarity with these risk areas can provide guidance
for the design of the implementation stack, the actual implementation of the stack,
as well as the security testing. This section introduces how risk is defined and
provides an overview of the identified threat scenarios. The Hacking Value,
categorized into low, medium, and high, considers the incentive of an attacker, as
well as the effort required by an attacker to successfully execute the attack. The
hacking value is calculated as:

𝐻𝑎𝑐𝑘𝑖𝑛𝑔	𝑉𝑎𝑙𝑢𝑒 = 	
𝐼𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒
𝐸𝑓𝑓𝑜𝑟𝑡

While incentive describes what an attacker might gain from performing an attack
successfully, effort estimates the complexity of this same attack. The degrees of
incentive and effort are defined as follows:

Incentive:

• Low: Attacks offer the hacker little to no gain from executing the threat.

• Medium: Attacks offer the hacker considerable gains from executing the
threat.

• High: Attacks offer the hacker high gains by executing this threat.

Effort:

t3rn Baseline Security Assurance Confidential, Page 7 of 19

Das Logo Horizontal

— Pos / Neg

3

• Low: Attacks are easy to execute. They require neither elaborate technical
knowledge nor considerable amounts of resources.

• Medium: Attacks are difficult to execute. They might require bypassing
countermeasures, the use of expensive resources or a considerable amount
of technical knowledge.

• High: Attacks are difficult to execute. The attacks might require in-depth
technical knowledge, vast amounts of expensive resources, bypassing
countermeasures, or any combination of these factors.

Incentive and Effort are divided according to Table 2.

Hacking Value Low incentive Medium Incentive High Incentive

High effort Low Medium Medium

Medium effort Medium Medium High

Low effort Medium High High

Table 2. Hacking value measurement scale.

Hacking scenarios are classified by the risk they pose to the system. The risk level,
also categorized into low, medium, and high, considers the hacking value, as well as
the damage that could result from successful exploitation. The risk of a threat
scenario is calculated by the following formula:

𝑅𝑖𝑠𝑘 = 𝐷𝑎𝑚𝑎𝑔𝑒 × 𝐻𝑎𝑐𝑘𝑖𝑛𝑔	𝑉𝑎𝑙𝑢𝑒 =
𝐷𝑎𝑚𝑎𝑔𝑒 × 𝐼𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒

𝐸𝑓𝑓𝑜𝑟𝑡

Damage describes the negative impact that a given attack, performed successfully,
would have on the victim. The degrees of damage are defined as follows:

Damage:

• Low: Risk scenarios would cause negligible damage to the t3rn network

• Medium: Risk scenarios pose a considerable threat to t3rn’s functionality as
a network.

• High: Risk scenarios pose an existential threat to t3rn’s network
functionality.

Damage and Hacking Value are divided according to Table 3.

Risk Low hacking value Medium hacking
value

High hacking
value Low damage Low Medium Medium

Medium damage Medium Medium High

High damage Medium High High

Table 3. Risk measurement scale.

t3rn Baseline Security Assurance Confidential, Page 8 of 19

Das Logo Horizontal

— Pos / Neg

3

After applying the framework to the t3rn project, different threat scenarios
according to the CIA triad were identified.

The CIA triad describes three security promises that can be violated by a hacking
attack, namely confidentiality, integrity, availability.

Confidentiality:

Confidentiality threat scenarios concern sensitive information regarding the
blockchain network and its users. Native tokens are units of value that exist on the
blockchain - confidentiality threat scenarios include for example attackers abusing
information leaks to steal native tokens from nodes participating in the t3rn
ecosystem and claiming the assets (represented in the token) for themselves.

Integrity:

Integrity threat scenarios threaten to disrupt the functionality of the entire network
by undermining or bypassing the rules that ensure that t3rn transactions/operations
are fair and equal for each participant. Undermining t3rn’s integrity often comes with
a high monetary incentive, like for example, if an attacker can double spend or mint
tokens for themselves. Other threat scenarios do not yield an immediate monetary
reward, but rather, could threaten to damage t3rn’s functionality and, in turn, its
reputation. For example, invalidating already executed transactions would violate
the core promise that transactions on the blockchain are irreversible.

