

Peaq Baseline Security Assurance
Threat model and hacking assessment report

V1.0.0, September 3, 2024

Kevin Valerio kevin@srlabs.de

Louis Merlin louis@srlabs.de

Aarnav Bos aarnav@srlabs.de

Regina Biro regina@srlabs.de

Abstract. This work describes the result of the thorough and
independent security assurance audit of the Peaq blockchain
performed by Security Research Labs. Security Research Labs is a
consulting firm that has been providing specialized audit services
for Substrate-based blockchains since 2019, including in the
Polkadot ecosystem.

During this study, Peaq provided access to relevant documentation
to support the research effort. The code of Peaq was verified to
assure that the business logic of the product is resilient to hacking
and abuse.

The research team identified several issues ranging from high
severity to info, many of which concerned runtime extrinsics.

Security Research Labs recommends implementing rigorous
validation logic in the Machine Owner Rewards mechanism, re-
testing benchmarks and introducing penalization to deter
fraudulent activity.

mailto:kevin@srlabs.de
mailto:louis@srlabs.de
mailto:aarnav@srlabs.de
mailto:regina@srlabs.de

SRL-Peaq_baseline_assurance-report-online Page 2 of 19

Content

1 Disclaimer ... 3

2 Motivation and scope .. 4

2.1 Baseline assurance ... 4

3 Methodology ... 5

4 Threat modeling and attacks .. 6

5 Baseline Assurance .. 10

5.1 Findings summary .. 10

5.2 Detailed findings .. 11

5.2.1 Incorrect authorization allows overriding DID attributes 11

5.2.2 Undervalued weight benchmarking could provoke block timeout 11

5.2.3 No FeeManager is configured for XCM messages 11

5.2.4 Missing service charge could enable abuse of service requests 12

5.2.5 Unverified service_delivered extrinsic execution 12

5.2.6 No XCM delivery fees configured for sibling parachain messages 12

5.2.7 Reward dispatching does not account for machine uptime 13

5.2.8 Insufficient checks in extrinsics could lead to financial exploitation 13

5.2.9 Incorrect staking requirements could compromise validation security 14

5.2.10 Extrinsic with missing storage deposits could clutter the storage. 14

5.2.11 Usage of old Substrate dependencies ... 15

5.2.12 Incorrect benchmarks for external pallets .. 15

5.2.13 Import of an insecure randomness algorithm 16

6 Evolution suggestions .. 16

6.1 Core improvement suggestions to improve security posture 16

6.2 Further recommended best practices ... 17

7 Bibliography .. 18

SRL-Peaq_baseline_assurance-report-online Page 3 of 19

1 Disclaimer

This report describes the findings and core conclusions derived from the audit carried
out by Security Research Labs within the agreed-on timeframe and scope as detailed
in Chapter 2. Please note that this report does not guarantee that all existing security
vulnerabilities were discovered in the codebase exhaustively and that following all
evolution suggestions described in Chapter 6 may not ensure all future code to be
bug free.

SRL-Peaq_baseline_assurance-report-online Page 4 of 19

2 Motivation and scope

Peaq is a Layer-1 blockchain tailored for Decentralized Physical Infrastructure
Networks (DePINs), focusing on real-world applications such as mobility and energy.
It secures and streamlines identity verification for machines, vehicles, robots, and
devices, ensuring seamless interaction across its ecosystem. It supports both ink! and
EVM smart contracts, facilitating flexible development environments. Peaq's
economy model incentivizes the contribution of machines and devices to its
network.

Like other Substrate-based blockchain networks, the Peaq code is written in Rust, a
memory safe programming language. Substrate-based chains utilize three main
technologies: a WebAssembly (WASM) based runtime, decentralized
communication via libp2p, and a block production engine. In addition to its
technology stack, Peaq leverages decentralized identifiers (DIDs) and verifiable
credentials for enhanced security and privacy in machine-to-machine interactions.
These features enable machines to authenticate and verify each other's identity
without relying on centralized authorities, ensuring better data integrity.

In a trustless, decentralized environment like a blockchain, security challenges are
inherent. Therefore, ensuring availability and integrity is a priority for Peaq as it
depends on its users to be incentivised to participate in the network. As such, a
security review of the project should not only highlight the security issues uncovered
during the audit process, but also bring additional insights from an attacker’s
perspective, which the Peaq team can then integrate into their own threat modeling
and development process to enhance the security of the product.

2.1 Baseline assurance

In this current engagement, the audit team focused on the Peaq runtimes and pallet
code. Security Research Labs collaborated with the Peaq team to create an overview
containing the runtime modules in scope and their audit priority [1]. The in-scope
components’ source code repositories were forked to provide a frozen version for
the audit. The assigned priorities and locations of the in-scope repositories are
reflected in

Table 1. During the audit, Security Research Labs used a CIA-triad threat model to
guide efforts on exploring potential security flaws and realistic attack scenarios.

