

Peaq Baseline Security Assurance
Hacking assessment report

14th of February 2025, v1.0

Prepared for:
Polkadot Assurance Legion &

Peaq Networks

Security Research Labs: SRL-Peaq-baseline_assurance-report-v01 Page 2 of 32

Content
Disclaimer .. 4

All Rights Reserved .. 4

Timeline .. 5
1 Executive Summary ... 6

1.1 Engagement Overview ... 6

1.2 Observations and Risk.. 6

1.3 Recommendations ... 6
2 Evolution suggestions .. 7

2.1 Engage in an Economic audit for the Tokenomics mechanism design 7

2.2 Improve the documentation and inline comments... 7
2.3 Regular updates ... 7

2.4 Regular code review and continuous fuzz testing. .. 7

2.5 Launch a bug bounty program ... 7

3 Motivation and scope .. 8
4 Methodology ... 9

4.1 Security design coverage check. .. 9

4.2 Implementation check ... 9
4.3 Remediation support ... 9

5 Findings summary.. 11

5.1 Risk profile ... 11

5.2 Issue summary ... 12
6 Detailed findings ... 13

6.1 S3-43: ExistentialDeposit is configured to 0 .. 13

6.2 S3-40: Incorrectly on_finalize weights might lead to denial-of-service attacks................ 14
6.3 S3-39: Collator can drain delegator’s rewards by manipulation commission rate 15

6.4 S3-36: Missing trait-in-use checks in _validateTraitOwnership enables infinite minting . 16

6.5 S2-37: Single trait approval for NFT minting limits usability and efficiency 17

6.6 S2-35: Trait token may be reused to satisfy multiple trait slots 18
6.7 S2-18: Permissive `GasLimitStorageGrowthRatio` leads to excessive storage growth 19

6.8 S2-16: Incorrect benchmarks for `pallet_evm` .. 20

6.9 S1-42: Unsafe arithmetic can halt collator payouts .. 21
6.10 S1-41: Lack of weight tracking in note_author() hook .. 22

6.11 S1-32: Missing sanity checks for traitContract address... 23

6.12 S1-31: Single-step ownership transferal .. 24

6.13 S1-15: Incorrect topic selector for `RemoveAttribute` event submission 25
6.14 S0-38: Gas optimizations and logic efficiency ... 26

6.15 S0-33: Missing events in SolarSeekers and SolarSeekersTraits contracts 27

Security Research Labs: SRL-Peaq-baseline_assurance-report-v01 Page 3 of 32

6.16 S0-19: Missing size checkings could lead to unnecessary gas cost 28

6.17 S0-17: Incorrect fields names in reverted function backtraces... 29
Bibliography .. 30

Security Research Labs: SRL-Peaq-baseline_assurance-report-v01 Page 4 of 32

Disclaimer

This report describes the findings and core
conclusions derived from the audit carried out by
Security Research Labs within the agreed-on
timeframe and scope (described in Chapter 3)

Please note that this report does not guarantee
that all existing security vulnerabilities were
discovered in the codebase exhaustively and
that following all evolution suggestions
described in Chapter 2 may not ensure all
future code to be bug free.

All Rights Reserved

This document contains information, which is
protected by copyright of Security Research
Labs and the company identified as “Prepared
For” on this page.

No part of this document may be reproduced,
extracted or translated to another language
without the prior written and documented
consent of Security Research Labs and the
company identified as “Prepared For” on this
page.

Version: Final, v1.0

Prepared For: Peaq Network LTD

Date: 14th February 2024

Prepared By: Kevin Valerio kevin@srlabs.de
Aarnav Bos aarnav@srlabs.de

 Cayo Fletcher-Smith cayo@srlabs.de

mailto:kevin@srlabs.de
mailto:aarnav@srlabs.de
mailto:cayo@srlabs.de

Security Research Labs: SRL-Peaq-baseline_assurance-report-v01 Page 5 of 32

Timeline

The Peaq Network’s source code has undergone an initial baseline audit for NFT Smart Contracts,
Tokenomics and Precompiles started in October 2024 by Security Research Labs. The timeline of the
audit and the components audited as shown in Table 1.

Audited On Components

October 2024 Precompiles

November-
December 2024

Tokenomics & NFT Smart Contract

Table 1: Security assurance timeline

Security Research Labs: SRL-Peaq-baseline_assurance-report-v01 Page 6 of 32

1 Executive Summary

1.1 Engagement Overview

This work describes the results of the security audit conducted from October to December 2024 for
the following Peaq Network components: NFT Smart Contracts, Tokenomics and Precompiles. Security
Research Labs is a consulting firm that has been providing specialized audit services in the Polkadot
and Substrate ecosystem since 2019.

During this assessment, the Peaq Network team provided access to relevant documentation, code
repository and supported the research team effectively. The implementation of Peaq Network’s
source code was verified to assure that the business logic of the product is resilient to hacking and
abuse.

Security Research Labs has conducted continual comprehensive security assurance for Peaq Network
in partnership with Polkadot Assurance Legion (PAL) since our baseline audit in March 2024. The
security assurance mainly focused on the following areas of scrutiny along with its subcomponents as
follows:

▪ Smart Contracts. Focused on the correct integration of the ERC-721 standard, including token
minting controls; derived token relationships and safe transferability; access control
implementation; and logic efficiency optimizations.

▪ Tokenomics. Focused on collator centric mechanisms such as the collator selection processes;
collator slashing mechanisms; and collator stake-based rewards and token distribution
mechanisms.

▪ Precompiles. Focused on Solidity precompile implementation and the correct configuration
of the Ethereum execution environment. This included Substrate weight to runtime gas
conversion, such as MBIP-5; accurate accounting of precompile storage access operations;
correct implementation of precompile business logic; safe integration of pallet-evm into the
runtime configuration.

Our testing approach combined manual code review and static analysis techniques utilizing both
automated tools and manual analysis of the generated results. We prioritized the review of critical
functionalities and the execution of thorough security tests to ensure the robustness of Peaq’s
platform. Throughout the review process, the audit team collaborated closely with Peaq developers,
utilizing full access to source code, documentation, and the development team to perform a rigorous
assessment.

1.2 Observations and Risk

The research team identified 4 High, 4 Medium, 5 Low and 4 Info level severity issues (a total of 17
issues), which concerned mostly fee calculations, inaccurate weights, incorrect benchmarking, usage
of unsafe arithmetic and bugs in business logic implementation. Peaq Network has acknowledged all
the reported issues and in cooperation with the auditors, remediated a subset of identified issues.

1.3 Recommendations

Security Research Labs recommends increasing the test cases for the NFT Smart Contract to validate
logic correctness and to improve the edge cases in the implementation. This will facilitate better
reasoning about the code, testing for logical and functional correctness of the implementation during
the security audit. It is also important to consider improving the documentation of the NFT Smart
Contract to reflect the current design through a dedicated documentation page and with in-line
comments on the implementation of these contracts. We also recommend engaging in continuous
security audits as the codebase evolves, fixing the remaining open issues from this audit, and seeking
remediation support when these issues are fixed as not to introduce additional bug into the codebase.

