
 

 

- Confidential - 19 pages - 

 

 

Moonbeam security audit for runtime 3200, 
3300 and 3400 
Threat model and hacking assessment report 

v1.0, 11th June 2025 

  

Prepared for: 
Moonbase One SEZC 



 

SRL-Moonbeam_Runtime_3200_3300_3400_Audit_Report_Final_v1.0.docx  Confidential, Page 1 of 19 
 

Content 
 

Disclaimer .................................................................................................................................... 2 

Timeline ...................................................................................................................................... 3 

Integrity Notice ............................................................................................................................ 4 

1 Executive summary .................................................................................................... 5 

1.1 Engagement overview......................................................................................................... 5 

1.2 Observations and risk .......................................................................................................... 5 

1.3 Recommendations .............................................................................................................. 5 

2 Evolution suggestions ................................................................................................ 6 

3 Motivation and scope ................................................................................................ 7 

4 Methodology ............................................................................................................. 8 

4.1 Threat modeling and attacks .............................................................................................. 8 

4.2 Security design coverage check. ....................................................................................... 10 

4.3 Implementation check ...................................................................................................... 10 

4.4 Remediation support ........................................................................................................ 11 

5 Findings summary.................................................................................................... 12 

5.1 Risk profile ......................................................................................................................... 12 

5.2 Issue summary .................................................................................................................. 12 

6 Detailed findings ..................................................................................................... 13 

6.1 S1-52: Failed assumption: new_xcm_location for foreign asset may already exist ......... 13 

7 Bibliography ............................................................................................................ 14 

Appendix A: Vulnerability categories .......................................................................................... 15 

Appendix B: Code maturity categories ........................................................................................ 16 

Appendix C: Technical services ................................................................................................... 17 

 

 

  



 

SRL-Moonbeam_Runtime_3200_3300_3400_Audit_Report_Final_v1.0.docx  Confidential, Page 2 of 19 
 

Disclaimer 

This report describes the findings and core conclusions derived from the audit carried out by Security 
Research Labs within the timeframe and scope detailed in Chapter 3.  

Please note that this report does not guarantee that all existing security vulnerabilities were 
discovered in the codebase exhaustively and that following all suggestions may not ensure future 
code to be bug free. 

 

Version: v1.0 

Client: Moonbeam 

Date: 11th June 2025 

Audit Team: Bruno Produit 
Cayo Fletcher-Smith 
Constantin Schwarz 
Marc Heuse 

 

  



 

SRL-Moonbeam_Runtime_3200_3300_3400_Audit_Report_Final_v1.0.docx  Confidential, Page 3 of 19 
 

Timeline 

The Moonbeam source code has undergone one initial baseline audit alongside a subsequent 
continuous security assurance, started in May 2021 by Security Research Labs. Continuous security 
checks have been in place. As shown in Table 1, specific runtime audits for the Moonbeam runtimes 
3200, 3300 and 3400 have been performed from January to July 2024. 

Date Event 

1st July 2024 Start of Moonbeam audit for runtimes 3200, 3300 and 3400 

31st December 2024 End of Moonbeam audit for runtimes 3200, 3300 and 3400 

11th June 2025 Delivered: Security audit report for Moonbeam runtimes 3200, 3300 and 
3400 

Table 1: Audit timeline 

  



 

SRL-Moonbeam_Runtime_3200_3300_3400_Audit_Report_Final_v1.0.docx  Confidential, Page 4 of 19 
 

Integrity Notice 

This document contains proprietary information belonging to Security Research Labs and 
Moonbeam. No part of this document may be reproduced or cited separately; only the document in 
its entirety may be reproduced. Any exceptions require prior written permission from Security 
Research Labs or Moonbeam. Those granted permission must use the document solely for purposes 
consistent with the authorization. Any reproduction of this document must include this notice. 

  



 

SRL-Moonbeam_Runtime_3200_3300_3400_Audit_Report_Final_v1.0.docx  Confidential, Page 5 of 19 
 

1 Executive summary 

1.1 Engagement overview 

This report documents the results of a continuous security assurance audit of Moonbeam that 
Security Research Labs performed for the runtime versions 3200, 3300 and 3400.  