Availability:

Availability threat scenarios refer to compromising the availability of data stored by
the t3rn network as well as the availability of the network itself to process normal
transactions. Important threat scenarios regarding availability for blockchain
systems include Denial of Service (DoS) attacks on participating nodes, stalling the
transaction queue, and spamming.Table 4 provides a high-level overview of the
hacking risks concerning t3rn with identified example threat scenarios and attacks,
as well as their respective hacking value and effort. The complete list of threat
scenarios identified along with attacks that enable them are described in the threat
model deliverable. This list can serve as a starting point to the t3rn developers to
guide their security outlook for future feature implementations. By thinking in terms
of threat scenarios and attacks during code review or feature ideation, many issues
can be caught or even avoided altogether.

For t3rn, the auditors attributed the most hacking value to the integrity class of
threats. Since the efforts required to exploit this kind of issue is considered lower,
we identified threat scenarios to the integrity of t3rn as of the highest risk category.
Undermining the integrity of the t3rn chain means making unauthorized
modifications to the system. Some of the scenarios can have a direct effect on the
financial model of the system. This can include taking over permissioned actors such
as gateways, disrupting executor auctions, spamming circuit or crashing remote
node involved in cross chain transactions that causes financial damages to the end
user and t3rn network.

Security
promise

Hacking
value

Example threat scenarios Hacking
effort

Example attack ideas

t3rn Baseline Security Assurance Confidential, Page 9 of 19

Das Logo Horizontal

— Pos / Neg

3

Integrity High - An attacker may hijack
the gateway to disrupt its
functionality - An attacker
may bypass the fees (e.g.,
by exploiting
bugs/misconfigurations)
- An attacker may
impersonate a permission
actor such as Relayers and
Executors

Medium - Hijack a gateway by
calling the set_owner
- Exploit bugs (logic,
arithmetic) in the
transaction
implementation to bypass
fees
- Exploit collisions in the
creation of bogus contracts
or by taking over escrow
accounts

Availability Medium - An attacker may
compromise the node
availability by crashing
nodes
- An attacker may abuse
the block time difference
between various
blockchains
- An attacker may spam
the network with bogus
messages

Low

- Exploit different
codecs scheme across
chains that do not
deserialize into the
same values causing
execution issues
- Abuse the transaction
batches to nest calls and
create an infinite loop

Table 4. Risk overview. The threats for t3rn’sblockchain were classified using the CIA
security triad model, mapping threats to the areas: (1) Confidentiality, (2) Integrity,
and (3) Availability.

5 Findings summary

We identified 10 issues - summarized in Table 5- during our analysis of the runtime
modules in scope in the t3rn codebase that enable some of the attacks outlined
above. In summary 5 high severity, 3 medium severity, 1 low severity and 1 info
severity issues were found.

Please note that in our methodology, critical severity issues refer to high severity
issues that could be exploited immediately by an attacker on already deployed
infrastructure, including a parachain or a non-incentivized testnet.

Issue Severity References Status

Implementation error allows attackers
to impersonate any CircuitRole

High [3] Open

Extrinsic allows takeover of gateway's
escrow account

High [4] Open

Underweight extrinsics may cause
block production timeout High [5] Open

General benchmarking mismatch
across multiple extrinsics

High [6] Open

t3rn Baseline Security Assurance Confidential, Page 10 of 19

Das Logo Horizontal

— Pos / Neg

3

Extrinsics that have default weights
should be properly benchmarked

High [7] Open

Insecure randomness algorithm for
Attester's shuffling

Medium [8] Open

The values of
IsTeleporter and IsReserve should not
have overlapping assets

Medium [9] Open

IdentityFee implementation used to
configure WeightToFee

Medium [10] Open

Incorrect benchmarks for dependency
pallets

Low [11] Open

Lack of authorization in extrinsic
exposes potential for spamming

Info [12] Open

Table 5 Issue summary

6 Detailed findings

6.1 Implementation error allows attackers to impersonate any CircuitRole

Attack scenario Implementation error allows attackers to impersonate
any CircuitRole