During the assessment of the code, security critical parts of the code were identified
and security issues in these components were communicated to the Peaq
development team in the form of GitHub issues in a private repository [2].

SRL-Peaq_baseline_assurance-report-online Page 5 of 19

Repository Priority Component(s) Reference

peaq-pallet-did-audit-
srl-2024

High Pallet DID [3]

peaq-pallet-rbac-
audit-srl-2024

High Pallet RBAC [4]

peaq-pallet-mor-
audit-srl-2024

High Pallet MOR [5]

peaq-storage-pallet-
audit-srl-2024

High Pallet Storage [6]

peaq-network-node-
audit-srl-2024

High Network Node (runtimes)
Parachain Staking
Block Reward pallet
Staking Coefficient Reward

[7]

peaq-pallet-
transaction-audit-srl-
2024

Medium Pallet Transaction [8]

peaq-network-node-
audit-srl-2024

Low Address Unification Pallet
Staking Fixed Percentage
Reward
XC Asset Config

[7]

Table 1. In-scope Peaq components with audit priority

3 Methodology

This report details the baseline security assurance results for the Peaq network with
the aim of creating transparency in three steps: threat modeling, implementation
baseline check and finally remediation support:

Threat Modeling. The threat model is considered in terms of hacking incentives, i.e.,
the motivations to achieve the goals of breaching the integrity, confidentiality, or
availability of Peaq network node. For each hacking incentive, hacking scenarios
were postulated, by which these goals could be achieved. The threat model provides
guidance for the design, implementation, and security testing of Peaq.

Implementation baseline check. As a second step, the Peaq implementation was
tested for openings whereby any of the defined hacking scenarios could be executed.

To effectively review the Peaq codebase, Security Research Labs derived the code
review strategy based on the threat model that was established as the first step. For
each identified threat, hypothetical attacks were developed and mapped to their
corresponding threat category, as outlined in Chapter 4.

SRL-Peaq_baseline_assurance-report-online Page 6 of 19

Prioritizing by risk, the codebase was assessed for present protections against the
respective threats and attacks as well as the vulnerabilities that make these attacks
possible. For each threat, the auditors:

1. Identified the relevant parts of the codebase, for example the relevant crates
and the runtime configuration.

2. Identified viable strategies for the code review. Manual code review, fuzz
testing, and tests via static analysis tools were performed where
appropriate.

3. Ensured the code did not contain any vulnerabilities that could be used to
execute the respective attacks, or otherwise ensured that sufficient
protection measures against specific attacks were present.

4. Immediately reported any vulnerability that was discovered to the
development team along with suggestions around mitigations.

Security Research Labs carried out a hybrid strategy utilizing a combination of code
review and dynamic tests (e.g., fuzz testing) to assess the security of the Peaq
codebase.

While fuzz testing and dynamic tests establish a baseline assurance, the focus of this
audit was a manual code review of the Peaq codebase to identify logic bugs, design
flaws, misconfigurations, and best practice deviations. The approach of the review
was to trace the intended functionality of the runtime modules in scope and to assess
whether an attacker can bypass/misuse/abuse these components or trigger
unexpected behavior on the blockchain due to logic bugs or missing checks. Since
the Peaq codebase is entirely open source, it is realistic that a malicious actor would
analyze the source code while preparing an attack.

Fuzz testing is a technique to identify issues in code that handles untrusted input,
which in Peaq’s case is extrinsics in the main Peaq runtime. Fuzz testing works by
taking some valid input for a method under test, applying a semi-random mutation
to it, and then invoking the method under test again with this semi-valid input.
Through repeating this process, fuzz testing can unearth inputs that would cause a
crash or other undefined behavior (e.g., integer overflows) in the method under test.
The fuzz testing methods written for this assessment utilized the test runtime genesis
configuration as well as mocked externalities to execute the fuzz test effectively
against the extrinsics in scope.

Remediation support. The final step is supporting Peaq with the remediation process
of the identified issues. Each finding was documented and published with mitigation
recommendations. Once the mitigation solution is implemented, the fix is verified by
the auditors to ensure that it mitigates the issue and does not introduce other bugs.

4 Threat modeling and attacks

The goal of the threat model framework is to be able to determine specific areas of
risk in Peaq’s blockchain system. Familiarity with these risk areas can provide
guidance for the design of the implementation stack, the actual implementation of
the stack, as well as the security testing. This section introduces how risk is defined
and provides an overview of the identified threat scenarios. The Hacking Value,
categorized into low, medium, and high, considers the incentive of an attacker, as

SRL-Peaq_baseline_assurance-report-online Page 7 of 19

well as the effort required by an attacker to successfully execute the attack. The
hacking value is calculated as:

𝐻𝑎𝑐𝑘𝑖𝑛𝑔 𝑉𝑎𝑙𝑢𝑒 =
𝐼𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒

𝐸𝑓𝑓𝑜𝑟𝑡

While incentive describes what an attacker might gain from performing an attack
successfully, effort estimates the complexity of this same attack. The degrees of
incentive and effort are defined as follows:

Incentive:

• Low: Attacks offer the hacker little to no gain from executing the threat.