Security Research Labs: SRL-Peaq-baseline_assurance-report-v01 Page 7 of 32

2 Evolution suggestions

2.1 Engage in an Economic audit for the Tokenomics mechanism design

Although Security Research Labs has some knowledge of economic attacks, our primary goal during
the engagement was to find logic vulnerabilities through code assurance. Correctness of solutions
regarding economic modelling and reward mechanisms cannot be verified in security audits. The
economic parameters of the NFT Smart Contract must be carefully reviewed before launch to avoid
economic attacks on the network. Some formulae with economic significance to the network
operation and monetary system – including snapshotting, reward calculation, and distribution must
be verified for correctness. While the implementation of these formulae was audited for arithmetic
bugs, the correctness and assumptions considered in the mechanism of these formulae derivation
should be verified through a separate exhaustive economic audit.

2.2 Improve the documentation and inline comments

The NFT Smart Contract has outdated documentation [1], and the code is very lightly commented
without including explanations on its rationale and its interaction with the other contracts. This could
lead to misunderstandings and to bugs being introduced in future updates. More detailed and
available documentation, including code comments, can help internal and external entities trying to
collaborate on the project and can prevent developers from introducing additional security-critical
bugs in the future updates.

2.3 Regular updates

New releases of polkadot-sdk may contain fixes for critical security issues. Since Peaq is a product that
heavily relies on polkadot-sdk, updating to the latest version as soon as possible whenever a new
release is available is advised.

2.4 Regular code review and continuous fuzz testing.

Regular code reviews are recommended to avoid introducing new logic or arithmetic bugs, while
continuous fuzzing tests can identify potential vulnerabilities early in the development process.
Ideally, Peaq Network should continuously fuzz their code on each commit made to the codebase. The
substrate-runtime-fuzzer [2] (which uses Ziggy, a fuzzer management tool) can be a good starting
point.

2.5 Launch a bug bounty program

Bug bounty programs encourage freelance researchers to continue the security testing of system
components far into deployment. Introducing these incentives can increase code coverage in ways
beyond traditional time-contained audits and can help identify critical edge-case bugs in live code.
These programs may be rolled out later, dependent on the economic feasibility.

Security Research Labs: SRL-Peaq-baseline_assurance-report-v01 Page 8 of 32

3 Motivation and scope

This report presents the results of the baseline security audit for Peaq’s NFT Smart Contract,
Precompiles and Tokenomics. It is important to note that the findings from previous engagements are
not included in this document, as well as independent components such as DEX.

Peaq is a Layer-1 blockchain tailored for Decentralized Physical Infrastructure Networks (DePINs),
focusing on real-world applications such as mobility and energy. It secures and streamlines identity
verification for machines, vehicles, robots, and devices, ensuring seamless interaction across its
ecosystem. It supports both ink! and EVM Smart Contracts, facilitating flexible development
environments. Peaq's economy model incentivizes the contribution of machines and devices to its
network.

Like other Substrate-based blockchain networks, the Peaq code is written in Rust, a memory safe
programming language. Substrate-based chains utilize three main technologies: a WebAssembly
(WASM) based runtime, decentralized communication via libp2p, and a block production engine. In
addition to its technology stack, Peaq leverages decentralized identifiers (DIDs) and verifiable
credentials for enhanced security and privacy in machine-to-machine interactions. These features
enable machines to authenticate and verify each other's identity without relying on centralized
authorities, ensuring better data integrity.

In a trustless, decentralized environment like a blockchain, security challenges are inherent.
Therefore, ensuring availability and integrity is a priority for Peaq as it depends on its users to be
incentivised to participate in the network. As such, a security review of the project should not only
highlight the security issues uncovered during the audit process, but also bring additional insights
from an attacker’s perspective, which the Peaq team can then integrate into their own threat
modeling and development process to enhance the security of the product.

Peaq has cultivated a decentralized ecosystem based on providing Ethereum application support
within the broader Substrate community. This vision has been achieved by:

1. Providing support for Ethereum-style RPC-calls which allows existing Ethereum applications
to be compatible with Substrate via Peaq.

2. Mapping existing Substrate accounts to the 20-byte Ethereum address format which allows
users and Smart Contract applications to interact with accounts uniformly in both Ethereum
and Peaq.

3. Integrating runtime gas metering to emulate the transaction fee mechanisms present in the
Ethereum blockchain, while remaining compliant with the Substrate weight system. This
allows Solidity Smart Contracts to exist on Peaq without requiring prior Substrate
benchmarking.

4. Implementing an extensive precompile feature set, mapping core Substrate pallets to Solidity
interfaces accessible via Ethereum style calls.

Peaq’s runtime consists of multiple modules compiled into a WASM Binary Large Object (blob) that is
stored on-chain. Nodes execute the runtime code either natively or will execute the on-chain WASM
blob.

In the initial baseline assurance audit Security Research Labs collaborated with the Peaq development
team to create an overview containing modules in scope and their audit priority. Following our
baseline assurance, we gradually expanded our scope as new features became available and
collaboratively outlined audit priority with the Peaq development team.

Security Research Labs: SRL-Peaq-baseline_assurance-report-v01 Page 9 of 32

4 Methodology

This report details the results of our security audit on Peaq´s Smart Contracts, Tokenomics, and
Precompiles between October to December 2024 with the aim of creating transparency in the
following steps: security design coverage checks, reviewing runtime changes, and offering
remediation support.

4.1 Security design coverage check.

Peaq feature designs were reviewed for coverage against relevant hacking scenarios. For each
scenario, the following two aspects were investigated:

a. Coverage. Is each potential security vulnerability sufficiently covered?

b. Underlying assumptions. Which assumptions must hold true for the design to effectively
reach the desired security goal?

4.2 Implementation check

Peaq features were tested for openings whereby any of the defined hacking scenarios could be
executed. To effectively review Peaq’s codebase and new features, we derived our code review
strategy based on both the key areas of interest, and the priorities detailed by the Peaq development
team; alongside our own internal threat models created for each feature review. For each identified
threat, hypothetical attacks were developed and mapped to their corresponding threat category.

Prioritizing by risk, the code was assessed for present protections against respective threats and
attacks, as well as the vulnerabilities that make these attacks possible. For each threat, the audit
process included the following steps:

1. Identify the relevant parts of the codebase, for example the relevant pallets and the runtime
configuration.

2. Identify viable strategies for the code review. Manual code audits, and manual tests were
performed where appropriate.

3. Ensure the code doesn’t contain any vulnerabilities that could be used to execute the
respective attacks, otherwise, ensured that sufficient protection measures against specific
attacks were present.

4. Immediately report any discovered vulnerability to the development team along with
suggestions around mitigations.

The steps were carried out through hybrid strategy utilizing a combination of manual code review and
static testing to assess the security of the Peaq codebase. While static testing ensures baseline
assurance, the focus of the security assurance is primarily on manual code review. The approach of
feature reviews was to trace the intended functionality of modules in scope and to assess whether an
attacker can bypass, misuse, or abuse these components, or trigger any unexpected behavior on the
blockchain or the contracts.

4.3 Remediation support

The final step of this engagement consists of supporting Peaq’s team with the remediation process of
identified issues. For this purpose, each finding was documented and disclosed to the relevant
members of the Peaq team responsible for each component of the audit with accompanying
mitigation recommendations.