Location Circuit pallet
Tracking [3]
Attack impact Any user can impersonate infrastructure-critical users

and perform permissioned transactions

Severity High
Status Open

In Circuit pallet different CircuitRoles are defined. The Requester role initiates cross-
chain requests, such as data retrieval or smart contract executions. The Relayer role
facilitates the transfer of information between different blockchains, ensuring
interoperability. Lastly, the Executor carries out the actions specified in the requests,
such as executing contracts or processing transactions. Therefore, some extrinsics in
this pallet can only be called by users who have a valid CircuitRole based on their
Authorization. However, a coding error allows any user to impersonate these roles
and call any of the affected extrinsics.

As an example in the bid_sfx extrinsic, the authorize function is called to check
whether the origin is an Executor and thus can execute the extrinsic:

pub fn bid_sfx(
 origin: OriginFor<T>,
 sfx_id: SideEffectId<T>,
 bid_amount: BalanceOf<T>,
) -> DispatchResultWithPostInfo {
 // Authorize: Retrieve sender of the transaction.

t3rn Baseline Security Assurance Confidential, Page 11 of 19

Das Logo Horizontal

— Pos / Neg

3

 let bidder = Self::authorize(origin,
CircuitRole::Executor)?;

However, the authorize function simply matches the CircuitRole and then performs
a universal signed origin check:

fn authorize(
 origin: OriginFor<T>,
 role: CircuitRole,
) -> Result<T::AccountId, sp_runtime::traits::BadOrigin> {
 match role {
 CircuitRole::Requester | CircuitRole::ContractAuthor =>
ensure_signed(origin),
 CircuitRole::Relayer => ensure_signed(origin),
 CircuitRole::Executor => ensure_signed(origin),
 _ => return Err(sp_runtime::traits::BadOrigin.into()),
 }
 }

Since there are no checks performed in either of these functions whether
the origin actually has the expected CircuitRole, and the CircuitRole is hardcoded in
the extrinsic logic, it means that any origin can call the affected extrinsics, not only
the ones with a CircuitRole. Affected extrinsics are:

• cancel_xtx
• on_remote_origin_trigger
• on_extrinsic_trigger
• escrow
• bid_sfx
• confirm_side_effect

To mitigate this issue, we suggest retrieving and cross-checking the origin's role from
storage when calling the authorize function.

6.2 Extrinsic allows takeover of gateway's escrow account

Attack scenario Extrinsic allows takeover of gateway's escrow account.

Location Xdns pallet
Tracking [4]
Attack impact By taking over an escrow account, an attacker can cause

fraudulent transactions, resulting in complete loss of
escrowed funds to the requester.

Severity High
Status Open

In the xdns pallet, the gateway is associated with an escrow account which is holding
the funds for that gateway.

t3rn Baseline Security Assurance Confidential, Page 12 of 19

Das Logo Horizontal

— Pos / Neg

3

The reboot_self_gateway extrinsic checks [13] whether the caller is signed. If the
caller is unsigned, it uses the AccountId configured as the pallet's
Treasury's AccountId. This AccountId is then used to set the Gateway's escrow
account. Since any signed user can call this extrinsic, they can set their own account
as the gateway's escrow account, allowing them to steal any funds used in escrow.

By taking over an escrow account, an attacker can cause fraudulent transactions,
resulting in complete loss of escrow funds to the requester.

To mitigate this issue, we suggest making this extrinsic only callable by root origins.

6.3 Underweight extrinsics may cause block production timeout.

Attack scenario Underweight extrinsics may cause block production
timeout

Location Circuit pallet
Tracking [5]
Attack impact Under weighted extrinsics enables attacker to create

overweight blocks that could cause block production
timeouts.

Severity High
Status Open

In Substrate-based blockchains, the weight of an extrinsic is used to determine the
computational complexity of an extrinsic. This will further be used to calculate the
fees of the extrinsic which is a factor of the weight. Furthermore, validators use the
weight of the extrinsics to calculate the number of extrinsics that fit in a block which
should execute in one slot (6 seconds).

