
Introducing Code4rena Pro League: The elite tier of professional security researchers.
Learn more →

Phat Contract Runtime
Findings & Analysis Report
2024-04-11

Table of contents
• Overview

• About C4

• Wardens

• Summary

• Scope

• Severity Criteria

• Medium Risk Findings (4)

• [M-01] Limited availability of balance_of(...) method

• [M-02] An attacker can bloat the Pink runtime storage with zero
costs

• [M-03] A cache that times out can be recovered

• [M-04] An attacker can crash the cluster system by sending an
HTTP request with a huge timeout

• Low Risk and Non-Critical Issues

• 01 No point in using regular http request over batchhttperequest

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

1 of 81 09/06/2024, 14:11

https://code4rena.com/pro
https://code4rena.com/pro
https://code4rena.com/
https://code4rena.com/

• 02 CallinCommand is misleading and should be renamed
callinTransaction for clarity

• 03 is_running_in_command function is missing or misnamed in
the code

• 04 Functions that are not supported in transaction mode should
revert not send empty arrays

• 05 Masking deposit calculation can lead to unexpected results in
certain circumstances

• 06 is_in_transaction return value can be misleading

• 07 No code size limit check in function put_sidevm_code

• Audit Analysis

• Description overview of Phala Network

• System Overview

• Approach Taken in Evaluating Phat Contract

• Architecture

• Codebase Quality

• Systemic Risks, Centralization Risks, Technical Risks & Integration
Risks

• Suggestions

• Disclosures

Code4rena (C4) is an open organization consisting of security researchers,
auditors, developers, and individuals with domain expertise in smart contracts.

A C4 audit is an event in which community participants, referred to as
Wardens, review, audit, or analyze smart contract logic in exchange for a

Overview

About C4

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

2 of 81 09/06/2024, 14:11

bounty provided by sponsoring projects.

During the audit outlined in this document, C4 conducted an analysis of the
Phat Contract Runtime smart contract system written in Rust. The audit took
place between March 1 — March 22, 2024.

19 Wardens contributed reports to Phat Contract Runtime:

1. DadeKuma

2. zhaojie

3. 0xTheC0der

4. Koolex

5. Cryptor

6. hunter_w3b

7. albahaca

8. popeye

9. ihtishamsudo

10. Bauchibred

11. XDZIBECX

12. Daniel526

13. fouzantanveer

14. 0xepley

15. aariiif

16. DarkTower (0xrex and haxatron)

17. roguereggiant

18. kaveyjoe

Wardens

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

3 of 81 09/06/2024, 14:11

https://code4rena.com/@DadeKuma
https://code4rena.com/@DadeKuma
https://code4rena.com/@zhaojie
https://code4rena.com/@zhaojie
https://code4rena.com/@0xTheC0der
https://code4rena.com/@0xTheC0der
https://code4rena.com/@Koolex
https://code4rena.com/@Koolex
https://code4rena.com/@Cryptor
https://code4rena.com/@Cryptor
https://code4rena.com/@hunter_w3b
https://code4rena.com/@hunter_w3b
https://code4rena.com/@albahaca
https://code4rena.com/@albahaca
https://code4rena.com/@popeye
https://code4rena.com/@popeye
https://code4rena.com/@ihtishamsudo
https://code4rena.com/@ihtishamsudo
https://code4rena.com/@Bauchibred
https://code4rena.com/@Bauchibred
https://code4rena.com/@XDZIBECX
https://code4rena.com/@XDZIBECX
https://code4rena.com/@Daniel526
https://code4rena.com/@Daniel526
https://code4rena.com/@fouzantanveer
https://code4rena.com/@fouzantanveer
https://code4rena.com/@0xepley
https://code4rena.com/@0xepley
https://code4rena.com/@aariiif
https://code4rena.com/@aariiif
https://code4rena.com/@DarkTower
https://code4rena.com/@DarkTower
https://code4rena.com/@0xrex
https://code4rena.com/@0xrex
https://code4rena.com/@haxatron
https://code4rena.com/@haxatron
https://code4rena.com/@roguereggiant
https://code4rena.com/@roguereggiant
https://code4rena.com/@kaveyjoe
https://code4rena.com/@kaveyjoe

This audit was judged by Lambda.

Final report assembled by thebrittfactor.

The C4 analysis yielded an aggregated total of 4 unique vulnerabilities. Of
these vulnerabilities, 0 received a risk rating in the category of HIGH severity
and 4 received a risk rating in the category of MEDIUM severity.

Additionally, C4 analysis included 7 reports detailing issues with a risk rating
of LOW severity or non-critical.

All of the issues presented here are linked back to their original finding.

The code under review can be found within the C4 Phat Contract Runtime
repository, and is composed of 13 smart contracts written in the Rust
programming language and includes 2711 lines of Rust code.

C4 assesses the severity of disclosed vulnerabilities based on three primary
risk categories: high, medium, and low/non-critical.

High-level considerations for vulnerabilities span the following key areas when
conducting assessments:

• Malicious Input Handling

• Escalation of privileges

• Arithmetic

• Gas use

Summary

Scope

Severity Criteria

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

4 of 81 09/06/2024, 14:11

https://code4rena.com/@Lambda
https://code4rena.com/@Lambda
https://twitter.com/brittfactorC4
https://twitter.com/brittfactorC4
https://github.com/code-423n4/2024-03-phala-network
https://github.com/code-423n4/2024-03-phala-network
https://github.com/code-423n4/2024-03-phala-network
https://github.com/code-423n4/2024-03-phala-network

For more information regarding the severity criteria referenced throughout the
submission review process, please refer to the documentation provided on the
C4 website, specifically our section on Severity Categorization.

Submitted by 0xTheC0der

According to the documentation (online and in-line), the availability of the
balance_of(…) method (see code below) should be any contract instead of
system only which is caused by the present ensure_system check.

The ensure_system(…) method returns a BadOrigin error in case the caller/
origin is not the system contract.

Medium Risk Findings (4)

[M-01] Limited availability of balance_of(...) method

fn balance_of(
 &self,
 account: ext::AccountId,
) -> Result<(pink::Balance, pink::Balance), Self::Error> {

self.ensure_system()?; // @audit Availability should be 'any contra
let account: AccountId32 = account.convert_to();
let total = crate::runtime::Balances::total_balance(&account);
let free = crate::runtime::Balances::free_balance(&account);

 Ok((total, free))
}

fn ensure_system(&self) -> Result<(), DispatchError> {
let contract: AccountId32 = self.address.convert_to();
if Some(contract) != PalletPink::system_contract() {

return Err(DispatchError::BadOrigin);
 }
 Ok(())

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

5 of 81 09/06/2024, 14:11

https://code4rena.com/
https://code4rena.com/
https://code4rena.com/
https://code4rena.com/
https://docs.code4rena.com/awarding/judging-criteria/severity-categorization
https://docs.code4rena.com/awarding/judging-criteria/severity-categorization
https://github.com/code-423n4/2024-03-phala-network-findings/issues/50
https://github.com/code-423n4/2024-03-phala-network-findings/issues/50
https://docs.rs/pink/latest/pink/chain_extension/trait.PinkExtBackend.html#tymethod.balance_of
https://docs.rs/pink/latest/pink/chain_extension/trait.PinkExtBackend.html#tymethod.balance_of
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/pink/src/chain_extension.rs#L503-L516
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/pink/src/chain_extension.rs#L503-L516
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L266-L275
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L266-L275
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L145-L151
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L145-L151
https://github.com/code-423n4/2024-03-phala-network-findings/issues/50
https://github.com/code-423n4/2024-03-phala-network-findings/issues/50
https://github.com/code-423n4/2024-03-phala-network-findings/issues/50
https://github.com/code-423n4/2024-03-phala-network-findings/issues/50
https://github.com/code-423n4/2024-03-phala-network-findings/issues/50

The availability of the balance_of(…) method is limited to the system contract
instead of being accessible to anyone. Therefore, user contracts relying on this
method will inevitably fail.

For comparison:

The import_latest_system_code(...) method has consistent system only
availability according to the implementation and documentation.

Please add the test case below to phala-blockchain/crates/pink/
runtime/tests/test_pink_contract.rs and run it with cargo test
test_balance_of -- --nocapture .

}

Consequence

Proof of Concept

#[test]
fn test_balance_of() {

const TEST_ADDRESS: AccountId32 = AccountId32::new([255u8

let (mut cluster, checker) = create_cluster();

let balance = 114514;

 cluster.tx().deposit(TEST_ADDRESS.clone(), balance);

let result = checker
 .call()
 .direct_balance_of(TEST_ADDRESS.convert_to())
 .query(&mut cluster);

assert_eq!(result.unwrap(), (balance, balance));
}

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

6 of 81 09/06/2024, 14:11

https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L266-L275
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L266-L275
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L295-L314
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L295-L314
https://docs.rs/pink/latest/pink/chain_extension/trait.PinkExtBackend.html#tymethod.import_latest_system_code
https://docs.rs/pink/latest/pink/chain_extension/trait.PinkExtBackend.html#tymethod.import_latest_system_code

The test will fail with a BadOrigin error as discussed above:

Remove the ensure_system check from the balance_of(…) method to
ensure availability for any contract.

Invalid Validation

kvinwang (Phala) confirmed

Submitted by DadeKuma

An attacker can perform a bloat attack by creating a very high amount of dust
accounts. This can occur with a minimal cost for the attacker, and results in a
very high and increased cost in terms of storage and fees.

On substrate-based runtimes, the Existential Deposit (ED) is the minimum
balance needed to have an active account, and it’s useful to prevent dust
accounts from bloating the storage state. In case the balance goes under the
ED, the account will be reaped, (i.e. completely removed from storage) and
the nonce reset.

Storage usage has a cost in terms of fees which impacts all the users, as there

called `Result::unwrap()` on an `Err` value: Failed to execute call: BadOr

Recommended Mitigation Steps

Assessed type

[M-02] An attacker can bloat the Pink runtime storage
with zero costs

Proof of Concept

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

7 of 81 09/06/2024, 14:11

https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L266-L275
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L266-L275
https://github.com/code-423n4/2024-03-phala-network-findings/issues/50#issuecomment-2019469089
https://github.com/code-423n4/2024-03-phala-network-findings/issues/50#issuecomment-2019469089
https://github.com/code-423n4/2024-03-phala-network-findings/issues/49
https://github.com/code-423n4/2024-03-phala-network-findings/issues/49
https://wiki.polkadot.network/docs/build-protocol-info#existential-deposit
https://wiki.polkadot.network/docs/build-protocol-info#existential-deposit
https://github.com/code-423n4/2024-03-phala-network-findings/issues/49
https://github.com/code-423n4/2024-03-phala-network-findings/issues/49
https://github.com/code-423n4/2024-03-phala-network-findings/issues/49
https://github.com/code-423n4/2024-03-phala-network-findings/issues/49

is a bigger overhead. The issue is that on the Pink runtime, the ED is
dangerously low, which enables bloating attacks.

Let’s see how feasible is to perform an attack from a price perspective. On
Polkadot, the ED is 1 DOT . At the moment of writing, 1 DOT is worth about
$10 USD , so if an attacker would want to split 10 million USD as dust between
their own accounts, they would be able to create only 1 million accounts.

On the Pink runtime, this is not the case. At the moment of writing 1 PHA is
equal to ~$0.20 USD ; but here, the ED is only 1 unit:

https://github.com/code-423n4/2024-03-phala-network/blob/
a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/
pink/runtime/src/runtime.rs#L48

As balance is simply a type alias of u128 :

https://github.com/code-423n4/2024-03-phala-network/blob/
a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/
pink/runtime/src/types.rs#L11

And 1 PHA is equal to 1_000_000_000_000 :

pub const ExistentialDeposit: Balance = 1;

pub type Balance = u128;

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

8 of 81 09/06/2024, 14:11

https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime.rs#L48
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime.rs#L48
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime.rs#L48
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime.rs#L48
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime.rs#L48
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime.rs#L48
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/types.rs#L11
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/types.rs#L11
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/types.rs#L11
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/types.rs#L11
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/types.rs#L11
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/types.rs#L11
https://github.com/Phala-Network/phala-blockchain/blob/1dd8911a6c8f3fe628f8a27ef3e4848b8100faf4/standalone/runtime/src/constants.rs#L26-L29
https://github.com/Phala-Network/phala-blockchain/blob/1dd8911a6c8f3fe628f8a27ef3e4848b8100faf4/standalone/runtime/src/constants.rs#L26-L29
https://github.com/Phala-Network/phala-blockchain/blob/1dd8911a6c8f3fe628f8a27ef3e4848b8100faf4/standalone/runtime/src/constants.rs#L26-L29

This means that an account costs only $0.20 / 1_000_000_000_000 for the
attacker.

Following the previous DOT example, this means that an attacker could create
1 TRILLION accounts by simply paying just $0.20 , but they could create
even more accounts (several order of magnitudes bigger) with a small
“investment” to fill all the storage.

Consider using a reasonable Existential Deposit. I recommend at least one
CENTS (i.e. 1_000_000_000):

Decimal

kvinwang (Phala) confirmed

Submitted by zhaojie

Recover a cached value that has timed out, and a malicious user or contract

pub const PHAS: Balance = 1_000_000_000_000;
pub const DOLLARS: Balance = PHAS;
pub const CENTS: Balance = DOLLARS / 100;
pub const MILLICENTS: Balance = CENTS / 1_000;

Recommended Mitigation Steps

- pub const ExistentialDeposit: Balance = 1;
+ pub const ExistentialDeposit: Balance = 1 * CENTS;

Assessed type

[M-03] A cache that times out can be recovered

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

9 of 81 09/06/2024, 14:11

https://github.com/code-423n4/2024-03-phala-network-findings/issues/49#issuecomment-2019466089
https://github.com/code-423n4/2024-03-phala-network-findings/issues/49#issuecomment-2019466089
https://github.com/code-423n4/2024-03-phala-network-findings/issues/44
https://github.com/code-423n4/2024-03-phala-network-findings/issues/44
https://github.com/code-423n4/2024-03-phala-network-findings/issues/44
https://github.com/code-423n4/2024-03-phala-network-findings/issues/44

can exploit this bug to fool other users or cause other unknown problems.