• Medium: Attacks offer the hacker considerable gains from executing the
threat.

• High: Attacks offer the hacker high gains by executing this threat.

Effort:

• Low: Attacks are easy to execute. They require neither elaborate technical
knowledge nor considerable amounts of resources.

• Medium: Attacks are moderately difficult to execute. They might require
bypassing countermeasures, the use of expensive resources or a
considerable amount of technical knowledge.

• High: Attacks are difficult to execute. The attacks might require in-depth
technical knowledge, vast amounts of expensive resources, bypassing
countermeasures, or any combination of these factors.

Incentive and Effort are divided according to Table 2.

Hacking Value Low incentive Medium Incentive High Incentive

High effort Low Medium Medium

Medium effort Medium Medium High

Low effort Medium High High

Table 2. Hacking value measurement scale.

Hacking scenarios are classified by the risk they pose to the system. The risk level,
also categorized into low, medium, and high, considers the hacking value, as well as
the damage that could result from successful exploitation. The risk of a threat
scenario is calculated by the following formula:

𝑅𝑖𝑠𝑘 = 𝐷𝑎𝑚𝑎𝑔𝑒 × 𝐻𝑎𝑐𝑘𝑖𝑛𝑔 𝑉𝑎𝑙𝑢𝑒 =
𝐷𝑎𝑚𝑎𝑔𝑒 × 𝐼𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒

𝐸𝑓𝑓𝑜𝑟𝑡

Damage describes the negative impact that a given attack, performed successfully,
would have on the victim. The degrees of damage are defined as follows:

Damage:

SRL-Peaq_baseline_assurance-report-online Page 8 of 19

• Low: Risk scenarios would cause negligible damage to the Peaq blockchain.

• Medium: Risk scenarios pose a considerable threat to Peaq functionality as
a blockchain.

• High: Risk scenarios pose an existential threat to Peaq’s functionality.

Damage and Hacking Value are divided according to Table 3.

Risk Low hacking value Medium hacking
value

High hacking
value Low damage Low Medium Medium

Medium damage Medium Medium High

High damage Medium High High

Table 3. Risk measurement scale

After applying the framework to the Peaq system, different threat scenarios
according to the CIA triad were identified.

The CIA triad describes three security promises that can be violated by a hacking
attack, namely confidentiality, integrity, availability.

Confidentiality:

Confidentiality threat scenarios concern sensitive information regarding the
blockchain network and its users. A threat scenario could include, for example, the
leak of user's private information via his DID document.

Integrity:

Integrity threat scenarios pose significant risks to the Peaq network. The potential
for financial gain is a primary motivator behind such attacks, including scenarios
where an attacker might engage in harmful activities as a collator, unjustly claim a
disproportionate share of machine owner rewards, or manipulate the fee refunding
system to their advantage for example. Such actions, whether for direct financial gain
or to undermine network integrity, pose challenges to maintaining Peaq's
ecosystem's security.

Availability:

Availability threat scenarios refer to compromising the availability of the network to
process normal transactions. Important threat scenarios regarding availability for
blockchain systems include Denial of Service (DoS) attacks on participating nodes,
stalling the transaction queue, and spamming.

Table 4 provides a high-level overview of the hacking risks concerning Peaq with
identified example threat scenarios and attacks, as well as their respective hacking
value and effort. The complete list of threat scenarios identified along with attacks
that enable them are described in the threat model deliverable [1]. This list can serve
as a starting point for the Peaq developers to guide their security outlook for future
feature implementations. By thinking in terms of threat scenarios and attacks during
code review or feature ideation, many issues can be caught or even avoided
altogether.

SRL-Peaq_baseline_assurance-report-online Page 9 of 19

For Peaq, the auditors attributed the most hacking value to the integrity class of
threats. Undermining the integrity of the Peaq chain could lead to severe financial
abuses and could have devastating consequences for the entities being impacted by
such an attack.