Security Research Labs: SRL-Peaq-baseline_assurance-report-v01 Page 10 of 32

Our remediation recommendations are specifically tailored with an understanding of Peaq’s business
strategy and core success factors. Once the remediation is live, the fix is verified by our auditors to
ensure that it mitigates the issue and does not introduce additional bugs.

Throughout our collaboration, findings were disclosed via our privately shared GitHub repository. We
also engaged in asynchronous communication and status update meetings.

Security Research Labs: SRL-Peaq-baseline_assurance-report-v01 Page 11 of 32

5 Findings summary

For our security audit from October to December 2024, Security Research Labs identified 4 high, 4
medium 5 low and 4 info security issues. These findings in

, are the culmination of various security testing processes implemented during our commitment to
enhancing and preserving Peaq’s security.

 Critical 0
 High 4
 Medium 4
 Low 5
 Informational 4
 Total Issues 17

Please note that in our methodology, critical severity issues refer to high severity issues that could be
exploited immediately by an attacker on already deployed infrastructure.

5.1 Risk profile

The chart below summarizes vulnerabilities according to business impact and likelihood of
exploitation, increasing to the top right. The red margin separates the high-critical issues from
medium/low/informational ones.

 Impact to Business (Hacking value)

S3-39
S3-36

S3-40

S3-43

S1-42
S1-41

S2-35

S0-38
S0-33
S0-19

S1-15

 S2-37
S2-18
S2-16

S0-17

S1-32
S1-31

 Likelihood (Ease) of Exploitation

Security Research Labs: SRL-Peaq-baseline_assurance-report-v01 Page 12 of 32

5.2 Issue summary

Tracking Issue Severity Status

S3-43 [3] ExistentialDeposit is configured to 0 High Open

S3-40 [4] Incorrect on_finalize weights may cause denial-
of-service

High Open

S3-39 [5] Collator can drain delegator’s rewards by
manipulation commission rate

High Open

S3-36 [6] Missing trait-in-use checks in
_validateTraitOwnership enables infinite
minting

High Mitigated [7]

S2-37 [8] Single trait approval for NFT minting limits
usability and efficiency

Medium Mitigated [9]

S2-35 [10] Trait token may be reused to satisfy multiple trait
slots

Medium Mitigated [9]

S2-18 [11] Permissive GasLimitStorageGrowthRatio leads to
excessive storage growth

Medium Open

S2-16 [12] Incorrect benchmarks for pallet_evm Medium Open

S1-42 [13] Unsafe arithmetic in can halt collator payouts Low Open

S1-41 [14] Lack of weight tracking in note_author() hook Low Open

S1-32 [15] Missing sanity checks for traitContract address Low Mitigated [16]

S1-31 [17] Single-step ownership transferal Low Open

S1-15 [18] Incorrect topic selector for RemoveAttribute
event submission

Low Open

S0-38 [19] Gas optimizations and logic efficiency Info Mitigated

S0-33 [20] Missing events in SolarSeekers and
SolarSeekersTraits contracts

Info Mitigated

S0-19 [21] Missing size checking could lead to high gas cost Info Open

S0-17 [22] Incorrect fields names in reverted function
backtraces

Info Open

 Table 2: Code review issue summary

Security Research Labs: SRL-Peaq-baseline_assurance-report-v01 Page 13 of 32

6 Detailed findings

6.1 S3-43: ExistentialDeposit is configured to 0

Attack scenario An attacker fills up storage with numerous unused accounts

Location runtime/*
Attack impact Increased overheads for node operators
Severity High
Status Open
Tracking [3]

Background and Context
The ExistentialDeposit [23] is designed to ensure that inactive accounts with negligible balances
are automatically removed to optimize on-chain storage. In the Peaq runtimes, this parameter has
been set to zero, disabling the automatic cleanup of such accounts.

Problem Details
By setting the Existential Deposit to zero, accounts are never reaped, even if their balance drops to
zero. This means that once an account has held any balance, the associated account data remains
permanently stored.

Since Substrate’s weight calculation for transactions does not consider the long-term cost of
maintaining this persistent data an attacker could exploit this configuration by distributing minimal
balances across a vast number of accounts, cheaply filling up blockchain storage with inactive or
unnecessary data.

Transaction fees may reduce the likelihood of such an attack but do not eliminate the underlying risk
because the costs associated with permanent storage are not sufficiently accounted for.

Risk
The absence of an existential deposit lowers the barrier to executing storage spamming attacks. This
issue can lead to long-term storage bloat, degraded node performance and an increase in overheads
associated with maintaining the network.

Recommendation
We recommended setting the existential deposit to a small, non-zero value to make it financially
impractical for an attacker to create and maintain large numbers of dormant accounts.

Security Research Labs: SRL-Peaq-baseline_assurance-report-v01 Page 14 of 32

6.2 S3-40: Incorrectly on_finalize weights might lead to denial-of-service attacks

Attack scenario An attacker executes underweight computation
Location pallets/parachains-staking/

Attack impact Overweight blocks may be rejected resulting in service issues
Severity High
Status Open
Tracking [4]

Background and Context
Peaq utilizes the on_finalize [24] hook to determine if any payouts need to be processed at the end
of each block. Accurate weight calculation is essential to ensure that blocks do not exceed their
resource limits, which requires the on_initialize [25] hook to account for the weight that will be
consumed later in on_finalize.

Problem Details
The current implementation of on_initialize does not accurately simulate the weight that
on_finalize will consume. Instead of dynamically estimating the required weight, it calls
on_initialize_no_action, which returns a static weight based on a single database read. This
simplification fails to reflect the actual operations performed during on_finalize, leading to an
underestimation of resource usage.

Additionally, there is an oversight related to the AtStake storage map. When CollatorBlocks does
not contain a valid author for a given round, items in AtStake that match a specific prefix are deleted.
These deletions involve additional database writes, but the corresponding weight costs are not
accounted for because the else branch of the logic does not update the read and write operations.
This further contributes to inaccurate block weight reporting.

Risk
Inaccurate weight calculations in on_initialize can result in underestimating the total block weight.
This miscalculation increases the risk of producing overweight blocks, potentially resulting in block
rejection and service issues due to an inability to finalize.

Recommendation
We recommended implementing dynamic weight calculations at the beginning of each block to
account for the expected operations in on_finalize. This includes simulating the weight of database
reads and writes, particularly for payout processing and the deletion of items in DelayedPayoutInfo
and AtStake. Each removal operation should be factored into the weight estimation to ensure that
the total block weight remains accurate and reflective of actual resource usage.

Security Research Labs: SRL-Peaq-baseline_assurance-report-v01 Page 15 of 32

6.3 S3-39: Collator can drain delegator’s rewards by manipulation commission rate

Attack scenario Malicious collators raise commission rates post-delegation
Location pallets/parachains-staking/

Attack impact Defrauded delegators forfeit significant financial rewards
Severity High
Status Open
Tracking [5]

Background and Context
Collators can set and modify their commission rates via setCommision() [26], which determines the
portion of staking rewards they retain. Delegators delegate their tokens to collators based on these
commission rates, expecting to receive a fair share of the rewards generated.