The LocalCache#set_expire function does not check whether the key has
expired when setting a timeout:

As we can see from the above code, the set_expire function will first call
maybe_clear_expired . The function maybe_* is called, so it won’t
necessarily delete keys that have expired. This function will not clean up
expired keys until gc count reaches a certain value.

Therefore, if there are keys that have expired, they are still queried from
storages and then reset the expiration time. In other words, the
set_expire function can cause an expired key to be reactivated.

Proof of Concept

pub fn set_expire(&mut self, id: Cow<[u8]>, key: Cow<[
//@audit key values that have timed out may not be deleted
self.maybe_clear_expired();
if expire == 0 {

let _ = self.remove(id.as_ref(), key.as_ref());
 } else if let Some(v) = self
 .storages
 .get_mut(id.as_ref())
 .and_then(|storage| storage.kvs.get_mut(key.as_ref
 {

//@audit You can increase the timeout period of a key value th
 v.expire_at = now().saturating_add(expire)
 }
 }

fn maybe_clear_expired(&mut self) {
self.sets_since_last_gc += 1;

@> if self.sets_since_last_gc == self.gc_interval {
self.clear_expired();

 }
 }

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

10 of 81 09/06/2024, 14:11

Let’s look at another function, LocalCache#get :

The get function returns None if it finds that key has expired; this results in
inconsistency of cached data.

In this way, when a key value (such as balance signature or debt) has expired,
the attacker declares that the value no longer exists. The user is then asked to
take some action, so the victim queries LocalCache#get and then finds that
the value indeed no longer exists. The problem is that an attacker can use
set_expire to restore this value.

Another attack scenario is:

The key value (such as an nft) that the developer thinks has expired no longer
exists. However, a malicious user can make this value expire indefinitely if
set_expire can be called.

Tips:

LocalCache#set does not have this problem. LocalCache#set will call
Storage#set , which will first call self.remove to remove the existing key.

VS Code

pub fn get(&self, id: &[u8], key: &[u8]) -> Option<Vec
let entry = self.storages.get(id)?.kvs.get(key)?;

@> if entry.expire_at <= now() {
 None
 } else {
 Some(entry.value.to_owned())
 }
 }

Tools Used

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

11 of 81 09/06/2024, 14:11

kvinwang (Phala) confirmed, but disagreed with severity and commented:

This is a good catch.

I’m not sure if this should be classified as High Risk level. The purpose of
the local cache is to store volatile data, such as information fetched from an
HTTP server. This data is expected to be lost at any time and may vary
between different workers for the same contract. If the data is lost, the
contract will re-fetch it from the external system.

Therefore, I don’t think it is suitable for storing on-chain assets that users
can query.

Lambda (judge) decreased severity to Medium and commented:

Good finding, but agree that Medium is more appropriate, as the finding
does not show any direct way how this can be used to steal funds, but only
speculates about potential methods (which I am not sure if they can happen

Recommended Mitigation Steps

 pub fn set_expire(&mut self, id: Cow<[u8]>, key: Cow<[u8]>, expire: u6
- self.maybe_clear_expired();
+ self.clear_expired();
 if expire == 0 {
 let _ = self.remove(id.as_ref(), key.as_ref());
 } else if let Some(v) = self
 .storages
 .get_mut(id.as_ref())
 .and_then(|storage| storage.kvs.get_mut(key.as_ref()))
 {
 v.expire_at = now().saturating_add(expire)
 }
 }

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

12 of 81 09/06/2024, 14:11

https://github.com/code-423n4/2024-03-phala-network-findings/issues/44#issuecomment-2019336011
https://github.com/code-423n4/2024-03-phala-network-findings/issues/44#issuecomment-2019336011
https://github.com/code-423n4/2024-03-phala-network-findings/issues/44#issuecomment-2023029935
https://github.com/code-423n4/2024-03-phala-network-findings/issues/44#issuecomment-2023029935

in practice and even if, they would have many assumptions).

DadeKuma (warden) commented:

I’m a bit skeptical about this finding. First of all, the docs state that the
cache will store off-chain computations and not on-chain data that users
can query/call:

//! The LocalCache provides a local KV cache for contracts to do some
offchain computation. //! When we say local, it means that the data stored
in the cache is different in different //! machines of the same contract. And
the data might be lost when the runtime restart or caused //! by some kind
of cache expiring mechanism.

https://github.com/code-423n4/2024-03-phala-network/blob/
a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/
crates/pink/chain-extension/src/local_cache.rs#L1-L4

There is no proof that these off-chain computations can be leveraged to
impact the protocol or leak value in any way, especially because:

1. This data is expected to be lost at any time and can vary between
different workers.

2. These are off-chain computations which are not queriable by users.

For these reasons, I believe this finding should be capped to QA/Low, not
Medium risk.

zhaojie (warden) commented:

Although the user cannot query the cached data directly, the user can
query it indirectly through the contract. The cache stores off-chain data,
which can also cause problems if it is recovered.

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

13 of 81 09/06/2024, 14:11

https://github.com/code-423n4/2024-03-phala-network-findings/issues/44#issuecomment-2025534255
https://github.com/code-423n4/2024-03-phala-network-findings/issues/44#issuecomment-2025534255
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/chain-extension/src/local_cache.rs#L1-L4
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/chain-extension/src/local_cache.rs#L1-L4
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/chain-extension/src/local_cache.rs#L1-L4
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/chain-extension/src/local_cache.rs#L1-L4
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/chain-extension/src/local_cache.rs#L1-L4
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/chain-extension/src/local_cache.rs#L1-L4
https://github.com/code-423n4/2024-03-phala-network-findings/issues/44#issuecomment-2027002614
https://github.com/code-423n4/2024-03-phala-network-findings/issues/44#issuecomment-2027002614

For example, price data - the attacker lets the expired cache recover, there
may be 2 different prices, which will lead to price manipulation. The report
says that storing xxxx in the cache is just an assumption.

Severity is determined by the judge, and I think it should at least remain
Medium.

DadeKuma (warden) commented:

The set_expire function is never called inside the audit repository, nor in
the main Phala repository, and the only proof of how it will be used is inside
the docs in the file itself, which points to off-chain computations.

Using this cache to store on-chain data would be a misuse and a user error
(and I don’t think it would even make sense as the data is volatile/
incongruent between the workers). This is also confirmed by the Sponsor in
the comment above.

Of course, the Judge will decide the final severity. I was just adding some
details that might have been missed in the initial submission.

EDIT: set_expire is actually called, GitHub search is broken; see
comment below. My point on docs/normal usage stands.

zhaojie (warden) commented:

@DadeKuma - You should search for set_expiration .

https://github.com/code-423n4/2024-03-phala-network/blob/

pub fn set_expiration(contract: &[u8], key: &[u8], expiration:
with_global_cache(|cache| cache.set_expire(contract.into

}

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

14 of 81 09/06/2024, 14:11

https://github.com/code-423n4/2024-03-phala-network-findings/issues/44#issuecomment-2027052120
https://github.com/code-423n4/2024-03-phala-network-findings/issues/44#issuecomment-2027052120
https://github.com/search?q=repo%3Acode-423n4%2F2024-03-phala-network%20set_expire&type=code
https://github.com/search?q=repo%3Acode-423n4%2F2024-03-phala-network%20set_expire&type=code
https://github.com/search?q=repo%3APhala-Network%2Fphala-blockchain+set_expire&type=code
https://github.com/search?q=repo%3APhala-Network%2Fphala-blockchain+set_expire&type=code
https://github.com/code-423n4/2024-03-phala-network-findings/issues/44#issuecomment-2027067004
https://github.com/code-423n4/2024-03-phala-network-findings/issues/44#issuecomment-2027067004
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/chain-extension/src/local_cache.rs#L273
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/chain-extension/src/local_cache.rs#L273

a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/
crates/pink/chain-extension/src/local_cache.rs#L273

Lambda (judge) commented:

First of all, the docs state that the cache will store off-chain computations
and not on-chain data that users can query/call:

I agree with that. If it were used for on-chain data such as balances, High
would be more appropriate. However, even for off-chain data, this
behaviour could lead to problems. For instance, if the cache is used for
caching some API/web responses (which seems to be one of the most
common use cases for the cache), it is not unreasonable that a developer
wants to have a maximum age of the response (and with
cache_set_expire , there is an exposed function for exactly doing that,
which does not always correctly as the warden has shown).

In these cases, it also does not matter that the data is volatile/different
between workers, because you care about the maximum age, but fetching
newer data is fine. One example I can think of is betting on some result of
an API service that refreshes daily where you would set the expiration such
that no new requests are made until the next refresh. Of course, this has
some assumptions, but I think they are pretty reasonable for such a runtime
and it is well possible that there could be contracts that trigger this issue.

Submitted by DadeKuma, also found by Koolex and zhaojie

Any user can intentionally crash a worker by sending a maliciously crafted
request with a huge timeout. This attack has no costs for the attacker, and it
can result in a DoS of the worker/cluster system.

[M-04] An attacker can crash the cluster system by
sending an HTTP request with a huge timeout

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

15 of 81 09/06/2024, 14:11

https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/chain-extension/src/local_cache.rs#L273
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/chain-extension/src/local_cache.rs#L273
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/chain-extension/src/local_cache.rs#L273
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/chain-extension/src/local_cache.rs#L273
https://github.com/code-423n4/2024-03-phala-network-findings/issues/44#issuecomment-2028177501
https://github.com/code-423n4/2024-03-phala-network-findings/issues/44#issuecomment-2028177501
https://github.com/code-423n4/2024-03-phala-network-findings/issues/43
https://github.com/code-423n4/2024-03-phala-network-findings/issues/43
https://github.com/code-423n4/2024-03-phala-network-findings/issues/67
https://github.com/code-423n4/2024-03-phala-network-findings/issues/67
https://github.com/code-423n4/2024-03-phala-network-findings/issues/45
https://github.com/code-423n4/2024-03-phala-network-findings/issues/45
https://github.com/code-423n4/2024-03-phala-network-findings/issues/43
https://github.com/code-423n4/2024-03-phala-network-findings/issues/43
https://github.com/code-423n4/2024-03-phala-network-findings/issues/43
https://github.com/code-423n4/2024-03-phala-network-findings/issues/43

A user can specify a timeout when doing a batch_http_request :

https://github.com/code-423n4/2024-03-phala-network/blob/
a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/
pink/chain-extension/src/lib.rs#L56

The issue is that in Rust, the + operator can overflow when numerics bound
are exceeded; this will result in a panic error.

When a malicious user sends a request with a timeout greater than u64::MAX
- 200 , they will crash the worker. As this action will cost nothing to the
attacker, they can simply send multiple requests to crash all the workers,
which will result in a DoS of the cluster system.

Proof of Concept

pub fn batch_http_request(requests: Vec<HttpRequest>, timeout_ms:
const MAX_CONCURRENT_REQUESTS: usize = 5;
if requests.len() > MAX_CONCURRENT_REQUESTS {

return Err(ext::HttpRequestError::TooManyRequests);
 }

block_on(async move {
let futs = requests

 .into_iter()
 .map(|request| async_http_request(request, timeout_ms));
 tokio::time::timeout(
@> Duration::from_millis(timeout_ms + 200),
 futures::future::join_all(futs),
)
 .await
 })
 .or(Err(ext::HttpRequestError::Timeout))
 }

Coded PoC

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

16 of 81 09/06/2024, 14:11

https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/chain-extension/src/lib.rs#L56
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/chain-extension/src/lib.rs#L56
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/chain-extension/src/lib.rs#L56
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/chain-extension/src/lib.rs#L56
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/chain-extension/src/lib.rs#L56
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/chain-extension/src/lib.rs#L56

Copy-paste the following test in phala-blockchain/crates/pink/chain-
extension/src/mock_ext.rs :

 #[cfg(test)]
mod tests {

use crate::PinkRuntimeEnv;
use pink::chain_extension::{HttpRequest, PinkExtBackend};

use super::*;

 #[test]
fn http_timeout_panics() {

mock_all_ext();
let ext = MockExtension;
assert_eq!(ext.address(), &AccountId32::new([
let responses = ext

 .batch_http_request(
vec![

 HttpRequest {
 method: "GET".into(),
 url: "https://httpbin.org/get"
 body: Default::default(),
 headers: Default::default(),
 },
 HttpRequest {
 method: "GET".into(),
 url: "https://httpbin.org/get"
 body: Default::default(),
 headers: Default::default(),
 },
],

u64::MAX, //@audit this will cause an overflow
)
 .unwrap()
 .unwrap();

assert_eq!(responses.len(), 2);
for response in responses {

assert!(response.is_ok());
 }

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

17 of 81 09/06/2024, 14:11

Output:

 }
 }

 running 1 test
 thread 'mock_ext::tests::http_timeout_panics' panicked at crates/pink/
 attempt to add with overflow
 stack backtrace:
 0: std::panicking::begin_panic_handler
 at /rustc/82e1608dfa6e0b5569232559e3d385fea5a93112/librar
 1: core::panicking::panic_fmt
 at /rustc/82e1608dfa6e0b5569232559e3d385fea5a93112/librar
 2: core::panicking::panic
 at /rustc/82e1608dfa6e0b5569232559e3d385fea5a93112/librar
 3: pink_chain_extension::batch_http_request::async_block
 at ./src/lib.rs:66
 4: tokio::runtime::park::impl$4::block_on::closure
 at /.cargo/registry/src/index.crates.io-6f17d22bba15001f/
 5: tokio::runtime::coop::with_budget
 at /.cargo/registry/src/index.crates.io-6f17d22bba15001f/
 6: tokio::runtime::coop::budget
 at /.cargo/registry/src/index.crates.io-6f17d22bba15001f/
 7: tokio::runtime::park::CachedParkThread::block_on<enum2$<pink_cha
 at /.cargo/registry/src/index.crates.io-6f17d22bba15001f/
 8: tokio::runtime::context::blocking::BlockingRegionGuard::block_on
 at /.cargo/registry/src/index.crates.io-6f17d22bba15001f/
 9: tokio::runtime::scheduler::multi_thread::impl$0
 at /.cargo/registry/src/index.crates.io-6f17d22bba15001f/
 10: tokio::runtime::context::runtime::enter_runtime<tokio::runtime::
 at /.cargo/registry/src/index.crates.io-6f17d22bba15001f/
 11: tokio::runtime::scheduler::multi_thread::MultiThread::block_on<e
 at /.cargo/registry/src/index.crates.io-6f17d22bba15001f/
 12: tokio::runtime::runtime::Runtime::block_on<enum2$<pink_chain_ext
 at /.cargo/registry/src/index.crates.io-6f17d22bba15001f/
 13: pink_chain_extension::block_on<enum2$<pink_chain_extension::batc
 at ./src/lib.rs:50
 14: pink_chain_extension::batch_http_request