During this study, Moonbeam provided access to relevant documentation and effectively supported 
the research team. We verified the protocol design, concept documentation, and relevant available 
source code of Moonbeam.  

Security Research Labs has conducted continual comprehensive security assurance for Moonbase 
One SEZC since our baseline audit in June 2021 and has been providing specialized audit services for 
Polkadot and Polkadot SDK projects since 2019. This audit focused on assessing the changes 
introduced into Moonbeam’s codebase at runtime versions 3200, 3300 and 3400 for resilience 
against hacking and abuse scenarios. Key areas of scrutiny included: fee calculation mechanisms; 
Ethereum virtual machine recreation accuracy in Substrate; precompiled contracts; governance 
mechanisms and curves; runtime configurations; and pallet integrations. We prioritized reviewing 
critical functionalities and conducting thorough security tests to ensure the robustness of 
Moonbeam’s platform. We collaborated closely with Moonbeam, utilizing full access to source code 
and documentation to perform a rigorous assessment. 

1.2 Observations and risk 

The research team identified one issue of low criticality, which would have only been exploitable via 
a misleading governance action. Moonbeam has acknowledged and, in cooperation with Security 
Research Labs, remediated the identified issue in a timely manner. This shows that Moonbeam is 
developed with a strong sense of security, and that the developers are capable of reacting to 
security issues quickly. 

1.3 Recommendations 

Manual code audits provide an in-depth insight into the security posture of a project and are 
essential for maintaining a high security standard in the long term. However, the effectiveness of 
these audits can be improved significantly by performing automated tests, such as a continuous 
fuzzing campaign or by integrating static analysis tooling into the CI/CD pipeline. 

  



 

SRL-Moonbeam_Runtime_3200_3300_3400_Audit_Report_Final_v1.0.docx  Confidential, Page 6 of 19 
 

2 Evolution suggestions  

To ensure that Moonbeam is secure against further unknown or yet undiscovered threats, we 
recommend considering the following evolution suggestions and best practices described in this 
section. 

Perform dynamic analysis. The Moonbeam team received an up-to-date harness and instructions on 
how to run our fuzzing campaign on their own servers and customize it to their needs, however so 
far this has not been started. Additionally, the existing harness would benefit from more invariant 
tests being added. We recommend allocating resources towards integrating fuzzing into the overall 
testing process. 

Use static analysis. Using static analysis tools to detect security flaws in the codebase is essential for 
improving code security. These tools, such as Dylint and Semgrep for the Rust ecosystem, analyze 
the code without executing it, identifying vulnerabilities, coding errors, and compliance issues early 
in the development process. This proactive approach helps developers address potential security 
issues before they reach production, ensuring a more secure and reliable codebase. 

Create an incident response plan and validate it regularly. Developing a comprehensive incident 
response plan to address potential security breaches is vital for maintaining code security and 
organizational resilience. This plan should include detailed procedures for responding to various 
scenarios, such as compromised developers or exploited blockchain vulnerabilities, to ensure quick 
and effective mitigation of threats. Regular testing of the incident response plan through simulated 
breach drills and tabletop exercises ensures that the team is familiar with the plan and capable of 
executing it under stress. By having a well-defined response strategy, organizations can minimize the 
impact of security incidents, protect sensitive data, and maintain trust with users and stakeholders. 

Prepare for emergency governance actions. As responding to an incident in the Polkadot ecosystem 
usually involves time sensitive governance proposals on the relay chain, it is crucial that they 
succeed in a timely manner. Incident response plans must account for scenarios in which the 
practical deadline for such a proposal is not the end of the voting period, but rather a much shorter 
period after which a malicious action performed by the attacker is executed. To ensure the success 
of incident response proposals, key community members of the relay chain should be involved in the 
incident response plans described above. 

  



 

SRL-Moonbeam_Runtime_3200_3300_3400_Audit_Report_Final_v1.0.docx  Confidential, Page 7 of 19 
 

3 Motivation and scope 

This report presents the results of the security audit for Moonbeam runtime 3200, 3300 and 3400 
from July to December 2024. It is important to note that the closed findings from previous 
engagements are not included in this document. 

Moonbeam is a blockchain network, built using the Polkadot SDK, deployed on the Polkadot relay-
chain, designed to be Ethereum compatible while extending its feature set with governance, staking 
and cross-chain integration support. As a result, hacking scenarios for Moonbeam include attacks 
from both the Polkadot ecosystem and relevant Ethereum attacks. 