In the circuit pallet, multiple extrinsics do not account for the worst-case scenario
when benchmarking for weights. Underweighted extrinsics enable attackers to
create overweight blocks that could cause block production timeouts. This can slow
down transaction processing and potentially stall the chain if all collators miss their
block production slots.

We suggest taking into consideration the worst-case scenario for different situations
when benchmarking. For example, when an extrinsic’s computation includes looping
over a list, consider the maximum possible length for that item in the benchmarking
implementations.

6.4 General benchmarking mismatch across multiple extrinsics

Attack scenario General benchmarking mismatch across multiple
extrinsics

Location Circuit and xdns pallets
Tracking [6]
Attack impact Underweighted extrinsics enable attackers to create

overweight blocks that could cause block production
timeouts.

t3rn Baseline Security Assurance Confidential, Page 13 of 19

Das Logo Horizontal

— Pos / Neg

3

Severity High
Status Open

Extrinsics must have a weight function which factors in storage, database access and
computation. The reuse of the same weight across multiple extrinsics may result in
a mismatch of computational requirements and the cost of execution.

In circuit and xdns pallets the extrinsics are reusing the weight functions that are
generated for other extrinsics. For example, verify_event_inclusion uses the weight
function of the verify extrinsic. This can lead to underweighted extrinsics and
overweight blocks that could disrupt block production similar to 6.1.

We suggest creating unique benchmarks and weight functions for each extrinsic,
factoring in their computational complexity.

6.5 Extrinsics that have default weights should be properly benchmarked

Attack scenario Extrinsics that have default weights should be properly
benchmarked

Location Circuit and attesters pallets
Tracking [7]
Attack impact Slow down the transaction processing and potentially

stall the chain if all collators miss their block production
slots

Severity High
Status Open

In Substrate-based blockchains the weight of the extrinsics is produced by the
benchmarking code. This will yield a unique weight for each extrinsic (e.g.,
2_000_000) which shows the computational complexity of the extrinsic.

A number of extrinsic throughout the t3rn codebase are assigned default weights
(e.g., 100_000). For example, the claim extrinsic in circuit pallet does not perform
any authentication checks. Therefore, if claiming is not halted, any user could call
this extrinsic while not paying properly for its execution time and thus spamming the
blockchain and bloating its block size.

We suggest making sure that all the extrinsics are assigned benchmarked weights, in
accordance with their computational complexity and database access.

6.6 Insecure randomness algorithm for Attester's shuffling

Attack scenario Insecure randomness algorithm for Attester's shuffling

Location All runtime configurations
Tracking [8]
Attack impact A malicious collator, also participating as an Attester

could influence the randomness outcome in their favor

t3rn Baseline Security Assurance Confidential, Page 14 of 19

Das Logo Horizontal

— Pos / Neg

3

Severity Medium
Status Open

Polkadot-SDK provides the RandomnessCollectiveFlip as a basic randomness
implementation which is inherently insecure and should not be used directly in
production environments. The reason is that the output from the collective flip relies
on the last 81 blocks, making it highly predictable.

In t3rn the Attesters selection is randomized, where the randomness is derived from
RandomnessCollectiveFlip. If a malicious collator is also an active participant in the
Attesters, they could potentially manipulate the outcome of the randomness
algorithm. This will allow them to ensure their consistent selection in subsequent
Attesters committees and gain an unfair financial advantage by controlling the
committee shuffling process.

Furthermore, the Contracts pallet also uses the RandomnessCollectiveFlip in order to
generate randomness which may have adverse consequences.

We suggest using a secure source of randomness for the Contracts and Attesters
pallets by utilizing a secure randomness implementation like a verifiable random
function (VRF).

6.7 Overlapping values for IsTeleporter and IsReserve

Attack scenario The values of IsTeleporter and IsReserve should not
have overlapping assets

Location All runtime configurations
Tracking [9]
Attack impact An attacker may empty the CheckedAccount and cause

a DoS
Severity Medium
Status Open

In XCM, the IsTeleporter and IsReserve settings are used to configure which origins
are allowed to teleport and reserve transfer assets via the XCM executor.