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

18 of 81 09/06/2024, 14:11

Consider using saturating_add instead:

Invalid Validation

kvinwang (Phala) confirmed, but disagreed with severity and commented:

The runtime doesn’t call the implementation directly. Instead, it calls into the
worker, via ocalls here, and the timeout is actually clamped in the
worker side. However, the suggested change is good to have. This might be
a QA or Mid Risk level report.

 at ./src/lib.rs:61
 15: pink_chain_extension::impl$1::batch_http_request<pink_chain_exte
 at ./src/lib.rs:192
 16: pink_chain_extension::mock_ext::impl$1::batch_http_request
 at ./src/mock_ext.rs:36
 17: pink_chain_extension::mock_ext::tests::http_timeout_panics
 at ./src/mock_ext.rs:198
 18: pink_chain_extension::mock_ext::tests::http_timeout_panics::clos
 at ./src/mock_ext.rs:194
 19: core::ops::function::FnOnce::call_once<pink_chain_extension::moc
 at /rustc/82e1608dfa6e0b5569232559e3d385fea5a93112/librar
 20: core::ops::function::FnOnce::call_once
 at /rustc/82e1608dfa6e0b5569232559e3d385fea5a93112/librar
 note: Some details are omitted, run with `RUST_BACKTRACE=full`

test mock_ext::tests::http_timeout_panics ... FAILED

Recommended Mitigation Steps

 tokio::time::timeout(
- Duration::from_millis(timeout_ms + 200),
+ Duration::from_millis(timeout_ms.saturating_add(200)),
 futures::future::join_all(futs),
)

Assessed type

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

19 of 81 09/06/2024, 14:11

https://github.com/code-423n4/2024-03-phala-network-findings/issues/43#issuecomment-2019330170
https://github.com/code-423n4/2024-03-phala-network-findings/issues/43#issuecomment-2019330170
https://github.com/code-423n4/2024-03-phala-network/blob/main/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L171
https://github.com/code-423n4/2024-03-phala-network/blob/main/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L171

Lambda (judge) commented:

Not sure about the severity here. @kvinwang - Could you point out where
the clamping happens? Because in the linked code it is a normal u64 that
could potentially be set to e.g. u64::MAX - 1 to trigger the issue.

kvinwang (Phala) commented:

This is the OCalls implementation in the worker, where the time remaining
is less than the MAXQUERYTIME.

Lambda (judge) decreased severity to Medium and commented:

Great, thanks for the link. In that case, I am downgrading this to a medium.
It is not directly exploitable as an attacker, but the issue itself still exists
within the codebase and if a future worker would integrate it differently/
without limit, it could become exploitable.

For this audit, 7 reports were submitted by wardens detailing low risk and non-
critical issues. The report highlighted below by Cryptor received the top
score from the judge.

The following wardens also submitted reports: ihtishamsudo, XDZIBECX,
0xTheC0der, zhaojie, Bauchibred, and Daniel526.

https://github.com/code-423n4/2024-03-phala-network/blob/
a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/

Low Risk and Non-Critical Issues

[01] No point in using regular http request over
batchhttperequest

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

20 of 81 09/06/2024, 14:11

https://github.com/code-423n4/2024-03-phala-network-findings/issues/43#issuecomment-2023611795
https://github.com/code-423n4/2024-03-phala-network-findings/issues/43#issuecomment-2023611795
https://github.com/code-423n4/2024-03-phala-network-findings/issues/43#issuecomment-2024216709
https://github.com/code-423n4/2024-03-phala-network-findings/issues/43#issuecomment-2024216709
https://github.com/Phala-Network/phala-blockchain/blob/16d26a5289f84a73cc60ebb2943204792b1a5eac/crates/phactory/src/contracts/pink.rs#L508
https://github.com/Phala-Network/phala-blockchain/blob/16d26a5289f84a73cc60ebb2943204792b1a5eac/crates/phactory/src/contracts/pink.rs#L508
https://github.com/Phala-Network/phala-blockchain/blob/16d26a5289f84a73cc60ebb2943204792b1a5eac/crates/phactory/src/contracts/pink.rs#L318
https://github.com/Phala-Network/phala-blockchain/blob/16d26a5289f84a73cc60ebb2943204792b1a5eac/crates/phactory/src/contracts/pink.rs#L318
https://github.com/Phala-Network/phala-blockchain/blob/16d26a5289f84a73cc60ebb2943204792b1a5eac/crates/phactory/src/contracts/pink.rs#L318
https://github.com/Phala-Network/phala-blockchain/blob/16d26a5289f84a73cc60ebb2943204792b1a5eac/crates/phactory/src/contracts/pink.rs#L318
https://github.com/Phala-Network/phala-blockchain/blob/16d26a5289f84a73cc60ebb2943204792b1a5eac/crates/phactory/src/contracts/pink.rs#L318
https://github.com/code-423n4/2024-03-phala-network-findings/issues/43#issuecomment-2024682875
https://github.com/code-423n4/2024-03-phala-network-findings/issues/43#issuecomment-2024682875
https://github.com/code-423n4/2024-03-phala-network-findings/issues/11
https://github.com/code-423n4/2024-03-phala-network-findings/issues/11
https://github.com/code-423n4/2024-03-phala-network-findings/issues/34
https://github.com/code-423n4/2024-03-phala-network-findings/issues/34
https://github.com/code-423n4/2024-03-phala-network-findings/issues/96
https://github.com/code-423n4/2024-03-phala-network-findings/issues/96
https://github.com/code-423n4/2024-03-phala-network-findings/issues/63
https://github.com/code-423n4/2024-03-phala-network-findings/issues/63
https://github.com/code-423n4/2024-03-phala-network-findings/issues/46
https://github.com/code-423n4/2024-03-phala-network-findings/issues/46
https://github.com/code-423n4/2024-03-phala-network-findings/issues/18
https://github.com/code-423n4/2024-03-phala-network-findings/issues/18
https://github.com/code-423n4/2024-03-phala-network-findings/issues/13
https://github.com/code-423n4/2024-03-phala-network-findings/issues/13
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/capi/ecall_impl.rs#L299-L300
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/capi/ecall_impl.rs#L299-L300
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/capi/ecall_impl.rs#L299-L300
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/capi/ecall_impl.rs#L299-L300

pink/runtime/src/capi/ecall_impl.rs#L299-L300

Since the len in batchhttprequest is not restricted to being > 1 , a user can
just use batchhttperequest over the regular httprequest as the former is
less likely to revert due to the timeout bound being longer.

https://github.com/code-423n4/2024-03-phala-network/blob/
a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/
pink/runtime/src/runtime/extension.rs#L336

https://github.com/code-423n4/2024-03-phala-network/blob/
a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/
pink/runtime/src/runtime/extension.rs#L439

The function is_running_in_command (from the documentation) is missing
or misnamed in the code to be is_it_in_transaction .

https://github.com/code-423n4/2024-03-phala-network/blob/
a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/
pink/runtime/src/runtime/extension.rs#L436

https://github.com/code-423n4/2024-03-phala-network/blob/
a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/
pink/runtime/src/runtime/extension.rs#L473

[02] CallinCommand is misleading and should be
renamed callinTransaction for clarity

[03] is_running_in_command function is missing or
misnamed in the code

[04] Functions that are not supported in transaction
mode should revert not send empty arrays

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

21 of 81 09/06/2024, 14:11

https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/capi/ecall_impl.rs#L299-L300
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/capi/ecall_impl.rs#L299-L300
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L336
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L336
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L336
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L336
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L336
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L336
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L439
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L439
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L439
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L439
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L439
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L439
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L436
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L436
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L436
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L436
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L436
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L436
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L473
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L473
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L473
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L473
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L473
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L473

Sending empty arrays could be misleading to users. It is recommended to
revert and send a error that these functions are not support in transaction
mode.

https://github.com/code-423n4/2024-03-phala-network/blob/
a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/
pink/runtime/src/contract.rs#L122-L135

The function coarse gas relies on complex bit math to mask deposits in order
to mitigate side channel attacks. Therefore, we can consider that masked
deposits must be at least higher or equal to the original deposit. However, this
invariant can be broken.

Consider the fuzz test below:

Here the invariant will be broken if deposit_per_byte is =
664613997892457936451903530140172289 . This can be problematic if the
cluster creator (the actor who sets the deposit per byte) is acting in a
malicious way as this opens the door for the side channel attack that the
function is supposed to prevent.

[05] Masking deposit calculation can lead to unexpected
results in certain circumstances

#[test]
fn test_mask_deposit_properties(deposit in 1u128..=u128::MAX, deposit_per_
 let masked_deposit = mask_deposit(deposit, deposit_per_byte);

 // Property 1: Masked deposit should be greater than or equal to the o
 prop_assert!(masked_deposit >= deposit);
}

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

22 of 81 09/06/2024, 14:11

https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/contract.rs#L122-L135
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/contract.rs#L122-L135
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/contract.rs#L122-L135
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/contract.rs#L122-L135
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/contract.rs#L122-L135
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/contract.rs#L122-L135

https://github.com/code-423n4/2024-03-phala-network/blob/
a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/
pink/runtime/src/runtime/extension.rs#L439-L441

If a call is in estimating mode, then is_in_transaction will return true since
estimating mode is treated the same as transaction, when in reality, it should
be false. There should be a function to return whether the call is in estimating
mode instead.

https://github.com/code-423n4/2024-03-phala-network/blob/
a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/
pink/runtime/src/runtime/pallet_pink.rs#L134-L146

__ 141345 __ (lookout) commented:

[01] - Non-Critical
[02] - Non-Critical
[03] - Non-Critical
[04] - Non-Critical
[05] - Low
[06] - Non-Critical
[07] - Non-Critical

kvinwang (Phala) confirmed and commented:

[01] - Disagree, len = 1 is a valid batch.
[02] - Confirmed.
[03] - Confirmed.

[06] is_in_transaction return value can be
misleading

[07] No code size limit check in function
put_sidevm_code

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

23 of 81 09/06/2024, 14:11

https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L439-L441
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L439-L441
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L439-L441
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L439-L441
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L439-L441
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/extension.rs#L439-L441
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/pallet_pink.rs#L134-L146
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/pallet_pink.rs#L134-L146
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/pallet_pink.rs#L134-L146
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/pallet_pink.rs#L134-L146
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/pallet_pink.rs#L134-L146
https://github.com/code-423n4/2024-03-phala-network/blob/a01ffbe992560d8d0f17deadfb9b9a2bed38377e/phala-blockchain/crates/pink/runtime/src/runtime/pallet_pink.rs#L134-L146
https://github.com/code-423n4/2024-03-phala-network-findings/issues/11#issuecomment-2017519242
https://github.com/code-423n4/2024-03-phala-network-findings/issues/11#issuecomment-2017519242
https://github.com/code-423n4/2024-03-phala-network-findings/issues/11#issuecomment-2019249514
https://github.com/code-423n4/2024-03-phala-network-findings/issues/11#issuecomment-2019249514

[04] - Judgable. It did actually revert in the past, but the reverting can not
be catched by the contract which leads bad dev experience.
[05] If deposit_per_byte is =
664613997892457936451903530140172289 , the cluster wouldn’t be able to
do anything as it is two expensive.
[06] - Confirmed. This is actually on the plan.
[07] - Confirmed. Might be good to have; however, there is already a on-
chain limit check for that.

Lambda (judge) commented:

Agree with the Lookout’s assessment of L/NC and the sponsors assessment
of the validity with the following differences:

[01] - Valid design suggestion (not necessarily better than the current one,
but just an alternative one).
[04] - Also a design suggestion.

For this audit, 11 analysis reports were submitted by wardens. An analysis
report examines the codebase as a whole, providing observations and advice
on such topics as architecture, mechanism, or approach. The report
highlighted below by hunter_w3b received the top score from the judge.

The following wardens also submitted reports: Cryptor, albahaca, popeye,
fouzantanveer, 0xepley, aariiif, DarkTower, roguereggiant, kaveyjoe, and
Bauchibred.

Note: to view the provided image, please see the original submission here.

Audit Analysis

Description overview of Phala Network

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

24 of 81 09/06/2024, 14:11

https://github.com/code-423n4/2024-03-phala-network-findings/issues/11#issuecomment-2024700219
https://github.com/code-423n4/2024-03-phala-network-findings/issues/11#issuecomment-2024700219
https://github.com/code-423n4/2024-03-phala-network-findings/issues/91
https://github.com/code-423n4/2024-03-phala-network-findings/issues/91
https://github.com/code-423n4/2024-03-phala-network-findings/issues/91
https://github.com/code-423n4/2024-03-phala-network-findings/issues/91
https://github.com/code-423n4/2024-03-phala-network-findings/issues/97
https://github.com/code-423n4/2024-03-phala-network-findings/issues/97
https://github.com/code-423n4/2024-03-phala-network-findings/issues/26
https://github.com/code-423n4/2024-03-phala-network-findings/issues/26
https://github.com/code-423n4/2024-03-phala-network-findings/issues/23
https://github.com/code-423n4/2024-03-phala-network-findings/issues/23
https://github.com/code-423n4/2024-03-phala-network-findings/issues/88
https://github.com/code-423n4/2024-03-phala-network-findings/issues/88
https://github.com/code-423n4/2024-03-phala-network-findings/issues/87
https://github.com/code-423n4/2024-03-phala-network-findings/issues/87
https://github.com/code-423n4/2024-03-phala-network-findings/issues/71
https://github.com/code-423n4/2024-03-phala-network-findings/issues/71
https://github.com/code-423n4/2024-03-phala-network-findings/issues/51
https://github.com/code-423n4/2024-03-phala-network-findings/issues/51
https://github.com/code-423n4/2024-03-phala-network-findings/issues/48
https://github.com/code-423n4/2024-03-phala-network-findings/issues/48
https://github.com/code-423n4/2024-03-phala-network-findings/issues/37
https://github.com/code-423n4/2024-03-phala-network-findings/issues/37
https://github.com/code-423n4/2024-03-phala-network-findings/issues/22
https://github.com/code-423n4/2024-03-phala-network-findings/issues/22
https://github.com/code-423n4/2024-03-phala-network-findings/issues/91
https://github.com/code-423n4/2024-03-phala-network-findings/issues/91

Phala Network is revolutionizing Web3 by providing dApp developers with an
off-chain compute infrastructure that is truly decentralized and trustless. By
connecting Smart Contracts to our off-chain programs called Phat Contracts,
developers can supercharge their dApps with seamless cross-chain
integrations, connectivity to the internet, and heavy computation. Phat
Contracts make your Smart Contracts even smarter, and can be integrated in
minutes using our no-code developer experience Phat Bricks.