Promise Hacking
value

Example threat
scenarios

Hacking
effort

Example attack ideas

Confiden-
tiality

High - Leak user's private
information via his
DID document

- Impersonate an
external machine or
service provider

High - Abuse a discrepancy
between the peaq DID
implementation and
the W3C norm

- Create a DID using
another machine
address during the
Machine-Origin
Authentication
process

Integrity High - Conduct damaging
behavior inside the
network as a collator

- Receive an illicit
proportion of
machine owner
rewards

- Manipulate the fee
refunding system

Medium - Quickly join and
leave the set of
delegators or collators
for financial gain

- Exploit distribution
algorithm
vulnerabilities to
illicitly redirect and
claim rewards
intended for others

- Send the refund
extrinsic without
deposit any funds
beforehand

Availa-
bility

Medium

- Harm the chain
functionality by
cluttering its storage

- Censor certain
transactions

- Stall block
production

Low

- Cheaply fill up
blockchain storage

- Censor transactions
as a collator

- Block transactions
through heavy-weight
extrinsic

Table 4. Risk overview. The threats for Peaq’s blockchain were classified using the
CIA security triad model, mapping threats to the areas: (1) Confidentiality, (2)
Integrity, and (3) Availability.

SRL-Peaq_baseline_assurance-report-online Page 10 of 19

5 Baseline Assurance

5.1 Findings summary

During the analysis of the Peaq code, Security Research Labs identified 13 issues (9
highs, 3 mediums, 1 info) which are summarized in Table 5.

Each finding to the Peaq project described here was shared with Peaq developers in
a dedicated private GitHub repository as an issue.

Issue Severity References Status

Incorrect authorization allows overriding
DID attributes

High [9] Closed*

Undervalued weight benchmarking could
provoke block timeout

High [10] Closed*

No FeeManager is configured for XCM
messages

High [11] Closed*

Lack of service charge could allow an
attacker to abuse service requests

High [12] Closed*

Unverified service_delivered extrinsic
execution

High [13] Closed*

No XCM delivery fees configured for sibling
parachain messages

High [14] Closed*

Reward dispatching does not account for
machine uptime

High [15] Closed*

Insufficient checks in extrinsics could lead
to financial exploitation

High [16] Closed*

Incorrect staking requirements could
compromise validation security

High [17] Closed*

Extrinsics with missing storage deposits
could clutter the blockchain storage

Medium [18] Closed*

Usage of old Substrate dependencies Medium [19] Closed*

Incorrect benchmarks for external pallets Medium [20] Closed*

Import of an insecure randomness
algorithm

Info [21] Closed*

Table 5 Code audit issue summary

*As of September 3rd, 2024, the Peaq Team has reported that the issues have been
addressed and resolved. However, these fixes have not yet undergone independent
verification by Security Research Labs, and therefore the resolution has not been
confirmed.

SRL-Peaq_baseline_assurance-report-online Page 11 of 19

5.2 Detailed findings

5.2.1 Incorrect authorization allows overriding DID attributes

Attack scenario Manipulate a DID to perform DID takeover

Location peaq-pallet-did

Tracking [9]
Attack impact Attackers can modify or remove DID attributes of any user

Severity High

Status Closed*

When creating a DID attribute for a DID account, a hash combining the sender of the
extrinsic and the DID account is added to the OwnerStore map, where the key is the
hash, and the value is the DID account. The DID attribute may be updated or removed
by the remove_attribute and update_attribute extrinsics, which uses the is_owner
function to perform a permission check on the attribute before proceeding.

The function is_owner only checks if the sender is part of OwnerStore and does not
check if they created the attribute they wished to modify. Thus, if a user were to
create a DID attribute for the DID account, they would be able to remove or update
any attribute belonging to the DID account as they would be present in the
OwnerStore map.

We recommend including the name of the DID attribute as part of the hash stored
in OwnerStore and verifying this in the is_owner function.

5.2.2 Undervalued weight benchmarking could provoke block timeout

Attack scenario Send incorrectly benchmarked extrinsics to spam the
network

Location peaq-pallet-did, peaq-pallet-rbac, peaq-storage-pallet

Tracking [10]
Attack impact Attackers can stall block production.

Severity High

Status Closed*

In Substrate-based blockchains, weights are used to calculate appropriate fees and
estimate execution time. These calculations ensure transactions are executed
properly, so block production guarantees can be met. Extrinsics with underestimated
weights may allow an attacker to create blocks that are too large, leading to block
production timeouts.

Our audit identified five extrinsics where the benchmarks do not consider the
maximum sizes of their parameters. This is not a comprehensive list, and we
recommend a thorough analysis of all pallets to determine if the benchmarks
accurately reflect worst-case scenarios.

5.2.3 No FeeManager is configured for XCM messages

Attack scenario Abuse XCM misconfiguration

Location agung, krest, peaq, peaq-dev runtimes

Tracking [11]
Attack impact Attackers can bypass paying fees and spam the blockchain

SRL-Peaq_baseline_assurance-report-online Page 12 of 19

Severity High

Status Closed*

The runtimes Agung, Krest, Peaq, and Peaq-dev include the xcm_executor pallet.
These runtimes configure the xcm_executor's FeeManager to be (), which waives all
XCM call fees and makes the chain vulnerable to spam from sibling parachains.