Moonbeam has cultivated a decentralized ecosystem centric around providing Ethereum application 
support within the broader Substrate community. This vision has been achieved by: 

1. Providing support for Ethereum-style RPC-calls which allow existing Ethereum 
applications to be compatible with Substrate via Moonbeam. 

2. Mapping existing Substrate accounts to the 20-byte Ethereum address format which 
allows users and smart contract applications to interact with accounts uniformly in both 
Ethereum and Moonbeam. 

3. Integrating runtime gas metering to emulate the transaction fee mechanisms present in 
the Ethereum blockchain, while remaining compliant with the Substrate weight system. 
This allows Solidity smart contracts to exist on Moonbeam without requiring prior 
Substrate benchmarking. 

4. Implementing an extensive precompile feature set, mapping core Substrate pallets to 
Solidity interfaces accessible via Ethereum style calls. 

Like other Polkadot parachains, Moonbeam is built using the Polkadot SDK written in Rust, a 
memory safe programming language. Polkadot SDK based chains utilize three technologies: a 
WebAssembly (WASM) based runtime, decentralized communication via libp2p, and a block 
production engine. 

Moonbeam’s runtime consists of multiple modules compiled into a WASM Binary Large Object (blob) 
that is stored on-chain. Nodes execute the runtime code either natively or will execute the on-chain 
WASM blob.  

In the initial baseline assurance audit Security Research Labs collaborated with the Moonbeam 
development team to create an overview containing modules in scope and their audit priority. 
Following our baseline assurance we gradually expanded our scope as new features became 
available and collaboratively outlined audit priority with the Moonbeam development team. 

  



 

SRL-Moonbeam_Runtime_3200_3300_3400_Audit_Report_Final_v1.0.docx  Confidential, Page 8 of 19 
 

4 Methodology 

We applied the following four-step methodology when performing feature and PR reviews for the 
Moonbeam network: (1) threat modeling, (2) security design coverage checks, (3) implementation 
baseline check, and finally (4) remediation support. 

4.1 Threat modeling and attacks 

The goal of the threat model framework is to determine specific areas of risk in Moonbeam network. 
Familiarity with these risk areas can provide guidance for the design of the implementation stack, 
the actual implementation of the stack, as well as the security testing. This section introduces how 
risk is defined and provides an overview of the identified threat scenarios.  

The risk level is categorized into low, medium, and high and considers both the hacking value and 
the damage that could result from successful exploitation. The risk of a threat scenario is calculated 
by the following formula: 

𝑅𝑖𝑠𝑘 = 𝐷𝑎𝑚𝑎𝑔𝑒 × 𝐻𝑎𝑐𝑘𝑖𝑛𝑔 𝑉𝑎𝑙𝑢𝑒 =
𝐷𝑎𝑚𝑎𝑔𝑒 × 𝐼𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒

𝐸𝑎𝑠𝑖𝑛𝑒𝑠𝑠
 

The Hacking Value is similarly categorized into low, medium, and high and considers the incentive of 
an attacker, as well as the effort required by an adversary to successfully execute the attack. The 
hacking value is calculated as follows: 

𝐻𝑎𝑐𝑘𝑖𝑛𝑔 𝑉𝑎𝑙𝑢𝑒 =  
𝐼𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒

𝐸𝑎𝑠𝑖𝑛𝑒𝑠𝑠
 

While an incentive describes what an adversary might gain from performing an attack successfully, 
easiness estimates the complexity of this same attack. The degrees of incentive and easiness are 
defined as follows: 

Incentive: 

• Low: Attacks offer the hacker little to no gain from executing the threat 

• Medium: Attacks offer the hacker considerable gains from executing the threat 

• High: Attacks offer the hacker high gains by executing this threat 

Easiness: 

• High: Attacks are easy to execute. They require neither elaborate technical knowledge nor 
considerable amounts of resources 

• Medium: Attacks are difficult to execute. They might require bypassing countermeasures, 
the use of expensive resources, or a considerable amount of technical knowledge 

• Low: Attacks are difficult to execute. The attacks might require in-depth technical 
knowledge, vast amounts of expensive resources, bypassing countermeasures, or any 
combination of these factors 

Incentive and Easiness are divided according to Table 2. 