Web3 developers are constantly pushing up against the technical limitations
of building on-chain. Modern dApps need more than just Smart Contracts to
support rich feature sets, and as Web3 has evolved and matured, it has
become clear that efficient off-chain computation will be vital for a number of
standard dApp use cases. Phala gives dApp developers access to powerful
off-chain services without compromising the principles of Web3. This is
computation as it’s meant to be.

The platform is built with multiple layers of security guarantees to ensure fully
verifiable computation. Phala Network’s compute providers, called Workers,
execute computations faithfully and securely, backed by tokenomic incentives,
hardware-based assurances, and cryptographic evidence of execution
published and verified on the Phala blockchain.

Developers can deploy Phat Contracts using Phala Network’s low-code
experience, Phat Contract 2.0, which utilizes pre-written, audited Phat
Contracts to create complex functions using TypeScript/JavaScript.
Experienced developers can also use the Phat Contract Rust SDK to write
custom programs for various use cases.

Some use cases for Phat Contracts include connecting Smart Contracts to
APIs, interfacing with S3 storage platforms, computing over data, and
automating Smart Contracts.

What is Phala Network?

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

25 of 81 09/06/2024, 14:11

Pink Runtime is the ink! contract execution engine for Phala Network, built on
Substrate’s pallet-contracts with custom chain extensions. It executes Smart
Contracts on the Phala Network and runs inside the off-chain TEE workers.
The system architecture consists of two main components: the chain and the
worker, with Pink Runtime operational inside the worker. Messages from end-
users reach Pink Runtime via on-chain transactions or off-chain RPC queries.

1. runtime/src/runtime.rs: Defines a custom runtime called PinkRuntime
that includes several pallets such as frame_system ,
pallet_timestamp , pallet_balances ,
pallet_insecure_randomness_collective_flip ,
pallet_contracts , and pallet_pink .

1. Dependencies: The code imports necessary modules and defines
the types for some common Substrate components like AccountId ,
Balance , BlockNumber , Hash , Nonce , etc.

2. Runtime Construction: The construct_runtime! macro is used to
define the PinkRuntime structure, which includes several pallets.
These pallets provide different functionalities to the runtime.

3. Parameter Types: The parameter_types! macro is used to define
constants for the runtime. These constants are used throughout the
runtime and its pallets.

4. Config Implementations: The code implements the Config trait for
PinkRuntime for different pallets. This trait defines the configuration
for each pallet, including the types for various components and some
constant values.

5. Migrations: The pallet_contracts::Config implementation

System Overview

Scope

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

26 of 81 09/06/2024, 14:11

includes a Migrations type that defines the migrations for the
contracts pallet. These migrations are used to handle changes in the
contracts pallet’s storage between different versions.

6. Genesis and Runtime Upgrade Functions: The on_genesis and
on_runtime_upgrade functions are defined to handle the
initialization and upgrade of the runtime, respectively.

7. Metadata Check: The check_metadata function is used to check if
the runtime’s metadata has changed. If the metadata has changed,
the function writes the new metadata to a file and returns an error.

8. The code defines various parameters for the runtime, including:

9. BlockHashCount : The number of block hashes to keep in the chain.

10. RuntimeBlockWeights : The weight limits for different types of
transactions.

11. ExistentialDeposit : The minimum balance required for an
account to be considered active.

12. MaxLocks : The maximum number of locks that can be placed on an
account.

13. MaxReserves : The maximum number of reserves that can be placed
on an account.

14. MaxHolds : The maximum number of holds that can be placed on an
account.

15. DefaultDepositLimit : The default deposit limit for smart
contracts.

16. MaxCodeLen : The maximum length of smart contract code.

17. MaxStorageKeyLen : The maximum length of smart contract storage
keys.

2. runtime/src/contract.rs: The contract provides functions for
instantiating and executing contracts in a blockchain runtime. It also

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

27 of 81 09/06/2024, 14:11

includes functions for masking certain values to make them coarse-
grained , which can be useful for privacy or performance reasons. The
code uses Substrate’s pallet_contracts library to handle contract-
related operations.

1. Functions:

2. mask_low_bits64 and mask_low_bits128 : These functions mask
the lowest bits bits of a 64-bit or 128-bit integer, respectively. They
are used to coarse-grain gas and storage deposit values to reduce
the number of precision bits that need to be stored.

3. mask_deposit : This function masks a storage deposit value to a
specific granularity based on the deposit_per_byte parameter.

4. mask_gas : This function masks a gas weight value to a specific
granularity.

5. coarse_grained : This function applies the mask_gas and
mask_deposit functions to a ContractResult to coarse-grain its
gas and storage deposit values.

6. check_instantiate_result : This function checks the result of a
contract instantiation and returns the account ID of the newly created
contract if the instantiation was successful.

7. instantiate : This function instantiates a contract with the given
code hash, input data, salt, execution mode, and transaction
arguments.

8. bare_call : This function calls a method on a contract with the
given address, input data, execution mode, and transaction
arguments.

9. contract_tx : This function executes a contract transaction and
handles gas payment and refund.

10. Type Definitions: The code defines several type aliases for the results
of contract instantiation and execution.

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

28 of 81 09/06/2024, 14:11

11. Macro Definition: The define_mask_fn macro is defined to
generate functions for masking the lowest bits of a given number.
The macro is used to define two functions: mask_low_bits64 and
mask_low_bits128 .

12. Mask Functions: The mask_deposit and mask_gas functions use
the mask_low_bits64 and mask_low_bits128 functions to mask
the deposit and gas values, respectively. The mask_deposit
function masks the deposit value based on the deposit per byte,
while the mask_gas function masks the gas value based on the
weight’s ref time.

13. Test Function: The mask_low_bits_works function tests the
correctness of the mask_low_bits64 function for various inputs.

14. Coarse-Grained Function: The coarse_grained function masks the
gas consumed, gas required, and storage deposit values of a
contract execution result.

15. Instantiation Function: The instantiate function instantiates a
new contract with the given code hash, input data, salt, and
execution mode. It also logs the instantiation result.

16. Call Function: The bare_call function calls a method of a contract
with the given address, input data, execution mode, and transaction
arguments.

17. Contract Transaction Function: The contract_tx function is a
helper function that pays for gas and executes a contract transaction.
It also refunds any remaining gas after the transaction.

3. runtime/src/storage/mod.rs: The contract defines a Storage trait and
its implementation for managing storage in the Pink runtime environment.
It provides methods for executing runtime code using the Storage as a
backend and committing changes to the underlying storage backend.

1. Key Components:

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

29 of 81 09/06/2024, 14:11

2. Storage Trait: Defines methods for committing transactions and
executing runtime code.

3. Storage Implementation: Implements the Storage trait using a
provided storage backend.

4. execute_with Method: Executes runtime code using the Storage
as a backend and returns the result, side effects, and committed
changes.

5. execute_mut Method: Similar to execute_with , but commits the
storage changes to the backend.

6. changes_transaction Method: Converts overlay changes into a
backend transaction.

7. commit_changes Method: Commits storage changes to the
backend.

8. get Method: Retrieves the storage value for a specified key.

9. Usage: The Storage trait and its implementation can be used to
manage storage in the Pink runtime environment. Developers can
use the execute_with or execute_mut methods to execute
runtime code and make changes to the storage. The
changes_transaction and commit_changes methods can be used
to commit the changes to the backend.

10. Additional Notes:

11. The contract includes a function called
maybe_emit_system_event_block that allows Pink runtime to emit
runtime events for external accessibility.

12. The execute_with and execute_mut methods take an
ExecContext as an argument, which provides information about the
current execution context.

13. The Storage implementation uses an overlayed changes
mechanism to track changes made to the storage during runtime

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

30 of 81 09/06/2024, 14:11

execution. allows changes to be committed to the storage backend if
they are valid.

4. runtime/src/storage/external_backend.rs: The contract defines an
ExternalDB struct that implements the TrieBackendStorage trait,
which is a necessary requirement for TrieBackend . It also defines an
ExternalBackend type that is a TrieBackend using ExternalDB as its
storage backend, and an ExternalStorage type that is a Storage
struct using ExternalBackend as its backend.

1. Key Components:

2. ExternalDB Struct: Implements the TrieBackendStorage trait,
which provides methods for reading and writing key-value pairs from
a storage backend.

3. ExternalBackend Type: A TrieBackend that uses ExternalDB as
its storage backend.

4. ExternalStorage Type: A Storage struct that uses
ExternalBackend as its backend.

5. code_exists Function: Checks the existence of a particular ink
code in the storage.

6. Usage:

7. The ExternalDB struct can be used to create a TrieBackend that
can be used to manage storage in the Pink runtime environment.

8. The ExternalStorage struct can be used to execute runtime code
and make changes to the storage. The code_exists function can
be used to check the existence of a particular ink code in the storage.

9. Additional Notes:

10. The ExternalDB struct does not manage any key-value backend by
itself. Instead, it delegates the key-value reads and writes to the host
via ocalls.

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

31 of 81 09/06/2024, 14:11

11. The ExternalBackend type implements the CommitTransaction
trait, which allows changes made to the storage to be committed to
the backend.

12. The ExternalStorage struct provides a number of methods for
executing runtime code and managing storage.

13. The code_exists function uses the twox_128 hashing function to
generate a key for the code info of a particular ink code.

5. runtime/src/runtime/pallet_pink.rs: The contract defines a pallet for
managing the cluster-wide configuration and resources for the Phala
Network . It includes storage items for cluster ID , gas price ,
deposit per byte , deposit per item , treasury account ,
private key , sidevm codes , system contract address , next
event block number , and last event block hash . It also defines
functions for setting these values and managing gas payments and
refunds.

1. Key Components:

2. ClusterId : Stores the cluster ID.

3. GasPrice : Stores the gas price.

4. DepositPerByte : Stores the deposit per byte.

5. DepositPerItem : Stores the deposit per item.

6. TreasuryAccount : Stores the treasury account.

7. Key : Stores the private key.

8. SidevmCodes : Stores the uploaded sidevm codes.

9. SystemContract : Stores the system contract address.

10. NextEventBlockNumber : Stores the next event block number.

11. LastEventBlockHash : Stores the last event block hash.

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

32 of 81 09/06/2024, 14:11

12. Usage: The pallet can be used to manage the cluster-wide
configuration and resources for the Phala Network. Developers can
use the functions provided by the pallet to set the cluster ID ,
gas price, deposit per byte, deposit per item, treasury account,
private key, sidevm codes, system contract address, next event block
number, and last event block hash. They can also use the pallet to
manage gas payments and refunds.

13. Additional Notes:

14. The pallet implements the AddressGenerator trait from the
pallet-contracts crate, which allows it to generate contract
addresses.

15. The pallet uses the convert trait to convert between weight and
balance.

6. runtime/src/capi/mod.rs: This contract is protected area in the memory
that isolates sensitive data and code from Phala Network.

1. Imports: The code starts with importing necessary modules and
libraries. pink_capi::v1 is the API used for interaction between the
secure enclave and the untrusted part of the application.
phala_sanitized_logger is used for logging.

2. Entry Point (__pink_runtime_init): This is the entry point of the
runtime. It initializes the runtime and fills the ecalls table. It takes a
configuration pointer and an ecalls pointer as arguments. It checks if
the ocalls (Outside Calls) function can be set correctly and if the
ecalls pointer is not null. If either check fails, it logs an error and
returns -1. If the runtime is a dynamic library (config.is_dylib !=
0), it initializes the logger.

3. get_version function: This function retrieves the version of the
runtime. It takes two pointers to u32 as arguments, which it fills with
the major and minor version numbers.

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

33 of 81 09/06/2024, 14:11

4. ecall function: This function serves as the central hub for all ‘ecall’
functions (Enclave Calls). Upon invocation, it routes function calls by
invoking the ecall::dispatch function. It takes a unique identifier
for the function call (call_id), a pointer to the input data buffer
(data), the size of the input data buffer (len), a mutable pointer to
the context (ctx), and a function pointer to receive the SCALE
encoded function return value (output_fn).

5. Modules: The code ends with two modules ecall_impl and
ocall_impl which are likely to contain the implementation details of
the ecalls and ocalls respectively.

7. runtime/src/capi/ecall_impl.rs: The ecall_impl contract is an
implementation of the ECalls trait for the Pink runtime. It provides a set
of functions that allow the Pink runtime to interact with the blockchain
and execute contracts.

1. Functions:

2. cluster_id : Returns the cluster ID of the current runtime.

3. setup : Sets up the cluster with the given configuration.

4. deposit : Deposits the given amount of tokens into the account of
the given user.

5. set_key : Sets the secret key for the runtime.

6. get_key : Returns the secret key for the runtime.

7. upload_code : Uploads the given code to the runtime.

8. upload_sidevm_code : Uploads the given sidevm code to the
runtime.

9. get_sidevm_code : Returns the sidevm code for the given hash.

10. system_contract : Returns the address of the system contract.

11. free_balance : Returns the free balance of the given account.

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

34 of 81 09/06/2024, 14:11

12. total_balance : Returns the total balance of the given account.

13. code_hash : Returns the code hash for the given account.

14. contract_instantiate : Instantiates the given contract with the
given input data.

15. contract_call : Calls the given contract with the given input data.

16. git_revision : Returns the git revision of the runtime.

17. on_genesis : Called when the runtime is created.

18. on_runtime_upgrade : Called when the runtime is upgraded.

19. on_idle : Called when the runtime is idle.

20. Usage: The contract can be used to interact with the Pink runtime in
a variety of ways. For example, it can be used to:

21. Create a new cluster.

22. Deposit tokens into an account.

23. Upload code to the runtime.

24. Instantiate a contract.

25. Call a contract.

26. Get the git revision of the runtime.

27. Security Considerations: The contract should be used with caution,
as it can be used to perform malicious actions on the Phala Network.
For example, it could be used to:

• Create a new cluster with a malicious configuration.