To mitigate this issue, we recommend using XcmFeeManagerFromComponents for
the FeeManager type. Rococo's XCM configuration can be used as a reference.

5.2.4 Missing service charge could enable abuse of service requests

Attack scenario Request a machine service for free, bypassing the deposit
step

Location peaq-pallet-transaction

Tracking [12]

Attack impact Attackers can receive services for free

Severity High

Status Closed*

Peaq-pallet-transaction includes a service_requested extrinsic, where the caller can
request a service from a specified provider and deposit tokens that will be used later
to pay the provider. However, due to incomplete implementation of the extrinsic, an
attacker could request services without depositing any tokens.

We recommend implementing a proper token transfer from the consumer to the
provider or using set_lock to lock the amount and perform the transfer later.

5.2.5 Unverified service_delivered extrinsic execution

Attack scenario Manipulate the fee refunding system

Location peaq-pallet-transaction

Tracking [13]

Attack impact Attackers can gain illicit refunds

Severity High

Status Closed*

The service_delivered extrinsic, exposed by peaq-pallet-transaction, allows a
provider to acknowledge the delivery of a service to its consumer. However, this
extrinsic does not perform checks to ensure that the sender is the actual executor of
the service. An attacker could provide incorrect parameters, leading to various
security issues such as provider impersonation and token refund abuse.

We recommend implementing appropriate validation checks to confirm that the
caller of the extrinsic is indeed the provider of the service

5.2.6 No XCM delivery fees configured for sibling parachain messages

Attack scenario Abuse XCM misconfiguration

Location agung, krest, peaq, peaq-dev runtimes

Tracking [14]
Attack impact Attackers can avoid paying fees and spam the blockchain

Severity High

SRL-Peaq_baseline_assurance-report-online Page 13 of 19

Status Closed*

In the runtimes Agung, Krest, Peaq, and Peaq_dev, the pallet
cumulus_pallet_xcmp_queue's PriceForSiblingDelivery is configured to be (). This
configuration results in no fees being charged for delivering XCM messages across
parachains.

Attackers may exploit this by sending spam messages across chains without incurring
any fees. Excessive messages could lead to XCM queue size exhaustion due to
excessive storage usage until messages are delivered. This could also result in delays
in message delivery for other users.

5.2.7 Reward dispatching does not account for machine uptime

Attack scenario Manipulate online time-tracking system to fraudulently
claim rewards

Location peaq-pallet-mor

Tracking [15]

Attack impact Attackers can falsify the online status or productivity of
devices

Severity High

Status Closed*

Peaq’s peaq-pallet-mor exposes the get_online_rewards extrinsic, which allows
machine owners to claim rewards for their machines' contributions to the network.
However, the extrinsic does not verify the uptime of the machines, potentially
enabling attackers to deplete the rewards pot, causing Denial of Service and severe
financial exploitation.

We recommend implementing a verification mechanism within the
get_online_rewards extrinsic to assess the actual uptime of machines before
distributing rewards. This could be achieved by integrating an uptime verification
system that periodically checks the uptime status of registered machines; using
secure timestamps or external oracles could provide evidence of machine uptime.
Additionally, introducing penalties for dishonest claims could further protect the
integrity of the rewards system.

5.2.8 Insufficient checks in extrinsics could lead to financial exploitation

Attack scenario Cause system to mint tokens to his own account

Location peaq-pallet-mor

Tracking [16]

Attack impact Attackers can abuse token minting mechanism to disrupt the
blockchain economy

Severity High
Status Closed*

The pay_machine_usage extrinsic is designed to facilitate payment for the use of a
physical machine within the Peaq network. This implementation assumes that the
origin is requesting a service from a machine and that, since users do not yet have
tokens, those tokens will be minted and transferred immediately thereafter.
Similarly, the get_registration_reward function, which aims to register and distribute
rewards to a specific machine, is also affected by this issue.

SRL-Peaq_baseline_assurance-report-online Page 14 of 19

No checks are performed to verify that the machine is genuinely the correct machine
and not the caller itself or another user account. Additionally, there are no checks to
ensure that the caller of the extrinsic has previously requested a service from the
machine.

We suggest enhancing the pay_machine_usage and get_registration_reward
extrinsics by ensuring the machine is verified within the Peaq network through a
registry check, confirming the caller has previously requested a service, and
preventing the caller from being the recipient. Moreover, to pay for machine usage,
we recommend avoiding the minting of tokens and instead propose using the caller’s
funds to reward the machine. A safer approach for distributing rewards to online
machines would be to use a hook, for example, via on_initialize, instead of an
extrinsic, to achieve better control over reward distribution.