Hacking Value/Likelihood Low Incentive Medium Incentive High Incentive 

Low Easiness Low Medium Medium 

Medium Easiness Medium Medium High 

High Easiness Medium High High 

Table 2: Hacking value measurement scale 



 

SRL-Moonbeam_Runtime_3200_3300_3400_Audit_Report_Final_v1.0.docx  Confidential, Page 9 of 19 
 

Hacking scenarios are classified by the risk they pose to the system. Conversely, the Damage 
describes the negative impact that a given attack, if performed successfully, would have on the 
victim. The degrees of damage are defined as follows: 

Damage: 

• Low: Risk scenarios would cause negligible damage to the Moonbeam network 

• Medium: Risk scenarios pose a considerable threat to Moonbeam‘s functionality as a 
network 

• High: Risk scenarios pose an existential threat to Moonbeam network functionality 

Damage and Hacking Value are divided according to Table 3. 

Risk Low hacking value Medium hacking value High hacking value 

Low damage Low Medium Medium 

Medium damage Medium Medium High 

High damage Medium High High 

Table 3: Risk measurement scale 

After applying the framework to the Moonbeam system, different threat scenarios according to the 
CIA triad were identified. 

The CIA triad describes three security promises that can be violated by a hacking attack, namely 
confidentiality, integrity, and availability. 

Confidentiality: 

Confidentiality threat scenarios concern sensitive information regarding the blockchain network and 
its users. Native tokens are units of value that exist on the blockchain. Confidentiality threat 
scenarios include, for example, attackers abusing information leaks to steal native tokens from 
nodes participating in the Moonbeam ecosystem and claiming the assets (represented in the token) 
for themselves. 

Integrity: 

Integrity threat scenarios aim to disrupt the functionality of the entire network by undermining or 
bypassing the rules that ensure that Moonbeam transactions/operations are fair and equal for each 
participant. Undermining Moonbeam‘s integrity often comes with a high monetary incentive. For 
example, an attacker can double-spend or mint tokens for themselves. Other threat scenarios do not 
yield an immediate monetary reward but could rather damage Moonbeam‘s functionality and, in 
turn, its reputation. For example, unexpected or undocumented discrepancies between the virtual 
machine implementations in Moonbeam and the Ethereum network might be perceived as bugs by 
the users operating on the Moonbeam network. 

Availability: 

Availability threat scenarios refer to compromising the availability of data stored by the Moonbeam 
network as well as the availability of the network itself to process normal transactions. Important 
threat scenarios regarding the availability for blockchain systems include denial-of-service (DoS) 
attacks on the domain operators, stalling the transaction queue, and spamming. 

Table 4 provides a high-level overview of the hacking risks concerning Moonbeam with the identified 
example threat scenarios and attacks, as well as their respective hacking value and effort. An initial 
threat model, shared with the team on 22nd of June 2021 (available online at [1]), served as the 
foundation for all subsequent security reviews. Given the ongoing nature of this engagement, each 



 

SRL-Moonbeam_Runtime_3200_3300_3400_Audit_Report_Final_v1.0.docx  Confidential, Page 10 of 19 
 

component review warranted its own focused internal threat model which, when necessary, was 
thoroughly discussed with the development team. The complete list of threat scenarios identified 
along with attacks that enable them are described in the threat model deliverable. By thinking in 
terms of threat scenarios and attacks during code review or feature ideation, many issues can be 
caught or even avoided altogether. 

The threats were classified using the CIA security triad model, mapping threats to the areas: (1) 
Confidentiality, (2) Integrity, and (3) Availability. 