• Deposit tokens into an account that is controlled by an attacker.

• Upload malicious code to the runtime.

• Instantiate a contract that is designed to steal funds.

• Call a contract in a way that causes it to revert.

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

35 of 81 09/06/2024, 14:11

8. runtime/src/capi/ocall_impl.rs: Defines a function set_ocall_fn that
takes a set of ocall functions and sets them as the default ocall functions
for the runtime. It also defines an OCallImpl struct that implements the
CrossCall and CrossCallMut traits, which are used to make cross-
calls from Rust to the host environment.

• The OCALL static variable is used to store the default ocall function.
The _default_ocall function is a placeholder ocall function that
panics if it is called. The set_ocall_fn function sets the OCALL
variable to the provided ocall function.

• The OCallImpl struct implements the CrossCall and
CrossCallMut traits. The cross_call method makes a cross-call
to the host environment with the specified call ID and data. The
cross_call_mut method does the same, but it allows the caller to
modify the data before it is sent to the host environment.

• The allocator module defines a custom memory allocator that
delegates calls to the allocator in the host environment. This is done
to ensure that all memory allocations and deallocations are
accounted for by the host environment’s allocator.

• Additional Notes:

• The contract uses the pink_capi crate, which provides a set of
macros and functions for interfacing with the Pink runtime
environment.

• The contract assumes that the host environment provides an ocall
function and optionally allocation and deallocation functions.

• The allocator module is optional and can be used to delegate
memory allocation and deallocation to the host’s allocator.

9. pink/runtime/src/runtime/extension.rs: The extension.rs contract is
an implementation of the ChainExtension trait for the Substrate
framework, specifically designed for interacting with pink contracts

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

36 of 81 09/06/2024, 14:11

within the Phala Network. It serves as a bridge between the Phala runtime
and the pink contract execution environment, enabling communication
and functionality exchange between the two.

1. Key Features:

2. Chain extension for pink contracts: The contract acts as an
extension to the Substrate chain, providing an interface for pink
contracts to access various functionalities and interact with the
runtime.

3. Runtime environment: It implements the PinkRuntimeEnv trait,
defining the necessary methods for pink contracts to access
information and perform actions within the Phala runtime
environment.

4. Extension backend: The contract also implements the
PinkExtBackend trait, providing a set of methods that pink
contracts can call to access extended functionalities, such as HTTP
requests, cryptography, and more.

5. Side effects handling: The contract tracks and manages side effects
resulting from pink contract executions, including emitted events,
instantiated contracts, and system events.

6. Deterministic return values: The contract ensures that the return
values from pink contract executions are deterministic, preventing
manipulation or exploitation.

7. Functionality:

8. HTTP requests: Pink contracts can make HTTP requests to external
APIs or services.

9. Batch HTTP requests: Pink contracts can send multiple HTTP
requests in a batch, optimizing network usage.

10. Cryptography: Pink contracts can perform various cryptographic
operations, such as signing and verifying messages, deriving keys,
and generating random numbers.

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

37 of 81 09/06/2024, 14:11

11. Cache management: Pink contracts can set, get, and remove data
from the cache, providing temporary storage for frequently accessed
data.

12. Logging: Pink contracts can log messages at different levels,
allowing developers to debug and monitor contract behavior.

13. Event emission: Pink contracts can emit events that are captured and
processed by the Phala runtime, enabling communication between
contracts and the external world.

14. Balance retrieval: Pink contracts can query the balance of an
account, providing access to financial information.

15. Runtime version: Pink contracts can obtain the version of the Phala
runtime they are executing in.

16. Current event chain head: Pink contracts can access information
about the current event chain head, allowing them to synchronize
with the latest blockchain state.

17. Implementation Details:

18. CallInQuery: Represents the contract’s runtime environment in a
query mode, where side effects are not allowed.

19. CallInCommand: Represents the contract’s runtime environment in a
command mode, where side effects are permitted.

20. PinkExtension: The main chain extension implementation that
handles calls from pink contracts and provides access to the
extended functionalities.

21. Usage: Pink contracts can interact with the provided contract by
calling the chain_extension intrinsic function with the extension ID
set to 0. This will trigger the execution of the PinkExtension
contract, allowing pink contracts to access the available
functionalities.sgx_quote() - Gets the SGX quote of the
worker.

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

38 of 81 09/06/2024, 14:11

10. pink/capi/src/v1/mod.rs: This contract defines the interfaces for ECalls
and OCalls between the Pink runtime and the host environment.

1. ECalls (External Calls):

• cluster_id : Returns the ID of the cluster.

• setup : Initializes the cluster with the provided configuration.

• deposit : Mints a specified amount of balance for an account.

• set_key : Sets the key of the cluster.

• get_key : Returns the current cluster key.

• upload_code : Uploads ink code WASM to the storage.

• upload_sidevm_code : Uploads sidevm code to the account.

• get_sidevm_code : Returns the sidevm code associated with a
given hash.

• system_contract : Returns the address of the system contract.

• free_balance : Returns the free balance of the specified
account.

• total_balance : Returns the total balance of the specified
account.

• code_hash : Returns the hash of the code from the specified
contract address.

• contract_instantiate : Executes a contract instantiation with
the provided arguments.

• contract_call : Executes a contract call with the specified
parameters.

• git_revision : Returns the git revision that compiled the
runtime.

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

39 of 81 09/06/2024, 14:11

• on_genesis : Called when the cluster is created.

• on_runtime_upgrade : Called right after the runtime is
upgraded.

• on_idle : Called once per block.

2. OCalls (Outward Calls):

• storage_root : Returns the storage root hash.

• storage_get : Fetches a value from storage.

• storage_commit : Commits changes to the storage and sets the
new storage root hash.

• log_to_server : Sends a log message from a contract to the
log collection server.

• emit_side_effects : Emits the side effects that occurred
during contract execution.

• exec_context : Returns the current execution context.

• worker_pubkey : Returns the public key of the worker.

• cache_get : Fetches a cache value that is associated with the
specified contract and key.

• cache_set : Sets a cache value associated with the specified
contract and key.

• cache_set_expiration : Sets an expiration time for the cache
value associated with the specified contract and key.

• cache_remove : Removes a cache value associated with a
specified contract and key.

• latest_system_code : Returns the latest available system
contract code.

• http_request : Performs a HTTP(S) request on behalf of the

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

40 of 81 09/06/2024, 14:11

contract.

• batch_http_request : Performs a batch of HTTP(S) requests on
behalf of the contract within a specified timeout period.

• emit_system_event_block : Emits a system event block that
includes all events extracted from the current contract call.

• contract_call_nonce : Gets the nonce of the current contract
call (if available).

• entry_contract : Returns the address of the entry contract if
the execution was triggered by a contract call.

• js_eval : Evaluates a set of JavaScript code using the QuickJS
engine running in SideVM.

• origin : Get the origin of the transaction (if available).

• worker_sgx_quote : Returns the SGX quote of the worker.

11. pink/capi/src/types.rs:

1. Types:

• Hash : A type representing a hash value.

• Hashing : A type representing a hashing algorithm.

• AccountId : A type representing an account ID.

• Balance : A type representing a balance.

• BlockNumber : A type representing a block number.

• Index : A type representing an index.

• Address : A type representing an address.

• Weight : A type representing a weight.

2. Enums:

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

41 of 81 09/06/2024, 14:11

• ExecutionMode : An enum representing the mode in which the
runtime is currently executing.

• ExecSideEffects : An enum representing events emitted by
contracts which can potentially lead to further actions by the
runtime.

3. ExecutionMode: The ExecutionMode enum has three variants:

• Query : In this mode, the runtime is executing an RPC query.
Any state changes are discarded after execution. Indeterministic
operations like HTTP requests are allowed in this mode.

• Estimating : In this mode, the runtime is simulating a
transaction but state changes are discarded.

• Transaction : In this mode, the runtime is executing a real
transaction. State changes will be committed. Indeterministic
operations like HTTP requests aren’t allowed in this mode.

4. ExecSideEffects: The ExecSideEffects enum has one variant:

• V1 : This variant contains three fields:

• pink_events : A vector of tuples representing Pink events.

• ink_events : A vector of tuples representing Ink events.

• instantiated : A vector of tuples representing instantiated
contracts.

The ExecSideEffects enum is used to represent events emitted by
contracts which can potentially lead to further actions by the
runtime. For example, a contract may emit an event that triggers the
creation of a new contract or the transfer of funds.

The into_query_only_effects method filters and retains only
those events which are permissible in a query context. The

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

42 of 81 09/06/2024, 14:11

is_empty method returns true if there are no side effects inside.

12. pink/chain-extension/src/lib.rs: This contract defines several traits,
structs, and functions that are used by the Pink runtime.

1. Traits:

• PinkRuntimeEnv : A trait that represents the runtime
environment.

• PinkExtBackend : A trait that represents the backend for the
Pink chain extension.

2. Structs:

• DefaultPinkExtension : A struct that implements the
PinkExtBackend trait.

• LimitedWriter : A struct that implements the std::io::Write
trait and limits the amount of data that can be written to it.

3. Functions:

• batch_http_request : A function that sends a batch of HTTP
requests.

• http_request : A function that sends an HTTP request.

• async_http_request : An asynchronous function that sends an
HTTP request.

• sign : A function that signs a message.

• verify : A function that verifies a signature.

• derive_sr25519_key : A function that derives a Sr25519 key
from a salt.

• get_public_key : A function that gets the public key from a

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

43 of 81 09/06/2024, 14:11

private key.

• cache_set : A function that sets a value in the cache.

• cache_set_expiration : A function that sets the expiration time
for a value in the cache.

• cache_get : A function that gets a value from the cache.

• cache_remove : A function that removes a value from the cache.

• log : A function that logs a message.

• getrandom : A function that generates random bytes.

• is_in_transaction : A function that checks if the runtime is in
a transaction.

• ecdsa_sign_prehashed : A function that signs a prehashed
message using ECDSA.

• ecdsa_verify_prehashed : A function that verifies a prehashed
signature using ECDSA.

• system_contract_id : A function that returns the system
contract ID.

• balance_of : A function that returns the balance of an account.

• untrusted_millis_since_unix_epoch : A function that returns
the current time in milliseconds since the Unix epoch.

• worker_pubkey : A function that returns the worker’s public key.

• code_exists : A function that checks if a code hash exists.

• import_latest_system_code : A function that imports the
latest system code.

• runtime_version : A function that returns the runtime version.

• current_event_chain_head : A function that returns the
current event chain head.

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

44 of 81 09/06/2024, 14:11

• js_eval : A function that evaluates JavaScript code.

• worker_sgx_quote : A function that returns the worker’s SGX
quote.

4. Usage: This contract is used by the Pink runtime to interact with the
outside world. For example, the http_request function can be used
to send HTTP requests to external APIs. The sign and verify
functions can be used to sign and verify messages. The cache_set
and cache_get functions can be used to store and retrieve data
from the cache. The log function can be used to log messages.

13. pink/chain-extension/src/local_cache.rs: The contract is a local cache
for contracts to perform off-chain computations. It provides methods
for setting, getting, and removing key-value pairs, as well as setting
expiration times for cached values.

1. Use of a global cache: The cache is implemented as a global
variable, which ensures that all contracts have access to the same
data. This is important for ensuring that data is consistent across all
contracts.

2. Use of a storage quota: The cache has a maximum size, which is set
by the contract’s owner. This helps to prevent the cache from
growing too large and consuming too much memory.

3. Use of a garbage collection mechanism: The cache uses a garbage
collection mechanism to remove expired values. This helps to keep
the cache size under control and prevents old data from
accumulating.

4. Use of a thread-safe implementation: The cache is implemented
using a thread-safe data structure, which ensures that multiple
contracts can access the cache concurrently without causing data
corruption.

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

45 of 81 09/06/2024, 14:11

Phat Contract can technically connect to any blockchain for reading and
writing operations, as it can effortlessly read from arbitrary blockchain nodes
and trigger signed transactions via RPC calls. However, in practice, supporting
a specific blockchain requires the corresponding Phat Contract RPC client,
serialization library, and signing library to facilitate read and write operations.
Presently, EVM and Substrate blockchains have more extensive library
support.

1. EVM blockchains: At the Native Phat Contract level, it is possible to
interact with any EVM-compatible blockchains through their RPC nodes,
including:

• Ethereum

• Polygon

• Arbitrum

• BSC

• Optimism

• any other EVM-compatible blockchains

2. Substrate blockchains: Native Phat Contract fully supports Substrate-
based blockchains, including:

• Polkadot

• Kusama

• Phala Network

• Astar

Note: to view the provided image, please see the original submission here.

Supported Chains

Features

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

46 of 81 09/06/2024, 14:11

https://github.com/code-423n4/2024-03-phala-network-findings/issues/91
https://github.com/code-423n4/2024-03-phala-network-findings/issues/91

By combining on-chain verification with off-chain capabilities, Phat Contracts
bring a plethora of features to decentralized applications.

1. Connect your smart contract anywhere: Universal compatibility across
EVM and Substrate Blockchains means you can easily connect Phat
Contracts to any blockchain without the need for a bridge, expanding
your Smart Contract’s capabilities.

2. Gain access to the internet: Send HTTP/HTTPS requests directly from
your Smart Contracts enabling seamless integration with any Web2 APIs,
unlocking a world of possibilities for your dApps.

3. Run arbitrarily Complex Logic: Execute intense off-chain computations
in real-time while bypassing transaction fees and network latency,
enhancing your dApps’ functionality and user experience at minimum
cost.

4. Computation is always verifiable: Complex computation on Phala
Network is provided by a Decentralized Network: Secure, Robust, and
Trustworthy Infrastructure.

Accordingly, I analyzed and audited the subject in the following steps:

I focused on thoroughly understanding the codebase and providing
recommendations to improve its functionality. The main goal was to take a
close look at the important contracts and how they work together in the Phat
Contract.

I start with the following contracts, which play crucial roles in the Phat
Contract:

Approach Taken in Evaluating Phat Contract

Core Protocol Contract Overview

runtime/src/runtime.rs

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

47 of 81 09/06/2024, 14:11

I started my analysis by examining the intricate structure and functionalities of
the Phat Contract protocol, focusing on the custom runtime called
PinkRuntime that includes several pallets such as frame_system ,
pallet_timestamp , pallet_balances ,
pallet_insecure_randomness_collective_flip , pallet_contracts ,
and pallet_pink .