5.2.9 Incorrect staking requirements could compromise validation security

Attack scenario Perform a 51% attack

Location peaq-runtime

Tracking [17]

Attack impact Attacker may be able to conduct a Sybil attack or a 51% attack

Severity High

Status Closed*

In the parachain_staking pallet, MinCollatorStake refers to minimum stake required
for any account to be elected as validator for a round. MinCollatorStake is currently
set too low within the peaq runtime (32_000) compared to krest (50_000 * DOLLARS
where DOLLARS = 10 ^ e18).

A low minimum collator stake diminishes the barriers for entry to participate as
validators within the network. Malicious actors could, with relatively minimal
investment, operate multiple validator nodes, increasing the likelihood of executing
a 51% attack. Furthermore, a low stake requirement reduces the cost of acting
maliciously for validators, as the potential penalties for slashing are less impactful.

We recommend using DOLLARS, CENTS, MILLICENTS or NANOCENTS whenever a
Balance type is involved. Specifically, we advise setting the MinCollatorStake in the
peaq_runtime to match the levels defined in krest_runtime.

5.2.10 Extrinsic with missing storage deposits could clutter the storage.

Attack scenario Disrupt blockchain operation
Location pallet-did

Tracking [18]

Attack impact An attacker can clutter storage and halt blockchain operation

Severity High
Status Closed*

Storage deposit fees are missing from several extrinsics throughout the Peaq
codebase. A malicious entity could call these extrinsics repeatedly and store non-
relevant data into the blockchain database to clutter the underlying storage. If the
data is never deleted from the blockchain storage, even without malicious
interactions, normal operations could clutter the storage over time. This may make
the blockchain harder to operate.

SRL-Peaq_baseline_assurance-report-online Page 15 of 19

As a best practice, every call that writes data into the storage database should be
charged a storage deposit or fee.

5.2.11 Usage of old Substrate dependencies

Attack scenario Trigger known bugs in Substrate

Location peaq-network-node
Tracking [19]

Attack impact Attacks may be able to exploit known vulnerabilities

Severity High

Status Closed*

Peaq utilizes outdated versions of Substrate, Polkadot, ORML, and other
dependencies. Given that the Substrate ecosystem has advanced to version 1.8 [22].
while Peaq uses 0.9.43 [23], this may open Peaq to vulnerabilities patched by
Substrate in the versions succeeding Peaq's. We recommend updating to the latest
Substrate version. A tool which could potentially simplify the update process is
Parity's Polkadot SDK Version Manager 1.

Issue update

As of the 19th of August 2024, SRLabs performed a security review of the
asynchronous backing integration within Peaq runtimes.

5.2.12 Incorrect benchmarks for external pallets

Attack scenario Send incorrectly benchmarked extrinsics to spam the
network

Location pallet-sudo, pallet-contracts, pallet-collective, pallet-treasury,
pallet-evm, pallet-session, pallet-vesting, pallet-xcm, address-
unification, xc-asset-config, staking-coefficient-reward

Tracking [20]
Attack impact Attackers may be able to spam transactions

Severity Medium

Status Closed*

Peaq depends on a subset of FRAME pallets. The benchmarks for these pallets are
done using external runtimes such as substrate-node-template, acala, astar-collator
or kilt-parachain, instead of the correct Peaq runtime (i.e., agung, krest, peaq, peaq-
dev). Our audit found eleven pallets where benchmarks were sourced from external
runtimes.

This may lead to underweight or overweight extrinsics and may harm the credibility
of the network. We recommend that all pallet extrinsics, even the Substrate ones,
be benchmarked with the actual runtime configuration by including them in the
define_benchmarks! block.

A best practice example can be found in the Kusama runtime implementation [24].

1 https://github.com/paritytech/psvm

SRL-Peaq_baseline_assurance-report-online Page 16 of 19

5.2.13 Import of an insecure randomness algorithm

Attack scenario Abuse insecure randomness
Location krest, agung, peaq, peaq-dev runtimes

Tracking [21]

Attack impact Attackers may be able to exploit any deployed smart contract
that utilizes randomness APIs

Severity Info

Status Closed*

The source of randomness in the Krest, Agung, Peaq and Peaq-dev runtimes is
configured to use the pallet_insecure_randomness_collective_flip, implemented in
Substrate.

The output of collective flip is highly predictable as it is based on the last eighty-one
blocks and should not be used as a true source of randomness. While the usage of
collective flip is limited to pallet_contracts, which does not indicate a security issue
[25] for Peaq, we highly recommend replacing the source of randomness due to the
possibility that smart contract developers on the Peaq platform may utilize the
insecure randomness functionality, making deployed smart contracts on Peaq
vulnerable to exploitation.

6 Evolution suggestions

To ensure that Peaq is secure against known and yet undiscovered threats alike, the
auditors recommend considering the evolution suggestions and best practices
described in this section.