Problem Details
A malicious collator can exploit the ability to change commission rates at any time to defraud
delegators. The collator could initially set a very low commission rate to attract delegators,
encouraging them to stake significant amounts of tokens. After securing these delegations, the
collator could then raise their commission rate to 100%, effectively diverting all staking rewards to
themselves. This manipulation leaves the delegators without any rewards, even if they realize the
change and initiate the unstaking process. Due to the enforced StakeDuration [27] period (defaulting
to one week), delegators remain exposed to the exploit for the entire unstaking period, with no way
to recover the lost rewards.

Risk
Delegators are exposed to significant financial loss as their staking rewards can be entirely redirected
to a malicious collator. The risk is significant because the attack can be easily executed without
technical barriers and remains effective even after the delegator initiates unstaking. The potential
impact extends beyond individual losses, as it can erode trust in the staking mechanism, discouraging
participation and undermining the perceived security and fairness of the network.

Recommendation
We recommended implementing mechanisms to lock the commission rate for each delegation at the
time of creation. Under this system, the commission rate agreed upon when a delegator stakes with
a collator would remain fixed for that specific delegation until the delegator withdraws their stake.

Collators may still retain the ability to adjust their commission rates, but any changes would only apply
to new delegations made after the rate adjustment. This approach preserves flexibility for collators
while protecting delegators from retroactive changes.

Security Research Labs: SRL-Peaq-baseline_assurance-report-v01 Page 16 of 32

6.4 S3-36: Missing trait-in-use checks in _validateTraitOwnership enables infinite minting

Attack scenario A user reuses the same base trait to mint multiple derived tokens
Location contracts/SolarSeekers.sol

Attack impact Derived tokens will be devalued, and holders will experience financial loss
Severity High
Status Mitigated [7]
Tracking [6]

Background and Context
In the NFT implementation, derived ERC-721 tokens can be minted using a set of base traits. The
function mintWithTraits() [28] facilitates this process by attaching specific traits to newly minted
tokens, creating a relationship between the base traits and the derived tokens.

Problem Details
The core issue arises from the absence of a mechanism to prevent the reuse of the same base traits
across multiple derived tokens. While the _validateTraitOwnership() [29] function verifies trait
ownership and existence during the minting process, it does not track whether a trait has already been
used to mint another derived token. As a result, the same set of base traits can be reused indefinitely
to mint an unlimited number of derived NFTs.

Risk
This exploit allows malicious actors to infinitely mint derived tokens using the same base traits. As the
total supply of derived tokens grows unchecked, their scarcity diminishes leading to inevitable
devaluation. This inflationary effect undermines the economic model of the NFT collection, eroding
user trust and causing financial losses for holders.

Recommendation
We recommended implementing a global trait usage tracking system, for example a mapping the
tracks usage, to prevent the reuse of traits in multiple derived tokens. During the minting or updating
process, the system should verify the usage status of each trait. When traits are detached from a
derived token, the usage status should be updated accordingly to allow for future reuse.

To further enhance security, it was recommended to restrict the transfer of traits that are currently
assigned to active derived tokens. Implementing a query mechanism for checking trait usage status
during token transfers will help enforce this restriction, ensuring that the relationship between traits
and derived tokens remains consistent and secure.

Security Research Labs: SRL-Peaq-baseline_assurance-report-v01 Page 17 of 32

6.5 S2-37: Single trait approval for NFT minting limits usability and efficiency

Attack scenario Users have their existing approval overwritten due to misalignment with
the approving party

Location contracts/SolarSeekerTraits.sol
Attack impact This may result in poor user sentiment and high overheads for approval

management
Severity Medium
Status Mitigated [30]
Tracking [8]

Background and Context
The SolarSeekerTraits NFT contract includes an approval mechanism for trait minting, where the
contract owner authorizes users to mint specific traits. This system is essential for managing the
controlled distribution of traits, which are prerequisites for minting the derived NFTs.

Problem Details
The current approval mechanism relies on the allowMint() [31] function, which maps each user’s
address to a single approved trait URI. This design limits users to having only one approved trait at a
time. Since minting the final NFT requires at least four traits, users must undergo a repetitive process:
receiving approval, minting the trait, then requesting approval again for the next trait. This cycle must
be repeated for each required trait.

Moreover, if a new trait is approved for a user before they have minted the previously approved one,
the new approval overwrites the existing one, potentially causing confusion and errors in the minting
process.

Risk
The single-trait approval model increases the likelihood of minting errors due to overwritten
approvals. It demands continuous monitoring and manual intervention from both the users and the
contract owner, leading to a cumbersome user experience.

Additionally, the need for multiple transactions to approve and mint each trait results in higher gas
costs and time inefficiencies. This not only affects usability but also poses a scalability concern if the
system experiences increased user activity.

Recommendation
We recommended enhancing the approval system to support multiple concurrent trait approvals per
user. This can be achieved by modifying the mapping structure to associate each user with an array of
approved trait URIs, allowing several traits to be authorized simultaneously.

Alternatively, a nested mapping structure could be implemented, where each user address maps to
multiple trait URIs, with a boolean flag indicating the approval status. These changes would reduce
the need for repetitive approvals, streamline the minting process, and improve the overall user
experience while minimizing the risk of errors and reducing transaction costs.

Security Research Labs: SRL-Peaq-baseline_assurance-report-v01 Page 18 of 32

6.6 S2-35: Trait token may be reused to satisfy multiple trait slots

Attack scenario Derived tokens may be minted with 1 base trait or equipped with the same
trait multiple times

Location contracts/*
Attack impact Users may be misled on the usage of base traits for derived tokens
Severity Medium
Status Mitigated [9]
Tracking [10]

Background and Context
The SolarSeekers.sol contract requires users to prove ownership of four base trait tokens from the
SolarSeekerTrait.sol contract to mint an ERC721 derived NFT. In addition to these required traits,
users can attach up to 16 optional traits, allowing further customization of the derived token.

Problem Details
While users may call updateTraits() [32] to attach optional traits after minting a derived NFT, there
is no mechanism in place to prevent the same trait from being attached to different slots. This allows
users to reuse a base trait multiple times in different slots.

Additionally, when minting the final NFT using mintWithTraits()xw, users may pass the same base
trait multiple times in the necessary traits array, allowing them to mint with only a single valid trait,
rather than four distinct ones.

Risk
This issue undermines the fundamental concept of non-fungibility within the ERC-721 tokens, as users
can arbitrarily reuse traits to fill multiple slots, making it appear as though the derived token possesses
more unique traits than it does. This misrepresentation could lead to confusion or false assumptions,
such as the belief that the final derived NFT is associated with 20 unique traits or that the owner holds
20 distinct trait tokens.

Moreover, a single trait could be reused to mint a derived token, breaking the fundamental supply
bounding of derived minting.

Recommendation
We recommended implementing checks during the trait minting and updating processes to ensure
that a trait token is not reused in multiple slots. These checks should enforce the uniqueness of traits
assigned to different slots, ensuring that each trait is only used once for the relevant slots. This would
preserve the non-fungible nature of the derived NFTs and provide users with an accurate
representation of the uniqueness and ownership of the traits.

Security Research Labs: SRL-Peaq-baseline_assurance-report-v01 Page 19 of 32

6.7 S2-18: Permissive `GasLimitStorageGrowthRatio` leads to excessive storage growth

Attack scenario An attacker submits multiple storage heavy transactions
Location runtime/*
Attack impact Node operators experience large storage overheads
Severity Medium
Status Open
Tracking [11]

Background and Context
The GasLimitStorageGrowthRatio [33] governs the ratio of gas fees charged per byte of storage
usage. Setting this value too low allows storage to be accessed disproportionately cheaply.