In t3rn the IsTeleporter and IsReserve settings in multiple runtime configurations
overlap and this means that the parachain trusts the relay chain for both teleport
and do reserve transfers of NativeAssets.

An attacker could do a reserve transfer of some NativeAsset and then teleport it back
to the initial account. Therefore, by only paying a small transaction fee and repeating
the process with the same amount of NativeAsset, an attacker can empty the
CheckedAccount.

Emptying the CheckedAccount can cause a DoS by making it impossible for other
users to teleport their assets back from the parachain to the relay chain. Since the
same funds can be used repeatedly for the attack, effective DoS can even be reached
by an attacker with limited funding.

t3rn Baseline Security Assurance Confidential, Page 15 of 19

Das Logo Horizontal

— Pos / Neg

3

We recommend making a clear separation between teleporting and reserve
transfers. A chain should either use teleporting or a reserve account (with a single,
well-defined reserve location) for a given token, but not both at the same time.

6.8 IdentityFee used to configure WeightToFee

Attack scenario IdentityFee implementation used to configure
WeightToFee

Location All runtime configurations
Tracking [10]
Attack impact The simplistic fee calculation can lead to weight fee

underestimation and can be used by malicious
network participants to spam the chain.

Severity Medium
Status Open

When configuring TransactionPayment pallet, if the WeightToFee is set to
IdentityFee, it might lead to underestimation of fees. This is because IdentityFee does
not apply any conversion or scaling to the weight, potentially causing the calculated
fee to be lower than necessary for the transaction's actual resource consumption.
An attacker can use this underestimation to spam the chain cheaply with bogus
transactions.

In all runtime configurations, the transaction-payment pallet has the WeightToFee
set to IdentityFee. The IdentityFee considers the exact weight as the fee which does
not take into account the current network’s economic conditions or congestion
times.

The WeightToFee trait should be implemented in such a way that it dynamically
adjusts the fee to reflect changes in the network’s requirements or economic
conditions.

An example could be implementing WeightToFeePolynomial for WeightToFee as
done for the runtime configuration for Rococo. [14]

6.9 Incorrect benchmarks for dependency pallets

Attack scenario Incorrect benchmarks for dependency pallets

Location All runtime configurations
Tracking [11]
Attack impact Non-accessible extrinsic calls due to incorrectly

benchmarked weights
Severity Low
Status Open

The t3rn project relies on FRAME pallets from Polkadot-SDK for constructing the
runtime logics, with each runtime having custom pallets enabled in its configuration.
Consequently, benchmarking necessitates adherence to the custom-built runtime

https://github.com/paritytech/polkadot-sdk/blob/master/substrate/primitives/weights/src/lib.rs#L237-L250
https://github.com/paritytech/polkadot-sdk/blob/master/polkadot/runtime/rococo/constants/src/lib.rs#L87-L102

t3rn Baseline Security Assurance Confidential, Page 16 of 19

Das Logo Horizontal

— Pos / Neg

3

specifications to ensure accurate evaluation and optimization of performance
metrics.

However, in t3rn this was incorrectly done using template substrate-runtime which
will not accurately reflect the t3rn runtime performance.

As benchmarks can be dependent on the actual runtime configuration, this can lead
to:

• Overweight extrinsics
• Underweight extrinsics

For t3rn, this could lead to non-accessible extrinsic calls due to incorrectly
benchmarked weights.

All pallet extrinsics, even the Substrate ones, should be benchmarked with the actual
runtime configuration by including them in the runtime’s define_benchmarks! block.
A best practice example can be found in the Kusama runtime implementation [15].

6.10 Lack of authorization in extrinsic exposes potential for spamming

Attack scenario Lack of authorization in extrinsic exposes potential for
spamming

Location Circuit/Vacuum pallet
Tracking [12]
Attack impact Attackers can waste chain resources without paying for

them by repeatedly calling extrinsics that lack any origin
checks before execution

Severity Info
Status Open

Every extrinsic must be associated with an origin to maintain security and control.
This ensures that only authorized entities can execute transactions, preventing
unauthorized activities. Attackers can also waste chain resources without paying for
them by repeatedly calling extrinsics that lack origin checks.