The code imports necessary modules and defines types for common
Substrate components like AccountId , Balance , BlockNumber , Hash , and
Nonce . The construct_runtime! macro is used to define the
PinkRuntime structure, which includes several pallets that provide different
functionalities to the runtime. The parameter_types! macro is used to
define constants for the runtime, which are used throughout the runtime and
its pallets. The code implements the Config trait for PinkRuntime for
different pallets, defining the configuration for each pallet, including types for
various components and some constant values. The
pallet_contracts::Config implementation includes a Migrations type
that defines the migrations for the contracts pallet, which are used to handle
changes in the contracts pallet’s storage between different versions.

The on_genesis and on_runtime_upgrade functions are defined to handle
the initialization and upgrade of the runtime, respectively. The
check_metadata function is used to check if the runtime’s metadata has
changed, and if so, it writes the new metadata to a file and returns an error.

runtime/src/contract.rs
runtime/src/storage/mod.rs
runtime/src/capi/ecall_impl.rs
runtime/src/storage/external_backend.rs
pink/capi/src/types.rs
pink/chain-extension/src/lib.rs
pink/chain-extension/src/local_cache.rs

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

48 of 81 09/06/2024, 14:11

Additionally, the PinkRuntime defines various parameters for the runtime,
including BlockHashCount , RuntimeBlockWeights , ExistentialDeposit ,
MaxLocks , MaxReserves , MaxHolds , DefaultDepositLimit ,
MaxCodeLen , and MaxStorageKeyLen . These parameters are used to
configure the runtime and set limits on various aspects of the system.

The runtime/src/contract.rs file provides functions for instantiating and
executing contracts in a blockchain runtime. It includes functions for masking
certain values to make them “coarse-grained,” which can be useful for privacy
or performance reasons. The code uses Substrate’s pallet_contracts
library to handle contract-related operations.

The runtime/src/storage/mod.rs file defines a Storage trait and its
implementation for managing storage in the Pink runtime environment. It
provides methods for executing runtime code using the Storage as a
backend and committing changes to the underlying storage backend. The
Storage trait defines methods for committing transactions and executing
runtime code, while the Storage implementation uses a provided storage
backend to implement these methods.

The execute_with method executes runtime code using the Storage as a
backend and returns the result, side effects, and committed changes. The
execute_mut method is similar to execute_with , but it commits the storage
changes to the backend. The changes_transaction method converts
overlay changes into a backend transaction, while the commit_changes
method commits storage changes to the backend. The get method retrieves
the storage value for a specified key.

Then reviewed the documentation, for a more detailed and technical
explanation of Phat contract.

Documentation Review

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

49 of 81 09/06/2024, 14:11

https://docs.phala.network/developers/phat-contract
https://docs.phala.network/developers/phat-contract

In this phase, I initially conducted a line-by-line analysis, following that, I
engaged in a comparison mode.

• Line by Line Analysis: Pay close attention to the contract’s intended
functionality and compare it with its actual behavior on a line-by-line
basis.

• Comparison Mode: Compare the implementation of each function with
established standards or existing implementations, focusing on the
function names to identify any deviations.

Note: to view the provided image, please see the original submission here.

The system architecture comprises two main components: the chain and the
worker. Inside the worker, Pink Runtime is operational. Messages from end-
users reach Pink Runtime via one of two routes: on-chain transactions or off-
chain RPC queries.

The following diagram illustrates the typical flow of a query:

Compiling code and running provided tests

git clone https://github.com/code-423n4/2024-03-phala-network
cd 2024-03-phala-network/phala-blockchain/crates/pink/runtime # for test o
cargo test # if not already installed
cargo install cargo-llvm-cov # for coverage report
./cov.sh

Manual Code Review

Architecture

System Architecture

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

50 of 81 09/06/2024, 14:11

https://github.com/code-423n4/2024-03-phala-network-findings/issues/91
https://github.com/code-423n4/2024-03-phala-network-findings/issues/91

Note: to view the provided image, please see the original submission here.

Overall, I consider the quality of the Phala Network protocol codebase to be
good. The code appears to be mature and well-developed. We have noticed
the implementation of various standards adhere to appropriately. Details are
explained below:

Cod
eba
se
Qua
lity
Cat
egor
ies

Comments

Arc
hite
ctur
e &
Desi
gn

The protocol features a modular design, segregating functionality into distinct
contracts (e.g., runtime , capi , chain-extension) for clarity and ease of
maintenance.

Erro
r
Han
dlin
g &
Inp
ut
Vali
dati
on

In the Phat contract codebase, error handling and input validation are
implemented using different techniques. For example, error handling is
implemented using the Result type, which represents either a successful
result or an error. The Result type is used throughout the codebase to
handle errors that may occur during the execution of a function. Input
validation is implemented using various techniques such as pattern matching,
conditional statements, and custom validation functions. For instance, in the
instantiate function, input validation is performed by checking whether
the provided code_hash , input_data , salt , and mode arguments meet
certain criteria. If any of the arguments are invalid, an error is returned using
the Result type. Similarly, in the bare_call function, input validation is
performed by checking whether the provided address , input_data ,
mode , and tx_args arguments meet certain criteria. If any of the arguments
are invalid, an error is returned using the Result type.

Cod
e
Mai

The contracts are written with emphasis on sustainability and simplicity. The
functions are single-purpose with little branching and low cyclomatic
complexity.

Codebase Quality

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

51 of 81 09/06/2024, 14:11

https://github.com/code-423n4/2024-03-phala-network-findings/issues/91
https://github.com/code-423n4/2024-03-phala-network-findings/issues/91

Cod
ebas
e
Qual
ity
Cate
gori
es

Comments

ntai
nabi
lity
and
Reli
abili
ty

Cod
e
Co
mm
ents

There must be different types of comments used in the Phat contract
protocol: Single-line comments , Multi-line comments ,
Documentation comments for documentation, explanations, TODOs, and
structuring the code for readability. However, the codebase lacks many
comments. NatSpec tags also allow for automatically generating
documentation. The contracts must be accompanied by comprehensive
comments to facilitate an understanding of the functional logic and critical
operations within the code. Functions must be described purposefully, and
complex sections should be elucidated with comments to guide readers
through the logic. Despite this, certain areas, particularly those involving
intricate mechanics, could benefit from even more detailed commentary to
ensure clarity and ease of understanding for developers new to the project or
those auditing the code.

Test
ing

The contracts exhibit a commendable level of test coverage 90% but with aim
to 100% for indicative of a robust testing regime. This coverage ensures that
a wide array of functionalities and edge cases are tested, contributing
to the reliability and security of the code. However, to further enhance the
testing framework, the incorporation of fuzz testing and invariant testing is
recommended. These testing methodologies can uncover deeper, systemic
issues by simulating extreme conditions and verifying the invariants of the
contract logic, thereby fortifying the codebase against unforeseen
vulnerabilities.

Cod
e
Stru
ctur
e
and

The codebase benefits from a consistent structure and formatting, adhering
to the stylistic conventions and best practices of Rust programming. Logical
grouping of functions and adherence to naming conventions contribute
significantly to the readability and navigability of the code. While the current
structure supports clarity, further modularization and separation of concerns
could be achieved by breaking down complex contracts into smaller, more

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

52 of 81 09/06/2024, 14:11

Cod
ebas
e
Qual
ity
Cate
gori
es

Comments

For
mat
ting

focused components. This approach would not only simplify individual
contract logic but also facilitate easier updates and maintenance.

Stre
ngt
hs

The codebase is a well-structured, modular, and extensible implementation of
a custom blockchain runtime using the Substrate framework, providing
functionality for contract execution, storage management, chain extensions,
and more, with a focus on security, performance, and universal compatibility
across different blockchain networks.

Doc
ume
ntat
ion

While the Documentation provides comprehensive details for all functions
and the system. However, currently no helpful inline comments available
for auditors or developers. It is crucial to develop inline comments to offer
a comprehensive understanding of the contract’s functionality, purpose, and
interaction methods inside the codebase.

1. Systemic Risks In `̀runtime.rs:

• Weight and Fee Calculation : The contract uses the Pink pallet
for weight and fee calculation type WeightPrice = Pink; . If the
weight and fee calculation is not accurate, it could lead to issues such
as denial of service attacks.

• Custom Address Generation : The contract uses the Pink pallet
for address generation type AddressGenerator = Pink; . If there’s
an issue with the address generation process, it could lead to
problems such as address collisions or incorrect address generation.

Systemic Risks, Centralization Risks, Technical Risks &
Integration Risks

crates/pink/runtime/src/runtime.rs

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

53 of 81 09/06/2024, 14:11

• Migration Risks : The contract includes several migrations
(NoopMigration<10> , v11::Migration<Self> ,
v12::Migration<Self, Balances> , v13::Migration<Self> ,
v14::Migration<Self, Balances> , v15::Migration<Self>). If
these migrations are not properly handled or tested, they could lead
to data loss or other issues during contract upgrades or runtime
updates.

• Limited Call Stack : The contract has a limited call stack of 5
frames (type CallStack = [Frame<Self>; 5];). If the call stack is
not sufficient for the contract’s execution, it could lead to issues such
as transaction failures or contract freezing.

• Unbounded Vector in System Events : The contract uses a vector
to store system events (pub type SystemEvents =
Vec<frame_system::EventRecord<RuntimeEvent, Hash>>;). If this
vector is not properly managed, it could lead to issues such as
memory exhaustion or DoS attacks.

2. Centralization Risks In runtime.rs :

• The pallet_insecure_randomness_collective_flip is used as
the randomness source. This pallet provides a simple way to generate
randomness, but it’s not secure and can be manipulated by the block

type Migrations = (
// Our on-chain runtime was started from polkadot-v0.9.41 but it already cont
// the changes handled by the v10::Migration. So we just use a NoopMigration

 NoopMigration<10>,
 v11::Migration<Self>,
 v12::Migration<Self, Balances>,
 v13::Migration<Self>,
 v14::Migration<Self, Balances>,
 v15::Migration<Self>,
);

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

54 of 81 09/06/2024, 14:11

author. This could lead to centralization risks if the block author has
malicious intentions.

3. Technical Risks In runtime.rs :

• Insecure Randomness : Usage of
pallet_insecure_randomness_collective_flip for randomness
generation may introduce technical risks related to predictability
and security of random values, especially in contexts where strong
randomness is crucial (e.g., for cryptographic operations).

• Hardcoded values : The contract code includes several hardcoded
values, such as MAX_CODE_LEN , MaxStorageKeyLen , and others.
These hardcoded values may need to be reviewed and adjusted
based on the specific requirements and security considerations of
the system.

• The contract has a maximum code length of 2 * 1024 * 1024
bytes. If the contract code becomes too complex, it could lead to
issues with code maintainability.

4. Integration Risks In runtime.rs :

• The contract uses several migrations (v11 , v12 , v13 , v14 , v15 ,
NoopMigration<10>). If these migrations are not properly handled,
it could lead to data loss or other issues.

• Metadata Consistency : Tests checking metadata consistency
(check_metadata functions) are present, indicating potential
integration risks related to metadata handling or compatibility.
Changes in metadata representation or storage mechanisms could
disrupt interoperability with other components.

1. Systemic Risks In contract.rs :
crates/pink/runtime/src/contract.rs

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

55 of 81 09/06/2024, 14:11

• Gas Calculation : The contract uses the mask_gas function to
mask the gas consumption of a contract call. This custom gas
calculation could lead to unexpected behavior if not implemented
correctly. For example, it could lead to an underestimation of the
actual gas consumption, which could be exploited by an attacker to
perform denial of service attacks.

• Deposit Calculation : The contract uses the mask_deposit
function to mask the storage deposit of a contract call. This custom
deposit calculation could lead to incorrect storage deposit
calculations if not implemented correctly. For example, it could lead
to an underestimation of the actual storage deposit , which could
result in insufficient storage deposit errors.

• Instantiation and Call Functions : The contract uses the
instantiate and bare_call functions to instantiate and call
contracts. These custom functions could lead to issues such as
contract instantiation failures , incorrect contract
calls , or unexpected contract behavior if not implemented
correctly.

• Gas Payment and Refund Handling : The contract uses the
contract_tx function to handle gas payments and refunds for a
contract transaction. This handling could lead to risks such as loss
of funds , incorrect gas calculations , or transaction
failures .

2. Centralization Risks In contract.rs :

• The contract uses the AccountId type for representing accounts. If
the account ID generation process is not secure or decentralized, it
could lead to centralization risks.

3. Technical Risks In contract.rs :

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

56 of 81 09/06/2024, 14:11

• The contract uses the mask_low_bits64 and mask_low_bits128
functions to mask the lowest bits of a given number. If these
functions are not implemented correctly, it could lead to unexpected
behavior.

• The contract uses the coarse_grained function to mask the gas
consumption and storage deposit of a contract call. If this function is
not implemented correctly, it could lead to incorrect gas
calculations or storage deposit issues .

• The contract uses the instantiate and bare_call functions to
instantiate and call contracts. If these functions are not implemented
correctly, it could lead to issues such as contract instantiation
failures or incorrect contract calls .

4. Integration Risks In contract.rs :

• The contract uses the contract_tx function to execute a contract
transaction. If this function is not implemented correctly, it could lead
to issues such as incorrect gas calculations or transaction failures.

• Transaction Arguments : The contract uses the
TransactionArguments struct to pass transaction arguments to the
instantiate and bare_call functions. This custom struct could
lead to integration issues with other pallets or the overall Substrate
framework if not properly defined or handled. For example, it could
lead to incorrect transaction execution .

• Contract Call Handling : The contract uses the contract_tx
function to execute a contract transaction. For example, it could lead
to incorrect gas calculations or transaction failures .

1. Systemic Risks In mod.rs :
crates/pink/runtime/src/storage/mod.rs

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

57 of 81 09/06/2024, 14:11

• Storage Implementation : The contract uses a custom Storage
struct to manage storage the implementation could lead to issues
such as incorrect storage management , storage corruption ,
or storage key collisions if not implemented correctly.

2. Centralization Risks In mod.rs :

• The contract uses the ExecContext struct to provide execution
context to the execute_with and execute_mut functions. If the
execution context is not properly defined or handled, it could lead to
centralization risks.