Problem Details
GasLimitStorageGrowthRatio is currently configured with a value of 1 which establishes a direct one-
to-one correlation between gas consumption and storage growth, meaning for every unit of gas
consumed, an equivalent unit of storage is allocated.

Risk
The key risk posed by this configuration is the potential for cheap storage bloating. This can severely
affect the scalability of the blockchain, as the network could become burdened with excessive data
that is costly to maintain. Without a mechanism to adjust gas pricing based on storage demands,
attackers could exploit this by flooding the blockchain with storage-heavy transactions,

Recommendation
To mitigate this risk, we recommend adopting the approach implemented by Moonbeam. This method
calculates the GasLimitStorageGrowthRatio using the formula: BLOCK_GAS_LIMIT /

BLOCK_STORAGE_LIMIT. By applying a fixed block storage limit, the ratio ensures that storage growth
remains in check relative to the gas consumed. The default value suggested for this ratio is 366, which
has proven effective in managing storage scalability.

Additional insights and technical details on this approach can be found in MBIP-5 code [34], the
associated pull request [35] and the following documentation [36]. These resources offer
comprehensive guidance on the importance of setting an appropriate storage-growth ratio and
demonstrate the benefits of this configuration for maintaining a scalable and secure blockchain
infrastructure.

Security Research Labs: SRL-Peaq-baseline_assurance-report-v01 Page 20 of 32

6.8 S2-16: Incorrect benchmarks for `pallet_evm`

Attack scenario An attacker submits multiple overweight extrinsics
Location runtime/*

Attack impact Overweight blocks may be rejected resulting in service degradation
Severity Medium
Status Open
Tracking [12]

Background and Context
The pallet_evm is responsible for enabling Ethereum Virtual Machine (EVM) compatibility within the
runtime, allowing for the execution of Ethereum-based Smart Contracts. Benchmarking this pallet is
essential to determine accurate weight calculations for transaction fees and resource usage.

Problem Details
The benchmarking process for pallet_evm in Peaq is conducted using the default Substrate
benchmarks (SubstrateWeight<Runtime>) instead of benchmarks tailored to Peaq’s specific runtime
configurations [37]. Since runtime-specific factors can significantly influence the performance of
extrinsics, relying on default benchmarks results in inaccurate weight calculations.

Risk
The primary risk lies in the potential for inaccurate weight assignments to extrinsics. This can manifest
as either overweight or underweight extrinsics:

▪ Overweight extrinsics may lead to inefficient resource utilization, unnecessarily restricting
throughput.

▪ Underweight extrinsics pose a more critical risk, potentially allowing transactions to consume
more resources than accounted for, which can affect network stability and security.

These inaccuracies can impact transaction fees, block production efficiency, and overall network
performance.

Recommendation
We recommended benchmarking pallet_evm using the actual runtime configurations to ensure
accurate weight calculations. This involves integrating the specific pallet into the define_benchmarks!
block. As a reference, we highlighted the Kusama runtime implementation [38] as a best practice
example for achieving precise benchmarking aligned with the runtime’s operational characteristics.

Security Research Labs: SRL-Peaq-baseline_assurance-report-v01 Page 21 of 32

6.9 S1-42: Unsafe arithmetic can halt collator payouts

Attack scenario The total stake exceeds u128::MAX thereby overflowing on aggregation
Location pallets/parachains-staking/
Attack impact Collators may unfairly receive zero rewards regardless of staked amount
Severity Low
Status Open
Tracking [13]

Background and Context
The get_collator_reward_per_session [39] function is designed to calculate the total rewards owed
to collators at the end of each block. It aggregates the stakes of all delegators to determine accurate
reward payouts, which are then processed through the payout_collator() function.

Problem Details
The function utilizes fold() with CurrencyBalance initialized from 0u128 to sum the stakes of all
delegators. If the total delegated stake exceeds the u128::MAX limit, an overflow occurs, causing the
delegator_sum to reset to zero [40]. This incorrect zero value propagates through subsequent reward
calculations, affecting the delegator_nominator and delegator_percentage, both of which also
become zero [41].

As a result, the reward formula simplifies incorrectly:

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 × 𝑖𝑠𝑠𝑢𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 + 𝑠𝑡𝑎𝑘𝑒. 𝑐𝑜𝑚𝑚𝑖𝑠𝑖𝑜𝑛 × (𝑑𝑒𝑙𝑒𝑔𝑎𝑡𝑜𝑟_𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 × 𝑖𝑠𝑠𝑢𝑒_𝑛𝑢𝑚𝑏𝑒𝑟)

This reduces to:

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 × 𝑖𝑠𝑠𝑢𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 + 𝑠𝑡𝑎𝑘𝑒. 𝑐𝑜𝑚𝑚𝑖𝑠𝑖𝑜𝑛 × 0

Consequently, collators receive zero rewards despite legitimate staking activities. The overflow leads
to a denial of service by effectively halting the payout mechanism, as the system treats the delegator
sum as zero even when substantial stakes exist.

Risk
This issue poses a risk to the network's economic stability since collators may not receive the correct
payouts, potentially undermining their incentives to secure the network. However, the likelihood of
this issue occurring is extremely low due to the immense value of u128::MAX, which would require an
unrealistically large sum of delegated stakes to trigger the overflow.

Recommendation
We recommended implementing safe arithmetic operations using CheckedAdd or SaturatingAdd to
prevent overflows during stake aggregation. Additionally, we advised applying these best practices
within the Reward struct to ensure robust handling of large stake sums, safeguarding the reward
distribution process against potential arithmetic vulnerabilities.

Security Research Labs: SRL-Peaq-baseline_assurance-report-v01 Page 22 of 32

6.10 S1-41: Lack of weight tracking in note_author() hook

Attack scenario Collator selection does not keep track block weight consumed
Location pallets/parachain_staking/

Attack impact Unchecked weights may result in overweight blocks, resulting in chain stall
Severity Low
Status Open
Tracking [14]

Background and Context
To track the selection of collectors, Peaq uses the pallet_authorship. The note_author() function
keeps trace of the collators and changing the state does not keep track of the weight consumed.

Problem Details
The weight impact of those state changes tracked in note_author() [42] is not taken into
consideration, and should be tracked using frame_system's register_extra_weight_unchecked()
[43].

Risk
The risk is low since only 2 reads and 1 write are performed, this is however a bad practice that could
introduce severe bugs if note_author ever needs to iterate over a long list of collators.

Recommendation
We suggest using register_extra_weight_unchecked to inform the runtime of this weight usage.

Security Research Labs: SRL-Peaq-baseline_assurance-report-v01 Page 23 of 32

6.11 S1-32: Missing sanity checks for traitContract address

Attack scenario The contract is incorrectly deployed with a null traitContract address
Location contracts/SolarSeekers.sol
Attack impact The contract must be redeployed resulting in unnecessary costs
Severity Low
Status Mitigated [16]
Tracking [15]

Background and Context
The SolarSeekers.sol contract is designed to manage token minting with associated traits, relying
on an external traitContract to handle trait-related logic. Proper initialization of this contract
address is critical for ensuring seamless minting operations.