6.1 Core improvement suggestions to improve security posture

Implement missing validation logic in extrinsics. Incomplete validation logic in
extrinsics [12] [13] [9] may lead to severe issues since the blockchain is live. Rigorous
implementation, testing and deployment of the necessary validation logic is
recommended to secure and affirm the reliability and integrity of the blockchain.

Implement a system to track Machines. Missing logic to accommodate tracking of
machines’ uptime, availability and services may lead to financial exploitation [15]
[16]. It is essential to implement mechanisms to track Machines so that Machine
users, owners and operators receive appropriate services and rewards. Additionally,
implementing a form of slashing may be beneficial for to deter fraudulent claims and
activity.

Benchmark extrinsics appropriately. Benchmarks for foreign pallets must be
conducted using the appropriate Peaq runtime instead of a foreign runtime [20].
Additionally, a thorough review of all exposed extrinsics must be conducted to
determine if they are benchmarked correctly and if they truly reflect worst case
scenarios. Issue #2 [10] may be referred to for an initial subset of extrinsics.

Document and clarify the identity system. Peaq’s identity system is highly
permissioned and very restrictive, which shields the blockchain from many
vulnerabilities. Nevertheless, care should be taken to clarify and document the
identity primitives and pallets. Many methods contain duplicated logic, which could
be the source of security vulnerabilities in the future. These duplications should be
removed, and the code simplified where possible.

SRL-Peaq_baseline_assurance-report-online Page 17 of 19

Update to the latest Substrate version. Polkadot regularly updates Substrate to fix
security issues and improve functionality. It is essential for Peaq’s Substrate fork to
maintain version parity with upstream Substrate to benefit from security
improvements.

Strengthen testing process. The infrastructure with regards to testing is opaque. This
will create blind spots in security testing of certain functionalities and might lead to
bugs being introduced that would have been caught otherwise. Code coverage is
already measured by the Peaq CI/CD tools, but the team should make sure the most
critical parts of the system (identity, claims, governance, assets) are sufficiently
covered by the existing tests, and take steps to create more tests if it is not the case.
Besides, some additional code-comments in the existing tests would greatly help
internal and external entities trying to collaborate on the project.

Include concrete examples in documentation. The existing documentation could
benefit from improvements as it is very high-level. The team has created exhaustive
SDK-level examples, but the project lacks rust-level technical examples. These
examples could include processes outlining which extrinsics to use for typical
interactions with Peaq, such as creating a child identity, managing portfolios, and
adding claims. They could also list the different possibilities available to users when
using these extrinsics, as they can be complex and include many options.

6.2 Further recommended best practices

Regularly review the code and continuously fuzz test. Security Research Labs
recommends having regular code reviews by security-focused professionals (internal
or external to Peaq) to avoid introducing new logic or arithmetic bugs. Continuous
fuzz testing can also identify potential vulnerabilities early in the development
process. Ideally, Peaq should continuously fuzz their code on each commit made to
the codebase. The Polkadot codebase provides a good example of multiple fuzzing
harnesses [26]. In addition to these, Security Research Labs has released some
example substrate runtime fuzzer harnesses [27].

Regularly update. New releases of Substrate may contain fixes for critical security
issues. Since Peaq is a product that heavily relies on Substrate, updating to the latest
version as soon as possible whenever a new release is available is recommended.
Security Research Labs recommends paying special attention to security fixes,
specifically Substrate related ones, as well as setting up a review process for every
new main version of Substrate to be incorporated into the update process of Peaq.

Continue improving best practice review process. Finding vulnerabilities is only the
start of the remediation process. To ensure that no issue goes unfixed, Security
Research Labs recommends continuing to improve upon the team’s review process,
establishing a set of guidelines and criteria for the review to ensure consistency and
standardization.

Avoid forking Substrate, Polkadot and other libraries. Peaq highly depends on
forked dependencies such as Frontier, Polkadot, Substrate, ORML, etc. While it may
not always be possible to contribute upstream to those components, forking should
be avoided in most cases. Depending on those forks makes getting upstream fixes a
manual process and harder to maintain.

SRL-Peaq_baseline_assurance-report-online Page 18 of 19

7 Bibliography

[1] [Online]. Available:
https://securityresearchlabs.sharepoint.com/:x:/s/Peaq/ETAWXt0_Pr5CmLQh
ZXnYGrgBjlGfbe2VD1tiBwqpOfLr2g?rtime=_clT1jRo3Eg.

[2] [Online]. Available: https://github.com/kevin-
valerio/srlabs_peaq_audit/issues.

[3] [Online]. Available: https://github.com/peaqnetwork/peaq-pallet-did-audit-
srl-2024.

[4] [Online]. Available: https://github.com/peaqnetwork/peaq-pallet-rbac-audit-
srl-2024.