3. Technical Risks In mod.rs :

• Context Management : The contract uses the ExecContext struct
to provide execution context to the execute_with and
execute_mut functions the issues such as incorrect execution
context or inconsistent state if not implemented correctly.

4. Integration Risks In mod.rs :

• Not obvious integration risk

1. Systemic Risks In ecall_impl.rs :

• Unbounded Memory Cost : In the upload_code function, the
contract estimates the max_wasmi_cost of the uploaded code and
checks it against a maximum limit. However, the estimation is based
on the decompressed code size, and the actual memory usage
during execution could be higher due to dynamic memory allocation.
This could lead to unbounded memory cost and potential denial-
of-service attacks.

crates/pink/runtime/src/capi/ecall_impl.rs

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

58 of 81 09/06/2024, 14:11

• Key Leakage : The get_key function allows anyone to retrieve the
current key used by the contract. If the key is not properly protected
or if it is used for other purposes, this could lead to key leakage .

fn upload_code(
 &mut self,
 account: AccountId,
 code: Vec<u8>,
 deterministic: bool,
) -> Result<Hash, String> {

/*
 According to the cost estimation in ink tests: https://github.com/paritytech/s
 If we set max code len to 2MB, the max memory cost for a single call stack wou
 cost = (MaxCodeLen * 4 + MAX_STACK_SIZE + max_heap_size) * max_call_depth
 = (2MB * 4 + 1MB + 4MB) * 6
 = 78MB
 If we allow 8 concurrent calls, the total memory cost would be 78MB * 8 = 624M
 */

let info =
 phala_wasm_checker::wasm_info(&code).map_err(|err| format!

let max_wasmi_cost = crate::runtime::MaxCodeLen::get() as usize
if info.estimate_wasmi_memory_cost() > max_wasmi_cost {

return Err("DecompressedCodeTooLarge".into());
 }

crate::runtime::Contracts::bare_upload_code(
 account,
 code,
 None,

if deterministic {
 Determinism::Enforced
 } else {
 Determinism::Relaxed
 },
)
 .map(|v| v.code_hash)
 .map_err(|err| format!("{err:?}"))
}

fn get_key(&self) -> Option<Sr25519SecretKey> {
 PalletPink::key()

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

59 of 81 09/06/2024, 14:11

• Unchecked Code Execution : The contract_instantiate and
contract_call functions allow users to instantiate and call
contracts with arbitrary input data , but there is no check on the
code hash or the origin account. This could allow unchecked code
execution and potential exploits.

• Unvalidated Input Data : The contract_instantiate and
contract_call functions take input data as a byte array, but there
is no validation or sanitization of the input data. This could allow
malformed or malicious input to be passed to the contract,
potentially causing unexpected behavior.

• Unprotected System Contract : The system_contract function
allows anyone to retrieve the address of the system contract, but
there is no protection or access control for the system contract.

• Unrestricted SideVM Code Upload : The upload_sidevm_code
function allows users to upload arbitrary sidevm code, but there is
no restriction or validation of the code. This could allow malicious or
vulnerable code to be uploaded and executed in the SideVM
environment.

}

fn system_contract(&self) -> Option<AccountId> {
 PalletPink::system_contract()
}

fn upload_sidevm_code(&mut self, account: AccountId, code: Vec
 PalletPink::put_sidevm_code(account, code).map_err(|err| format!
}

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

60 of 81 09/06/2024, 14:11

• Unvalidated Cluster Setup Config : The setup function takes a
ClusterSetupConfig struct as input, but there is no validation of
the input data.

2. Centralization Risks In ecall_impl.rs :

• The setup function sets an owner account which has control over
certain aspects of the contract. This could lead to centralization of
control if the owner account is controlled by a single entity.

• The set_key function allows the owner to set a new key, potentially
giving them full control over the contract.

3. Technical Risks In ecall_impl.rs :

• The upload_code function allows users to upload arbitrary WASM
code, which could contain vulnerabilities or malicious logic.

fn setup(&mut self, config: ClusterSetupConfig) -> Result<(),
on_genesis();
let ClusterSetupConfig {

 cluster_id,
 owner,
 deposit,
 gas_price,
 deposit_per_item,
 deposit_per_byte,
 treasury_account,
 system_code,
 } = config;

fn set_key(&mut self, key: Sr25519SecretKey) {
 PalletPink::set_key(key);
}

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

61 of 81 09/06/2024, 14:11

• The contract_instantiate and contract_call functions allow
users to instantiate and call contracts with arbitrary input data, which
could lead to unexpected behavior or vulnerabilities.

• The deposit function allows users to deposit balance to any
account, which could be exploited if there are vulnerabilities in the
balance handling logic.

fn upload_code(
 &mut self,
 account: AccountId,
 code: Vec<u8>,
 deterministic: bool,
) -> Result<Hash, String> {

/*
 According to the cost estimation in ink tests: https://github.com/paritytech/
 If we set max code len to 2MB, the max memory cost for a single call stack wo
 cost = (MaxCodeLen * 4 + MAX_STACK_SIZE + max_heap_size) * max_call_depth
 = (2MB * 4 + 1MB + 4MB) * 6
 = 78MB
 If we allow 8 concurrent calls, the total memory cost would be 78MB * 8 = 624
 */

let info =
 phala_wasm_checker::wasm_info(&code).map_err(|err| format!

let max_wasmi_cost = crate::runtime::MaxCodeLen::get() as usize
if info.estimate_wasmi_memory_cost() > max_wasmi_cost {

return Err("DecompressedCodeTooLarge".into());
 }

crate::runtime::Contracts::bare_upload_code(
 account,
 code,
 None,

if deterministic {
 Determinism::Enforced
 } else {
 Determinism::Relaxed
 },
)
 .map(|v| v.code_hash)
 .map_err(|err| format!("{err:?}"))
}

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

62 of 81 09/06/2024, 14:11

4. Integration Risks In ecall_impl.rs :

• The contract uses the log and tracing crates for logging, but the
exact logging setup and configuration is not provided. If the logging
is not set up correctly, it could lead to issues with debugging or
monitoring the contract.

• The contract uses the phala_wasm_checker crate to check the
uploaded WASM code, but the exact version and configuration of
this crate is not provided. If the wasm checker is not set up correctly,
it could allow malicious or vulnerable code to be uploaded.

1. Systemic Risks In external_backend.rs :

• Dependency on external OCalls (OCallImpl) for storage operations
(get , commit) which could lead to potential system-wide issues if
the host system has any failures.

2. Centralization Risks In external_backend.rs :

• The use of a single OCallImpl instance for all storage operations
could lead to a central point of failure or bottleneck .

3. Technical Risks In external_backend.rs :

• The get function in TrieBackendStorage does not use the
provided prefix, which could potentially lead to incorrect data
retrieval.

fn deposit(&mut self, who: AccountId, value: Balance) {
let _ = PalletBalances::deposit_creating(&who, value);

}

crates/pink/runtime/src/storage/external_backend.rs

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

63 of 81 09/06/2024, 14:11

• The code_exists function instantiates a new storage instance every
time it’s called, which could be potentially lead to issues with data
consistency.

4. Integration Risks In external_backend.rs :

• The contract heavily relies on the correct implementation and
integration of the OCallImpl any issues with the OCallImpl could
lead to integration problems.

• The contract uses specific hashing functions (twox_128) and key
generation logic in the helper module, which could lead to
integration issues if not correctly aligned.

1. Systemic Risks In pallet_pink.rs :

• The contract relies on the frame_system::Config trait for some of
its types (e.g., AccountId , Hash), which may lead to unintended
behavior if the underlying system’s configuration changes.

• The contract has a centralized TreasuryAccount that handles all the
fee payments , which could lead to a systemic risk if this account is
compromised.

2. Centralization Risks In pallet_pink.rs :

• The contract has several centralized components, such as the
ClusterId , Key , TreasuryAccount , and SystemContract , which
could lead to centralization risks.

• The put_sidevm_code function allows only the contract owner to
upload new WasmCode , which could limit the decentralization of the
system.

• The contract has functions to set the cluster ID , key , system

crates/pink/runtime/src/runtime/pallet_pink.rs

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

64 of 81 09/06/2024, 14:11

contract , GasPrice , DepositPerItem , DepositPerByte , and
treasury account . If these functions are not properly protected,
they could be misused by malicious actors to gain control over the
contract or manipulate its behavior.

3. Technical Risks In pallet_pink.rs :

• The contract uses the Twox64Concat hashing algorithm for the
SidevmCodes storage, which may not be the most secure or efficient
hashing algorithm available.

• The contract does not have any error handling or fallback
mechanisms for the case when the TreasuryAccount is not set,
which could lead to runtime errors.

• Storage leaks - Storing raw code blobs and secrets like private keys
in plain storage could leak sensitive data.

• Missing input validation - Functions like set_cluster_id don’t
validate inputs, allowing malicious values to be set.

4. Integration Risks In pallet_pink.rs :

• The contract is tightly coupled with the pallet-contracts module,
which could make it difficult to integrate with other systems or
frameworks.

• The contract uses several custom types, such as WasmCode ,
Sr25519SecretKey , and Hash , which could make it challenging to
integrate with other systems that may not use the same types.

• The contract uses the

pub fn set_cluster_id(cluster_id: Hash) {
 <ClusterId<T>>::put(cluster_id);
 }

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

65 of 81 09/06/2024, 14:11

phala_types::contract::contract_id_preimage function to
generate a contract address. If this function is not properly
implemented or has vulnerabilities, it could lead to issues with
contract deployment or address generation.

1. Systemic Risks:

• The __pink_runtime_init function takes a config pointer as an
argument and initializes the runtime based on this configuration. If
the configuration is incorrect, incomplete, or maliciously crafted, it
could lead to unpredictable behavior. Additionally, the contract does
not perform any validation or error handling on the config
argument, which could exacerbate this risk.

• The contract does not seem to have a consistent error handling
mechanism. In the __pink_runtime_init function, when an error
occurs during the initialization of the OCalls function
pointer , the contract logs an error message and returns -1 .
However, it is unclear how this error is propagated or handled by the
calling code.

2. Centralization Risks:

• The contract relies heavily on a centralized component
(pink_capi::v1) for its core functionality. If this component
experiences downtime or malfunctions, it could result in a single

let buf = phala_types::contract::contract_id_preimage(
 deploying_address.as_ref(),
 code_hash.as_ref(),
 cluster_id.as_ref(),
 salt,
);

crates/pink/runtime/src/capi/mod.rs

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

66 of 81 09/06/2024, 14:11

point of failure, impacting the entire contract’s operation.

• The __pink_runtime_init function initializes the runtime and fills
the ecalls table. If there is a single point of failure in the initialization
process, it could lead to centralization risks.

3. Technical Risks:

• The contract relies on external FFI , which could introduce risks
such as incorrect memory management or ABI mismatches.

• The contract uses raw pointers and manual memory management ,
which could lead to memory leaks, use-after-free , or double-free
vulnerabilities.

• Unsafe Function Usage : Several functions in the contract, such as
__pink_runtime_init and ecall , are marked as unsafe.Improper
usage of these functions or incorrect manipulation of raw pointers
could introduce technical risks such as memory safety issues.

• Raw Pointer Interaction : The ecall function involves raw
pointer interaction, which poses technical risks related to memory
safety and proper handling of pointers. Improper dereferencing or
manipulation of pointers could lead to memory corruption.

4. Integration Risks:

• The contract assumes that the input data is SCALE encoded, but it
does not perform any validation or error handling for incorrectly
encoded data, which could lead to integration issues.

• The contract does not perform any input validation for the
call_id , data , len , ctx , and output_fn arguments, which
could lead to integration issues if these arguments are incorrect.

• Dynamic Library Initialization : The initialization process
includes logic for initializing a dynamic logger
(logger::init_subscriber) based on certain conditions, if the

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

67 of 81 09/06/2024, 14:11

dynamic library initialization process encounters errors or
inconsistencies.

1. Systemic Risks:

• Uninitialized Function Pointer : The OCALL function pointer is
initially set to the _default_ocall function, which panics if called. If
the set_ocall_fn function is not called or if it fails to set the OCALL
function pointer, any subsequent cross-contract calls could panic
and cause undefined behavior.

• Unchecked Function Call : The cross_call function calls the
OCALL function pointer without any checks or validation. If the
OCALL function pointer is set to an invalid or malicious function, it
could lead to arbitrary code execution or security breaches.

crates/pink/runtime/src/capi/ocall_impl.rs

static mut OCALL: InnerType<cross_call_fn_t> = _default_ocall;

fn cross_call(&self, id: u32, data: &[u8]) -> Vec<u8> {
unsafe extern "C" fn output_fn(ctx: *mut ::core::ffi::c_void, data: *

let output = &mut *(ctx as *mut Vec<u8>);
 output.extend_from_slice(std::slice::from_raw_parts
 }

unsafe {
let mut output = Vec::new();
let ctx = &mut output as *mut _ as *mut ::core::ffi::c_void;
OCALL(id, data.as_ptr(), data.len(), ctx, Some(output_fn));

 output
 }
 }
}

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

68 of 81 09/06/2024, 14:11

• Memory Allocation Failures : The allocator module uses the
global allocator provided by the runtime environment, but if the
allocator functions are not set correctly or if the memory allocation
fails, it could lead to allocation failures and memory leaks.

• Unvalidated Layout : The allocator module uses the Layout
struct provided by the Rust standard library to allocate and
deallocate memory, but it does not validate the size and align
fields of the Layout struct. If the size and align fields are invalid
or malicious, it could lead to memory allocation failures and memory
corruption.

• The purpose and usage of the call_id parameter in the
cross_call function is not clear.

2. Centralization Risks:

• The ocall_impl contract does not have any inherent

centralization risks as it does not have any owner or

control mechanisms.

3. Technical Risks:

• Unsafe Code : The contract uses unsafe code to set the OCALL
function pointer and to call the output function. If the unsafe code is
not handled correctly, it could lead to undefined behavior or memory
safety issues.

4. Integration Risks:

• Compatibility Issues: The contract uses the pink_capi library to
handle cross-contract calls and memory allocation , but if the
library version or configuration is not compatible with the contract or
the runtime environment, it could lead to compatibility issues and
errors.

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

69 of 81 09/06/2024, 14:11

1. Systemic Risks:

• js_eval : The contract allows js_eval function there is a risk of
allowing arbitrary code execution.