Problem Details
During deployment, the traitContract [44] address is initialized without any validation checks to
confirm its correctness, such as ensuring it is not set to address(0). If a misconfiguration occurs at
deployment, there is no mechanism within the contract to update or correct this mistake post-
deployment.

Risk
If the traitContract address is incorrectly set at deployment, the mintWithTraits() [28] function
would fail to operate as intended, effectively breaking the minting process. Since the contract lacks an
upgrade mechanism for this address, the only remedy would be a complete redeployment of the
contract.

Recommendation
We recommended implementing validation checks during the contract’s initialization phase to ensure
that the traitContract address is set to a valid address. This would help prevent deployment
misconfigurations and reduce the risk of operational failures tied to incorrect contract references.

Security Research Labs: SRL-Peaq-baseline_assurance-report-v01 Page 24 of 32

6.12 S1-31: Single-step ownership transferal

Attack scenario The current owner transfers ownership to a misconfigured address
Location contracts/*
Attack impact Ownership of the contract is completely lost, locking critical functionality
Severity Low
Status Open
Tracking [17]

Background and Context
The SolarSeekers.sol and SolarSeekersTraits.sol Smart Contracts utilize OpenZeppelin’s Ownable
library to manage ownership and privileged access. Ownership transfers are handled through the
transferOwnership() function, which assigns control of the contract to a new address. This
mechanism is critical for maintaining administrative control over contract functions.

Problem Details
The current implementation of ownership transfers relies solely on the transferOwnership() [45]
function, which performs basic input checks but does not verify whether the new owner address can
properly interact with the contract.

This creates a gap where ownership could be unintentionally transferred to an incorrect address—
such as a mistyped external address or a Smart Contract lacking the necessary functions to manage
the system effectively. Since the transfer is immediate and final, there is no built-in safeguard to
confirm that the new owner can fulfill administrative duties.

Risk
Transferring ownership to an incorrect address, such as one with typos, or to a Smart Contract that
cannot handle ownership responsibilities, could result in a permanent loss of control over the
contract.

This scenario could lead to an irreversible situation requiring contract redeployment, which may be
costly and disruptive. The lack of a two-step verification process increases the likelihood of human
error, expanding the attack surface beyond technical vulnerabilities to include administrative
mistakes.

Recommendation
We recommended implementing a two-step ownership transfer process to mitigate the risks
associated with immediate ownership changes. This can be achieved by integrating OpenZeppelin’s
Ownable2Step dependency [46], which introduces an additional confirmation step.

With this approach, ownership is not fully transferred until the new owner explicitly accepts the role,
ensuring that the receiving address is both accurate and capable of interacting with the contract. This
reduces the risk of accidental misconfigurations and enhances the overall security of privileged role
management.

Security Research Labs: SRL-Peaq-baseline_assurance-report-v01 Page 25 of 32

6.13 S1-15: Incorrect topic selector for `RemoveAttribute` event submission

Attack scenario Events consistently emit incorrect function details
Location precompiles/
Attack impact Off-chain monitoring tools may be incompatible
Severity Low
Status Open
Tracking [18]

Background and Context
When executing precompile functions on the Ethereum Virtual Machine (EVM), events are emitted to
signal the occurrence of specific actions. These events are identified by unique selectors, which are
derived from the keccak256() hash of the function signature. Accurate event selectors are crucial for
external systems that rely on event listeners to track and respond to contract activity.

Problem Details
A typographical error exists in the selector for the RemoveAttribute function. The function signature
is incorrectly hashed as RemoveAttribte(address,bytes) [47] due to a misspelling in the word
“Attribute.” This typo results in an incorrect event topic being generated.

As a result, any off-chain applications or monitoring tools that are configured to listen for the correct
selector corresponding to RemoveAttribute(address,bytes) will fail to detect these events.

Risk
While this issue does not directly impact the core functionality of the contract, it can cause significant
issues for systems that rely on accurate event detection, such as analytics tools or monitoring systems
that automate processes based on event emissions. This discrepancy can cause event listeners to miss
critical precompiled function executions, leading to gaps in event-driven workflows or data
inaccuracies in systems dependent on these logs.

Recommendation
We recommended correcting the typo in the event selector to ensure consistency with the intended
function signature when hashed. This adjustment will align the emitted event topic with the
expectations of external systems, ensuring that all relevant events are accurately captured and
processed.

Security Research Labs: SRL-Peaq-baseline_assurance-report-v01 Page 26 of 32

6.14 S0-38: Gas optimizations and logic efficiency

Attack scenario Contract execution incurs unnecessary overheads for users and operators
Location contracts/*

Attack impact Transactions fess may be excessive
Severity Info
Status Mitigated
Tracking [19]

Background and Context
We determined that several observations related to optimizing gas usage in the Smart Contract code
would be included in the guidance offered by Security Research Labs. These improvements yield
benefits in reducing transaction fees and minimizing execution overheads.

Observations and analysis

▪ Use custom reversion instead of require statements. Require statements emit failure
strings, which not only increase gas usage due to the string length but also reduce uniformity
in error handling across the contract.

▪ Preform pre-fix (++i) instead of post-fix (i++) loop iterator increments. When using post-fix
increments (i++), Solidity creates a temporary variable to hold the un-incremented value of
i. Pre-fix increments (++i) avoid this temporary variable, providing a small gas saving.

▪ Cache storage items to memory before performing complex processes. Performing multiple
reads and writes to storage can be costly, as each read/write incurs gas costs. A better
approach is to read data from storage into memory before performing iterative operations,
as memory is significantly cheaper for repeat access.

▪ Perform safe arithmetic in unchecked blocks. Solidity 0.8.0 introduces automatic overflow
checks for arithmetic operations, but these checks can increase gas costs. In cases where
overflow is not a concern, the unchecked block can be used to disable these checks.

▪ Use != instead of > when comparing unsigned integers against zero. When comparing
unsigned integers to zero, the != operator is more gas-efficient than >. This comparison does
not change the logic, as unsigned integers are always non-negative, but reduces the
computational cost.

▪ Use external instead of public for functions not called internally. Functions marked as public
are more expensive because they allow both internal and external calls. When functions are
only called externally, marking them as external reduces gas costs, as external functions do
not copy arguments to memory.

RecommendationWe made the following recommendations based on the previous observations
regarding logic efficiency

▪ stead of using require with a lengthy failure string, create custom error types and utilizing
reversion with reusable error codes to save gas by reducing the overhead associated with
string handling.

▪ Change all post-fix increments to pre-fix increments (++i) when looping to optimize gas usage.
▪ Cache storage items in memory prior to performing iterations or complex operations. For

example, storing the array.length in memory reduces the need for multiple reads.
▪ Use unchecked blocks for arithmetic operations that are safe, for example fixed arithmetic

with constant values that cannot overflow.
▪ Use != 0 instead of > 0 when comparing unsigned integers to save gas.
▪ Change functions that are not called internally from public to external to optimize gas costs.