[5] [Online]. Available: https://github.com/peaqnetwork/peaq-pallet-mor-audit-
srl-2024.

[6] [Online]. Available: https://github.com/peaqnetwork/peaq-storage-pallet-
audit-srl-2024.

[7] [Online]. Available: https://github.com/peaqnetwork/peaq-network-node-
audit-srl-2024.

[8] [Online]. Available: https://github.com/peaqnetwork/peaq-pallet-transaction-
audit-srl-2024.

[9] [Online]. Available: https://github.com/kevin-
valerio/srlabs_peaq_audit/issues/13.

[10] [Online]. Available: https://github.com/kevin-
valerio/srlabs_peaq_audit/issues/2.

[11] [Online]. Available: https://github.com/kevin-
valerio/srlabs_peaq_audit/issues/4.

[12] [Online]. Available: https://github.com/kevin-
valerio/srlabs_peaq_audit/issues/5.

[13] [Online]. Available: https://github.com/kevin-
valerio/srlabs_peaq_audit/issues/6.

[14] [Online]. Available: https://github.com/kevin-
valerio/srlabs_peaq_audit/issues/8.

[15] [Online]. Available: https://github.com/kevin-
valerio/srlabs_peaq_audit/issues/9.

SRL-Peaq_baseline_assurance-report-online Page 19 of 19

[16] [Online]. Available: https://github.com/kevin-
valerio/srlabs_peaq_audit/issues/10.

[17] [Online]. Available: https://github.com/kevin-
valerio/srlabs_peaq_audit/issues/12.

[18] [Online]. Available: https://github.com/kevin-
valerio/srlabs_peaq_audit/issues/11.

[19] [Online]. Available: https://github.com/kevin-
valerio/srlabs_peaq_audit/issues/7.

[20] [Online]. Available: https://github.com/kevin-
valerio/srlabs_peaq_audit/issues/3.

[21] [Online]. Available: https://github.com/kevin-
valerio/srlabs_peaq_audit/issues/1.

[22] [Online]. Available: https://github.com/paritytech/polkadot-
sdk/releases/tag/polkadot-v1.8.0.

[23] [Online]. Available: https://github.com/peaqnetwork/peaq-network-
node/blob/13b642963ca49b133079c8f99f471cbb8da7732c/Cargo.toml#L80-
L212.

[24] [Online]. Available: https://github.com/polkadot-
fellows/runtimes/blob/5bf21d73c0456eb7c5910aafa78445f93a61bdc9/relay/
kusama/src/lib.rs#L1983-L2016.

[25] [Online]. Available: https://paritytech.github.io/polkadot-
sdk/master/src/pallet_contracts/lib.rs.html#262-265.

[26] [Online]. Available: https://github.com/paritytech/polkadot-
sdk/tree/b13a3187f2b18d1ed1821670f11dc0c70399bb50/polkadot/xcm/xcm
-simulator/fuzzer.

[27] [Online]. Available: https://github.com/srlabs/substrate-runtime-fuzzer.

[28] https://github.com/peaqnetwork/peaq-security-assement-
reports/blob/dev/2022_11_19_peaq.pdf. [Online].

[29] [Online]. Available: https://github.com/peaqnetwork/peaq-security-
assement-reports/blob/dev/2022_12_13_peaq.pdf.

[30] [Online]. Available: https://github.com/peaqnetwork/peaq-security-
assement-reports/blob/dev/2023_06_01_peaq.pdf.

[31] [Online]. Available: https://github.com/kevin-valerio/srlabs_peaq_audit/.

	1 Disclaimer
	2 Motivation and scope
	2.1 Baseline assurance

	3 Methodology
	4 Threat modeling and attacks
	5 Baseline Assurance
	5.1 Findings summary
	5.2 Detailed findings
	5.2.1 Incorrect authorization allows overriding DID attributes
	5.2.2 Undervalued weight benchmarking could provoke block timeout
	5.2.3 No FeeManager is configured for XCM messages
	5.2.4 Missing service charge could enable abuse of service requests
	5.2.5 Unverified service_delivered extrinsic execution
	5.2.6 No XCM delivery fees configured for sibling parachain messages
	5.2.7 Reward dispatching does not account for machine uptime
	5.2.8 Insufficient checks in extrinsics could lead to financial exploitation
	5.2.9 Incorrect staking requirements could compromise validation security
	5.2.10 Extrinsic with missing storage deposits could clutter the storage.
	5.2.11 Usage of old Substrate dependencies
	5.2.12 Incorrect benchmarks for external pallets
	5.2.13 Import of an insecure randomness algorithm

	6 Evolution suggestions
	6.1 Core improvement suggestions to improve security posture
	6.2 Further recommended best practices

	7 Bibliography