In t3rn, the absence of origin checks within some extrinsics in CircuitVacuum pallet
will expose the blockchain to spamming attacks. This means that anyone may call the
extrinsic without paying any fees for it.

For instance, the extrinsics read_order_status and read_all_pending_order_status in
CircuitVacuum pallet do not perform any origin checks.

Introduce an origin check (by using ensure_signed or similar functionality) to enforce
signed callers.

7 Evolution suggestions

The core findings from the security audit revealed that the t3rn repository and logic
needs improvement in coding style, maturity, and repository organization. As a first
maturity step, it is recommended to remove all the unused logics in the pallets,

t3rn Baseline Security Assurance Confidential, Page 17 of 19

Das Logo Horizontal

— Pos / Neg

3

improve the code readability through Rust documentation and inline commenting to
create a transparent business logic for developers and auditors. Creating this
transparency helps with dealing the complexity of implementation logic and
reasoning about data flow. Given the complexity of t3rn’s business logic, the coding
style could also be improved to make the function and variable naming succinct,
consistent, and easy to follow along. All these shortcomings currently make it
increasingly challenging to improve the repository's security against both known and
unforeseen threats.

7.1 Address currently open security and broader design issues

We recommend addressing already known security issues from Chapter 6 in a timely
manner to prevent attackers from exploiting them – even if an open issue has a
limited impact, an attacker might use it as part of their exploitation chain, which may
cause financial harm to user and reputation damage to t3rn. In addition to security
concerns, we have also identified recurring patterns of broader issues throughout
the repository.

Address inadequate benchmarking for extrinsics. The absence of adequate
benchmarking, particularly without utilizing the t3rn runtime, significantly
undermines the operation and production of the blockchain. It is imperative that t3rn
developers thoroughly consult the Polkadot-SDK’s knowledge base to ensure proper
benchmarking for extrinsics. Failure to do so risks exposing the chain to low-effort
attacks such as spamming and bloating, which can severely disrupt t3rn’s
functionality and availability. Benchmarking and validating extrinsic weights are
fundamental security measures for parachain developers and should not be
overlooked.

Implement proper safeguards for critical operations, such as authorization.
Security considerations designed to prevent impersonation through roles design and
filtering are currently insufficient, especially for key roles such as gateways that
facilitate cross-chain transactions. It is crucial that all participants involved in cross-
chain transactions undergo thorough validation and filtering with appropriate guard
conditions. Additionally, documenting security policies and restrictions for each role
is essential to enhance visibility and prevent the recurrence of such errors.

Fix all runtime misconfiguration issues. To mitigate runtime panics and security
vulnerabilities in t3rn due to misconfiguration and insecure API usage, it is imperative
to closely adhere to the recommendations and security advisories provided by the
upstream Polkadot-SDK’s documentation. This involves meticulously reviewing
runtime configurations, ensuring alignment with best practices, and promptly
addressing any deviations or vulnerabilities. By avoiding insecure API usage patterns,
staying updated with security patches, and conducting thorough testing and training,
developers can safeguard their codebase against potential risks, promoting both
stability and security throughout the product’s lifecycle.

Consider improving security posture and creating an internal roadmap for long-
term evolution. t3rn’s repository's lack of extensive documentation and forking
practices underline a deeper issue of insufficient consideration for security maturity
and long-term evolution goals. Without documentation on business logic, current
and new developers may inadvertently introduce vulnerabilities. This insufficiency
leads to fragmented codebases with varying levels of security maturity across pallets,
runtime, and roles implementation. To address this, improve documentation while

t3rn Baseline Security Assurance Confidential, Page 18 of 19

Das Logo Horizontal

— Pos / Neg

3

emphasizing security considerations among developers such that the t3rn codebase
can adapt and evolve securely. Creating and documenting a roadmap of reaching
maturity in core features with well-defined milestones can further ensure t3rn’s
resilience against potential threats and attacks.