Security Research Labs: SRL-Peaq-baseline_assurance-report-v01 Page 27 of 32

6.15 S0-33: Missing events in SolarSeekers and SolarSeekersTraits contracts

Attack scenario Inadequate event logging limits monitoring capabilities
Location contracts/SolarSeekers.sol

Attack impact No impact, limits monitoring capability and tracing of contract executions
Severity Info
Status Mitigated [48] [49]
Tracking [20]

Background and Context
Event emissions are important features in Smart Contract applications, as often shipping data off-
chain for monitoring is otherwise impossible. Throughout the codebase, there are various instances
of critical processes not emitting appropriate data off-chain on state-change.

Problem Details
The following Smart Contracts for the following specific cases do not emit event on the execution:

▪ updateTraits() in SolarSeekers.sol where attached traits are modified should emit
msg.sender, tokenId and the new attached traits.

▪ allowMint() in SolarSeekersTraits.sol where a user is whitelisted a token allocation should
emit the receiver and uri.

Risk
Missing events is a non-critical issue that does not inherently introduce security risks, although it can
impact the quality of off-chain monitoring efforts. This may contribute to inaccurate system state
understanding and make responding to certain scenarios more difficult.

Recommendation
Implement event emissions for functionality surrounding minting and approving mints on-top of the
existing support provided by Open Zeppelin's libraries.

Security Research Labs: SRL-Peaq-baseline_assurance-report-v01 Page 28 of 32

6.16 S0-19: Missing size checkings could lead to unnecessary gas cost

Attack scenario Missing bound checks in precompiles leads to unnecessary gas
consumption

Location precompiles/peaq-rbac
Attack impact Without gas optimization, an attacker can execute transactions cheaply
Severity Info
Status Open
Tracking [21]

Background and Context

The access control pallet RBAC deployed in the Peaq Network enable user to add permissions, create
and define roles. In the add_permission precompile, there was no proper input sanitisation performed
before dispatching the call. This could result in excessive gas consumption than accounted for and
possible transaction reversal.

Problem Details
The add_permission precompile within peaq-rbac pallet allows users to add a permission using a
name of type BoundedBytes<GetBytesLimit>.However, the size of this parameter is not validated
beforehand and is directly dispatched in the corresponding substrate extrinsic. If the parameter size
exceeds MAX_NAME_SIZE (64), the extrinsic will be reverted, incurring additional gas charges that could
have been avoided. Note that BoundedBytes<GetBytesLimit> is constrained to 216 (65,536).
Consequently, users may enter a name exceeding MAX_NAME_SIZE resulting in a revert during
try_dispatch.
The following functions are also affected:

▪ update_group
▪ update_permission
▪ add_group

Risk
While there are no significant risks associated with this issue, unnecessary gas costs can be easily
avoided, potentially leading to cheaper transactions for users.

Recommendation
We recommend bounding the vector to `MAX_NAME_SIZE` during conversion to BoundedVec and
reverting if the limit is exceeded.

Security Research Labs: SRL-Peaq-baseline_assurance-report-v01 Page 29 of 32

6.17 S0-17: Incorrect fields names in reverted function backtraces

Attack scenario EVM logs with incorrect parameter names when precompiles call fail
Location Precompiles/erc-20, precompiles/vesting, precompiles/asset-factory

Attack impact None, incorrect logging and improper parameter name sanitization
Severity Info
Status Open
Tracking [22]

Background and Context
When a precompile, call fails, the logging of call trace reflects incorrect parameters names. This will
make the troubleshooting and long-term maintenance of the codebase cumbersome.

Problem Details
When a precompile is triggered, certain checks are performed to promptly revert the call in case of
failure. For this purpose, a type called MayRevert is available, which implements InjectBacktrace.
This trait is used to inject a message into MayRevert, which is then submitted as an event to the
pallet_evm using a LogsBuilder.

However, some backtraces are incorrect and use misleading parameter names, such as:

▪ amount instead of value
▪ locked_amount instead of amount
▪ per_block_amount instead of amount
▪ id instead of asset_id

Risk
There are no risks associated with this issue; however, it might confuse users trying to understand
why their call was reverted.

Recommendation
We recommend using the correct parameter names instead of generic placeholder names.

Security Research Labs: SRL-Peaq-baseline_assurance-report-v01 Page 30 of 32

Bibliography

[1] [Online]. Available: https://docs.peaq.network/docs/learn/tokenomics/#inflation-and-transaction-fee-
distribution.

[2] [Online]. Available: https://github.com/srlabs/substrate-runtime-fuzzer/tree/main.

[3] [Online]. Available: https://github.com/kevin-valerio/srlabs_peaq_audit/issues/31.

[4] [Online]. Available: https://github.com/kevin-valerio/srlabs_peaq_audit/issues/28.

[5] [Online]. Available: https://github.com/kevin-valerio/srlabs_peaq_audit/issues/27.

[6] [Online]. Available: https://github.com/kevin-valerio/srlabs_peaq_audit/issues/23.

[7] [Online]. Available: https://github.com/Milbo-GmbH/peaq-portal-frontend/tree/mint-
trait/hardhat/contracts.

[8] [Online]. Available: https://github.com/kevin-valerio/srlabs_peaq_audit/issues/25.

[9] [Online]. Available: https://github.com/Milbo-GmbH/peaq-portal-frontend/tree/mint-
trait/hardhat/contracts.

[10] [Online]. Available: https://github.com/kevin-valerio/srlabs_peaq_audit/issues/24.

[11] [Online]. Available: https://github.com/kevin-valerio/srlabs_peaq_audit/issues/15.

[12] [Online]. Available: https://github.com/kevin-valerio/srlabs_peaq_audit/issues/17.

[13] [Online]. Available: https://github.com/kevin-valerio/srlabs_peaq_audit/issues/30.

[14] [Online]. Available: https://github.com/kevin-valerio/srlabs_peaq_audit/issues/29.

[15] [Online]. Available: https://github.com/kevin-valerio/srlabs_peaq_audit/issues/21.

[16] [Online]. Available: https://github.com/Milbo-GmbH/peaq-portal-
frontend/blob/ac5972e0ad88d42fff60eb5186f4ce691c8c90a5/hardhat/contracts/SolarSeekers.sol#L35.

[17] [Online]. Available: https://github.com/kevin-valerio/srlabs_peaq_audit/issues/20.

[18] [Online]. Available: https://github.com/kevin-valerio/srlabs_peaq_audit/issues/18.

[19] [Online]. Available: https://github.com/kevin-valerio/srlabs_peaq_audit/issues/26.

[20] [Online]. Available: https://github.com/kevin-valerio/srlabs_peaq_audit/issues/22.

[21] [Online]. Available: https://github.com/kevin-valerio/srlabs_peaq_audit/issues/19.

[22] [Online]. Available: https://github.com/kevin-valerio/srlabs_peaq_audit/issues/16.

Security Research Labs: SRL-Peaq-baseline_assurance-report-v01 Page 31 of 32

[23] [Online]. Available: https://github.com/peaqnetwork/peaq-network-
node/blob/bdb581ffe32965d8bc3a4b953fa12935eaa2df63/runtime/peaq/src/lib.rs#L454.

[24] [Online]. Available: https://github.com/peaqnetwork/peaq-network-
node/blob/756f984baab824d11e7c9815bb891b7a0f2cbd82/pallets/parachain-staking/src/lib.rs#L535.