MDN Web Docs

• Mode Risks : The contract uses a mode for operations there is a risk
of allowing unauthorized operations in the wrong mode.

• Instantiation Risks : The contract handles contract instantiation
(instantiated variable), which could lead to instantiated allowing
unauthorized contract creation.

crates/pink/runtime/src/runtime/extension.rs

Warning: Executing JavaScript from a string is an enormous security risk. It is

fn js_eval(&self, codes: Vec<JsCode>, args: Vec<String>) -> Result
 Ok(OCallImpl.js_eval(self.address.clone(), codes, args))
 }

fn js_eval(&self, _code: Vec<JsCode>, _args: Vec<String>) -> Result
 Ok(JsValue::Exception(

"Js evaluation is not supported in transaction".into(),
))
 }

let mode = OCallImpl.exec_context().mode;

 ContractEvent::Instantiated {
 deployer,

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

70 of 81 09/06/2024, 14:11

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval

2. Centralization Risks:

• The contract has a system contract which has special privileges, such
as the ability to sign and verify signatures. This could lead to
centralization of control.

• The contract uses a single source for randomness getrandom
function, which could be manipulated if the source is centralized or
predictable.

3. Technical Risks:

• The contract uses a custom caching mechanism (cache_set ,
cache_get , cache_remove functions), which could lead to data
inconsistencies if not implemented correctly.

4. Integration Risks:

• code_exists Function Risk: The contract relies on the existence of
certain code hashes (code_exists function), which could lead to

 contract: address,
 } => instantiated.push((deployer.clone(), address.
 ContractEvent::ContractEmitted {
 contract: address,

fn verify(
 &self,
 sigtype: SigType,
 pubkey: Cow<[u8]>,
 message: Cow<[u8]>,
 signature: Cow<[u8]>,
) -> Result<bool, Self::Error> {
 DefaultPinkExtension::new(self).verify(sigtype, pubkey, message, signature)
}

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

71 of 81 09/06/2024, 14:11

issues if the code is not available or the hash is incorrect.

• The contract interacts with other pallets (Balances , Contracts ,
System) and external services HttpRequest , HttpResponse which
could lead to integration issues if these components are not
compatible or if their interfaces change.

• The contract uses a custom event handling mechanism
deposit_pink_event function, which could lead to integration
issues if not compatible with the event dispatching mechanism of the
runtime.

1. Systemic Risks:

• Dependence on external services : The contract relies on

fn code_exists(&self, code_hash: Hash, sidevm: bool) -> Result
if sidevm {

 Ok(PalletPink::sidevm_code_exists(&code_hash.into()))
 } else {
 Ok(crate::storage::external_backend::code_exists(
 &code_hash.into(),
))
 }
 }

fn deposit_pink_event(contract: AccountId, event: PinkEvent) {
let topics = [pink::PinkEvent::event_topic().into()];
let event = super::RuntimeEvent::Contracts(pallet_contracts::Event::ContractEmi

 contract,
 data: event.encode(),
 });
super::System::deposit_event_indexed(&topics[..], event);

}

crates/pink/capi/src/v1/mod.rs

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

72 of 81 09/06/2024, 14:11

external services such as HTTP requests and JavaScript evaluation,
which could lead to unpredictable behavior if these services are
unavailable, altered, or compromised.

• Unvalidated HTTP Requests : The http_request and
batch_http_request functions in the OCalls trait allow for
making HTTP requests on behalf of a contract. However, there is no
validation performed on the request parameters, which could
potentially lead to unintended or malicious HTTP requests being
made.

2. Centralization Risks:

• Centralization of control : The contract has a system contract
and a cluster owner , which could lead to centralization of control.

• Single point of failure : The cluster setup is controlled by a
single owner, which could lead to centralization of control and a
single point of failure. Cluster Setup : The ECalls trait defines a
method setup for initializing the cluster with a provided configuration.
Depending on how this setup process is designed and executed,

fn http_request(
 &self,
 contract: AccountId,
 request: HttpRequest,
) -> Result<HttpResponse, HttpRequestError>;

/// Performs a batch of HTTP(S) requests on behalf of the contract within a sp
/// Returns the collective results of all HTTP requests.

 #[xcall(id = 15)]
fn batch_http_request(

 &self,
 contract: AccountId,
 requests: Vec<HttpRequest>,
 timeout_ms: u64,
) -> BatchHttpResult;

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

73 of 81 09/06/2024, 14:11

there could be centralization risks, particularly if certain nodes or
entities have disproportionate control or influence over the cluster.

3. Technical Risks:

• Code execution : The contract allows for code execution, such as
contract calls and instantiation, which could lead to security
vulnerabilities if not properly sandboxed.

• Cross-Call Interface : The entire contract relies on cross-call
interfaces defined by traits like CrossCall , CrossCallMut , ECall ,
and OCall . Technical risks may arise if these interfaces are not
implemented correctly or if there are vulnerabilities in the cross-
call mechanism, leading to potential exploits or contract failures.

• Storage Operations : Methods like storage_get ,
storage_commit , and others defined in the OCalls trait involve
interactions with storage. Technical risks may arise from improper
handling of storage operations, such as data corruption,
unauthorized access, or inefficient storage usage.

4. Integration Risks:

• Compatibility issues: The contract relies on the Pink runtime and
interacts with various components, such as the host , storage ,
cache , and system contract, which could lead to compatibility
issues and potential bugs.

1. Systemic Risks:

• Unhandled Execution Modes : The contract defines an
ExecutionMode enum with three modes - Query , Estimating ,
and Transaction . If the contract is executed in the wrong mode, it

crates/pink/capi/src/types.rs

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

74 of 81 09/06/2024, 14:11

could lead to unexpected behavior. For example, if a transaction is
executed in Query mode, any state changes made by the
transaction will be discarded.

• Unfiltered Side Effects : The ExecSideEffects enum defines
various side effects that can be emitted by contracts. If these side
effects are not properly filtered or handled, they could lead to
unintended consequences. For example, the ink_events and
instantiated fields are not allowed in a query context, but the
contract does not seem to have any checks to prevent them from
being included.

• Misuse of Deterministic Execution : The contract has a
deterministic_required method that returns whether the
execution mode requires deterministic execution. If a non-

pub enum ExecutionMode {
/// In this mode, the runtime is executing an RPC query. Any state changes are
/// after execution. Indeterministic operations like HTTP requests are allowed

 Query,
/// In this mode, the runtime is simulating a transaction but state changes are

 #[default]
 Estimating,
/// In this mode, the runtime is executing a real transaction. State changes wi
/// Indeterministic operations like HTTP requests aren't allowed in this mode.

 Transaction,
 }

pub enum ExecSideEffects {
 V1 {
 pink_events: Vec<(AccountId, PinkEvent)>,
 ink_events: Vec<(AccountId, Vec<Hash>, Vec<u8>)>,
 instantiated: Vec<(AccountId, AccountId)>,
 },
}

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

75 of 81 09/06/2024, 14:11

deterministic operation is executed in a mode that requires
deterministic execution, it could lead to different results each time
the contract is executed.

2. Centralization Risks:

• No obvious Centralization risks.

3. Technical Risks:

• The contract uses the BlakeTwo256 hashing algorithm, which is
generally secure but may be vulnerable to certain attacks if not
implemented correctly.

4. Integration Risks

• No obvious Integration risks.

1. Systemic Risks:

• The contract uses the LimitedWriter struct to limit the size of
HttpResponse bodies. If the response body is larger than the limit,
an error is returned. This could potentially lead to denial-of-service
attacks if an attacker can send large responses to the contract.

pub fn deterministic_required(&self) -> bool {
match self {

 ExecutionMode::Query => false,
 ExecutionMode::Estimating => true,
 ExecutionMode::Transaction => true,
 }
 }

crates/pink/chain-extension/src/lib.rs

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

76 of 81 09/06/2024, 14:11

• The contract uses the HeaderMap , HeaderName , and HeaderValue
types from the request library to handle HTTP headers. This could
potentially lead to header injection or header manipulation attacks if
the headers are not properly validated.

• The contract uses the ecdsa_sign_prehashed and
ecdsa_verify_prehashed functions to sign and verify prehashed
messages using ECDSA. If the hashing function used to prehash the
messages is not properly validated, it could be vulnerable to hash
collision attacks, where an attacker creates two different messages
with the same hash.

2. Centralization Risks:

• The contract does not seem to have any mechanisms to prevent
centralization of control. For example, the cache_set and
cache_set_expiration methods allow arbitrary key-value pairs to
be stored and retrieved. If these methods are used to store sensitive
information, it could be accessed or manipulated by a malicious actor

struct LimitedWriter<W> {
 writer: W,
 written: usize,
 limit: usize,
}

fn ecdsa_sign_prehashed(
 &self,
 key: Cow<[u8]>,
 message_hash: Hash,
) -> Result<EcdsaSignature, Self::Error> {

let pair = sp_core::ecdsa::Pair::from_seed_slice(&key).or
let signature = pair.sign_prehashed(&message_hash);

 Ok(signature.0)
 }

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

77 of 81 09/06/2024, 14:11

with access to the cache.

1. Systemic Risks:

• The contract relies on a global cache, which could lead to system-
wide issues if the cache fails or becomes unavailable.

• The contract uses a BTreeMap for storage, which may not be the
most efficient data structure for all use cases, potentially leading to
performance issues.

2. Centralization Risks:

• The use of a single global cache could lead to centralization risks, as
it represents a single point of failure. If the cache is compromised or
becomes unavailable, the entire system could be affected.

• Code isolation: Run smart contracts in isolated environments like
dockers/enclaves to contain exploits. Limit syscalls and block sensitive
APIs.

• Consensus integration: Runtime upgrades and feature flags could
integrate with BFT or PoS protocols for coordinated defense.

crates/pink/chain-extension/src/local_cache.rs

struct Storage {
// Sum of the size of all the keys and values.
size: usize,
max_size: usize,
kvs: BTreeMap<Vec<u8>, StorageValue>,
}

Suggestions

What ideas can be incorporated?

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

78 of 81 09/06/2024, 14:11

• Runtime snapshots: Periodic checkpoints allow reverting compromised
state. Combined with state validation on node joins.

• Side effect logging: Track and audit all events/state changes for forensics
and attribution in case of exploits.

• Secure enclaves: Hardware security modules, Intel SGX can isolate
critical components like key management and extensions execution.

• Fuzz testing: Automated fuzzing of inputs and edge cases to detect
vulnerabilities during development and upgrades.

• Inactivity purging: Automatically purge unclaimed assets, expired locks
and stale data as per configured retention policy.

• Memory safety: Link-time optimization, dynamic checks ensure bounded
memory access preventing overflows/underflows.

The unique aspect of this code is that it implements a custom runtime called
PinkRuntime that includes several pallets such as frame_system ,
pallet_timestamp , pallet_balances ,
pallet_insecure_randomness_collective_flip , pallet_contracts ,
and pallet_pink .

The pallet_pink pallet is particularly interesting as it provides functionality
specific to the Pink Network, such as managing cluster-wide configuration
and resources, including gas price, deposit per byte, deposit per item,
treasury account, private key, sidevm codes, system contract address, next
event block number, and last event block hash.

The code also implements the AddressGenerator trait from the pallet-
contracts crate, which allows it to generate contract addresses. Additionally,
the code uses the convert trait to convert between weight and balance. The
pallet_pink pallet also provides functions for setting and retrieving these
values, as well as managing gas payments and refunds. Overall, this code

What’s unique?

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

79 of 81 09/06/2024, 14:11

demonstrates how Substrate can be used to build custom runtimes with
unique functionality and features.

1. Insecure randomness generation: The
pallet_insecure_randomness_collective_flip pallet is used in the
PinkRuntime , which generates randomness based on block hashes. This
could potentially be exploited by attackers who control a significant
portion of the network’s mining power or can predict block hashes. They
could manipulate the randomness generation process to their advantage,
leading to issues such as biased randomness or predictable outcomes.

2. Insufficient access controls: The pallet_pink pallet provides
functionality specific to the Pink Network, including managing cluster-
wide configuration and resources. If proper access controls are not
implemented, attackers could potentially manipulate these resources to
their advantage. For example, they could modify the gas price, deposit
per byte, or deposit per item to disrupt the network’s economic model.

3. Denial of service attacks: The pallet_contracts pallet is used to
manage smart contracts on the network. If an attacker can create a
contract that consumes a large amount of resources (e.g., gas, storage),
they could potentially launch a denial of service attack against the
network, preventing legitimate users from using the system.

4. Malicious code upload: An attacker could upload smart contracts
containing malicious logic like stealing funds, freezing accounts, or
spamming network resources. Proper validation of code is needed.

5. Injection attacks: Malformed inputs could enable code injection, privilege
escalation etc if not sanitized properly before processing. Strong input
sanitization is a must.

32 hours

Issues surfaced from attack ideas

Time spent

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

80 of 81 09/06/2024, 14:11

C4 is an open organization governed by participants in the community.

C4 audits incentivize the discovery of exploits, vulnerabilities, and bugs in
smart contracts. Security researchers are rewarded at an increasing rate for
finding higher-risk issues. Audit submissions are judged by a knowledgeable
security researcher and rust developer and disclosed to sponsoring
developers. C4 does not conduct formal verification regarding the provided
code but instead provides final verification.

C4 does not provide any guarantee or warranty regarding the security of this
project. All smart contract software should be used at the sole risk and
responsibility of users.

Top

An open organization | Twitter | Discord | GitHub | Blog | Newsletter | Media kit | Careers |
code4rena.eth

Disclosures

Phat Contract Runtime https://code4rena.com/reports/2024-03-phala-network#summary

81 of 81 09/06/2024, 14:11

https://twitter.com/code4rena
https://twitter.com/code4rena
https://discord.gg/code4rena
https://discord.gg/code4rena
https://github.com/code-423n4/
https://github.com/code-423n4/
https://code4rena.com/blog
https://code4rena.com/blog
https://code4rena.com/newsletter-signup
https://code4rena.com/newsletter-signup
https://github.com/code-423n4/media-kit
https://github.com/code-423n4/media-kit
https://code4rena.com/careers
https://code4rena.com/careers
https://etherscan.io/address/0xC2BC2F890067C511215F9463A064221577A53E10
https://etherscan.io/address/0xC2BC2F890067C511215F9463A064221577A53E10