7.2 Further recommended best practices

Improve code documentation. The lack of clear documentation makes it challenging
for auditors and internal reviewers to understand the intent and functionality of the
code, leading to increased time and resources spent in attempting to decipher the
programming constructs. Components like the CirquitVacuum module would benefit
greatly from a more comprehensive set of documentation and detailed inline
commentary. Enhancing these aspects could significantly streamline the review
process, facilitate a better understanding of the code's purpose and design, and
contribute to a more efficient and effective security evaluation.

Clean up the code base. The production code base contains numerous instances of
uncompilable code blocks that have been commented out or functionalities that are
partially implemented. It is advisable to remove all such unused and uncompilable
code fragments (instead of commenting them out) to maintain a clean and efficient
code base. This will help in preventing the inadvertent introduction of bugs during
refactoring or forking processes, thereby contributing to the overall integrity and
clarity of the software.

Improve repository organization. Implementing test logic and business logic in a
single file is considered a best practice deviation. It will clutter the code making it
difficult to navigate and maintain the code. We recommend separating the test logic
from the pallet implementation in a test file or module. This will improve the long-
term maintainability and may prevent the introduction of bugs to the pallets as the
pallet implementation continues to evolve.

Regular code review and continuous fuzz testing. Regular code reviews are
recommended to avoid introducing new logic or arithmetic bugs, while continuous
fuzz testing can identify potential vulnerabilities early in the development process.
Ideally, t3rn should continuously fuzz their code on each commit made to the
codebase. We recommend using the substrate-runtime-fuzzer [16] as a good starting
point for getting started with runtime fuzzing.

Regular updates. New releases of Substrate may contain fixes for critical security
issues. Since t3rn is a product that heavily relies on Substrate, updating to the latest
version as soon as possible whenever a new release is available is recommended.

Avoid chain forking of pallets. Using forked repositories should be avoided in most
cases: for instance the Merkle-Patricia Trie implementation in eth2-light-client is
forked from carver/eth-trie.rs [17], which in turn is forked from cita_trie [18]. Having
a fork of a known pallet makes getting upstream fixes a manual process and harder
to maintain. Moreover, the adapted fix for the forked pallet may not mitigate the
underlying security issue, or it may introduce new vulnerabilities.

t3rn Baseline Security Assurance Confidential, Page 19 of 19

Das Logo Horizontal

— Pos / Neg

3

8 Bibliography

[1] [Online]. Available: https://github.com/t3rn/t3rn.

[2] [Online]. Available: https://github.com/t3rn/eth2-light-client.

[3] [Online]. Available: https://github.com/t3rn/eth2-light-client/issues/47.

[4] [Online]. Available: https://github.com/t3rn/eth2-light-client/issues/46.

[5] [Online]. Available: https://github.com/t3rn/eth2-light-client/issues/43.

[6] [Online]. Available: https://github.com/t3rn/eth2-light-client/issues/42.

[7] [Online]. Available: https://github.com/t3rn/eth2-light-client/issues/44.

[8] [Online]. Available: https://github.com/t3rn/eth2-light-client/issues/49.

[9] [Online]. Available: https://github.com/t3rn/eth2-light-client/issues/48.

[10] [Online]. Available: https://github.com/t3rn/eth2-light-client/issues/50.

[11] [Online]. Available: https://github.com/t3rn/eth2-light-client/issues/41.

[12] [Online]. Available: https://github.com/t3rn/eth2-light-client/issues/45.

[13] [Online].Available:https://github.com/t3rn/t3rn/blob/development/pallets/x
dns/src/lib.rs#L1029.

[14] [Online].Available:https://github.com/paritytech/polkadot-
sdk/blob/master/polkadot/runtime/rococo/constants/src/lib.rs#L87-L102.

[15] [Online].Available:https://github.com/paritytech/polkadot/blob/01fd49a7faf
a01f133e2dec538a2ef7c697a26aa/runtime/kusama/src/lib.rs#L1578-L1587.

[16] [Online]. Available: https://github.com/srlabs/substrate-runtime-fuzzer.

[17] [Online]. Available: https://github.com/carver/eth-trie.rs.

[18] [Online]. Available: https://github.com/citahub/cita_trie.