[25] [Online]. Available: https://github.com/peaqnetwork/peaq-network-
node/blob/756f984baab824d11e7c9815bb891b7a0f2cbd82/pallets/parachain-staking/src/lib.rs#L527.

[26] [Online]. Available: https://github.com/peaqnetwork/peaq-network-
node/blob/756f984baab824d11e7c9815bb891b7a0f2cbd82/pallets/parachain-staking/src/lib.rs#L1965.

[27] [Online]. Available: https://github.com/peaqnetwork/peaq-network-
node/blob/bdb581ffe32965d8bc3a4b953fa12935eaa2df63/runtime/peaq/src/lib.rs#L827.

[28] [Online]. Available: https://github.com/peaqnetwork/peaq-portal-
frontend/blob/141b2500c91fc5e30ed73d1ecacbcfa309ad6bb6/hardhat/contracts/SolarSeekers.sol#L27.

[29] [Online]. Available: https://github.com/peaqnetwork/peaq-portal-
frontend/blob/141b2500c91fc5e30ed73d1ecacbcfa309ad6bb6/hardhat/contracts/SolarSeekers.sol#L78-L79.

[30] [Online]. Available: https://github.com/Milbo-GmbH/peaq-portal-frontend/tree/mint-
trait/hardhat/contracts.

[31] [Online]. Available: https://github.com/peaqnetwork/peaq-portal-
frontend/blob/141b2500c91fc5e30ed73d1ecacbcfa309ad6bb6/hardhat/contracts/SolarSeekerTraits.sol#L26.

[32] [Online]. Available: https://github.com/peaqnetwork/peaq-portal-
frontend/blob/141b2500c91fc5e30ed73d1ecacbcfa309ad6bb6/hardhat/contracts/SolarSeekers.sol#L37-L38.

[33] [Online]. Available: https://github.com/peaqnetwork/peaq-network-
node/blob/c92613c0fe17d81812fce4f85e1d648571ecfd55/runtime/peaq/src/lib.rs#L703.

[34] [Online]. Available: https://github.com/moonbeam-foundation/moonbeam/blob/master/MBIPS/MBIP-5.md.

[35] [Online]. Available: https://github.com/moonbeam-foundation/moonbeam/pull/2452.

[36] [Online]. Available: https://docs.moonbeam.network/learn/core-concepts/tx-fees/#overview-of-mbip-5.

[37] [Online]. Available: https://github.com/peaqnetwork/peaq-network-
node/blob/c92613c0fe17d81812fce4f85e1d648571ecfd55/runtime/peaq/src/lib.rs#L749.

[38] [Online]. Available: https://github.com/polkadot-
fellows/runtimes/blob/5bf21d73c0456eb7c5910aafa78445f93a61bdc9/relay/kusama/src/lib.rs#L1983-
L2016.

[39] [Online]. Available: https://github.com/peaqnetwork/peaq-network-
node/blob/756f984baab824d11e7c9815bb891b7a0f2cbd82/pallets/parachain-staking/src/lib.rs#L2705.

[40] [Online]. Available: https://github.com/peaqnetwork/peaq-network-
node/blob/756f984baab824d11e7c9815bb891b7a0f2cbd82/pallets/parachain-staking/src/lib.rs#L2713.

Security Research Labs: SRL-Peaq-baseline_assurance-report-v01 Page 32 of 32

[41] [Online]. Available: https://github.com/peaqnetwork/peaq-network-
node/blob/756f984baab824d11e7c9815bb891b7a0f2cbd82/pallets/parachain-staking/src/lib.rs#L2743-
L2744.

[42] [Online]. Available: https://github.com/peaqnetwork/peaq-network-
node/blob/756f984baab824d11e7c9815bb891b7a0f2cbd82/pallets/parachain-staking/src/lib.rs#L2951.

[43] [Online]. Available: https://github.com/paritytech/polkadot-
sdk/blob/da2dd9b7737cb7c0dc9dc3dc74b384c719ea3306/cumulus/pallets/collator-
selection/src/lib.rs#L943-L946.

[44] [Online]. Available: https://github.com/peaqnetwork/peaq-portal-
frontend/blob/141b2500c91fc5e30ed73d1ecacbcfa309ad6bb6/hardhat/contracts/SolarSeekers.sol#L23.

[45] [Online]. Available: https://github.com/OpenZeppelin/openzeppelin-
contracts/blob/be2b016679409cfbd23dba05c9100f6f4e0c6977/contracts/access/Ownable.sol#L84.

[46] [Online]. Available: https://github.com/OpenZeppelin/openzeppelin-
contracts/blob/be2b016679409cfbd23dba05c9100f6f4e0c6977/contracts/access/Ownable2Step.sol#L43.

[47] [Online]. Available: https://github.com/peaqnetwork/peaq-portal-
frontend/blob/141b2500c91fc5e30ed73d1ecacbcfa309ad6bb6/app/util/ABI/DID.json#L55.

[48] [Online]. Available: https://github.com/Milbo-GmbH/peaq-portal-
frontend/blob/ac5972e0ad88d42fff60eb5186f4ce691c8c90a5/hardhat/contracts/SolarSeekerTraits.sol#L48.

[49] [Online]. Available: https://github.com/Milbo-GmbH/peaq-portal-
frontend/blob/ac5972e0ad88d42fff60eb5186f4ce691c8c90a5/hardhat/contracts/SolarSeekers.sol#L81.

	Timeline
	1 Executive Summary
	1.1 Engagement Overview
	1.2 Observations and Risk
	1.3 Recommendations

	2 Evolution suggestions
	2.1 Engage in an Economic audit for the Tokenomics mechanism design
	2.2 Improve the documentation and inline comments
	2.3 Regular updates
	2.4 Regular code review and continuous fuzz testing.
	2.5 Launch a bug bounty program

	3 Motivation and scope
	4 Methodology
	4.1 Security design coverage check.
	4.2 Implementation check
	4.3 Remediation support

	5 Findings summary
	5.1 Risk profile
	5.2 Issue summary

	6 Detailed findings
	6.1 S3-43: ExistentialDeposit is configured to 0
	6.2 S3-40: Incorrectly on_finalize weights might lead to denial-of-service attacks
	6.3 S3-39: Collator can drain delegator’s rewards by manipulation commission rate
	6.4 S3-36: Missing trait-in-use checks in _validateTraitOwnership enables infinite minting
	6.5 S2-37: Single trait approval for NFT minting limits usability and efficiency
	6.6 S2-35: Trait token may be reused to satisfy multiple trait slots
	6.7 S2-18: Permissive `GasLimitStorageGrowthRatio` leads to excessive storage growth
	6.8 S2-16: Incorrect benchmarks for `pallet_evm`
	6.9 S1-42: Unsafe arithmetic can halt collator payouts
	6.10 S1-41: Lack of weight tracking in note_author() hook
	6.11 S1-32: Missing sanity checks for traitContract address
	6.12 S1-31: Single-step ownership transferal
	6.13 S1-15: Incorrect topic selector for `RemoveAttribute` event submission
	6.14 S0-38: Gas optimizations and logic efficiency
	6.15 S0-33: Missing events in SolarSeekers and SolarSeekersTraits contracts
	6.16 S0-19: Missing size checkings could lead to unnecessary gas cost
	6.17 S0-17: Incorrect fields names in reverted function backtraces

	Bibliography