Security 
promise 

Hacking 
value 

Example threat scenarios Hacking 
effort 

Example attack ideas 

Confidentiality Medium Compromise a user's 
private key 

High Targeted attacks to 
compromise a user's 
private key 

Social engineering 

Integrity High Censor certain 
transactions 

Medium Block transactions by 
overweight extrinsics 

Bypass fees Exploit bug to waive fees 

Tamper collator 
nomination 

Stall collator nomination 

Fabricate false transaction Replay transactions 

Availability High Stall block production Low Spam overweight 
extrinsics 

Clutter chain storage Abuse cheap storage 
mechanisms 

Spam the network with 
bogus transactions 

Clutter XCM queue via 
XCMP spam 

Table 4: Risk overview 

4.2 Security design coverage check. 

Next, we reviewed the Moonbeam design for coverage against relevant hacking scenarios. For each 
scenario, we have investigated the following two aspects: 

a. Coverage. Is each potential security vulnerability sufficiently covered by our audit? 
b. Underlying assumptions. Which assumptions must hold true for the design to effectively 

reach the desired security goal? 

4.3 Implementation check 

As a third step, we tested the current Moonbeam implementation for openings whereby any of the 
defined hacking scenarios could be executed. 

To effectively review the Moonbeam codebase and new features, we derived our code review 
strategy based on two aspects: First, the key areas of interest and priority detailed by the 
Moonbeam development team. Second, our own internal threat models created for each feature 
review. For each identified threat, hypothetical attacks were developed and mapped to their 
corresponding threat category, as outlined in Chapter 4.1. 



 

SRL-Moonbeam_Runtime_3200_3300_3400_Audit_Report_Final_v1.0.docx  Confidential, Page 11 of 19 
 

Prioritizing potential risk for the network, the code was assessed for present protections against the 
respective threats and attacks as well as the vulnerabilities that make these attacks possible. For 
each threat, we:  

1. Identified the relevant parts of the codebase, for example, the relevant pallets and the 
runtime configuration  

2. Identified viable strategies for the code review. We performed manual code audits, fuzz 
testing, and manual tests where appropriate.  

3. Ensured the code did not contain any vulnerabilities that could be used to execute the 
respective attacks. Otherwise, we ensured that sufficient protection measures against 
specific attacks were present 

4. Immediately reported any vulnerability that was discovered to the development team along 
with suggestions around mitigations 

We carried out a hybrid strategy utilizing a combination of code review, static tests, and dynamic 
tests to assess the security of the Moonbeam codebase.  

While static and dynamic testing establishes a baseline assurance, the focus of this audit was on 
manual code review of the Moonbeam codebase. The approach of feature reviews was to trace the 
intended functionality of modules in scope and to assess whether an attacker can 
bypass/misuse/abuse these components or trigger unexpected behavior on the blockchain. Since 
the Moonbeam codebase is entirely open source, it is realistic that an adversary could analyze the 
source code while preparing an attack. 

4.4 Remediation support 

The final step is supporting Moonbeam with the remediation process of the identified issues. Each 
finding was documented and published with mitigation recommendations. Once the mitigation 
solution is implemented, the fix is verified by us to ensure that it mitigates the issue and does not 
introduce other bugs. 

During the audit, findings were shared via a private GitHub repository [2]. We also used a private 
Slack channel for asynchronous communication and status updates. In addition, biweekly jour fixe 
meetings were held to provide detailed updates and address open questions. 

  



 

SRL-Moonbeam_Runtime_3200_3300_3400_Audit_Report_Final_v1.0.docx  Confidential, Page 12 of 19 
 

5 Findings summary 

We identified one issue of low criticality during our analysis of the runtime modules in scope in the 
Moonbeam codebase. The finding is listed in Table 5. 

High 0  
Medium 0  
Low 1  
Total Issues 1  

5.1 Risk profile 

The chart below summarizes vulnerabilities according to business impact and likelihood of 
exploitation, increasing to the top right. The red margin separates the high-critical issues from 
medium/low/informational ones. 

                       Impact to Business (Hacking value) 

     

     

     

  

S1-52 

   

     

                                                                                                      Likelihood (Ease) of Exploitation 

5.2 Issue summary 

ID: Issue Severity Status 

S1-52: Failed assumption: new_xcm_location for foreign asset may 
already exist 

Low Mitigated [3] 

Table 5: Findings overview  



 

SRL-Moonbeam_Runtime_3200_3300_3400_Audit_Report_Final_v1.0.docx  Confidential, Page 13 of 19 
 

6 Detailed findings 

6.1 S1-52: Failed assumption: new_xcm_location for foreign asset may already exist 

Attack scenario An attacker could abuse a governance mechanism to configure multiple 
foreign assets with the same location.  

Classification VLN-15: Insecure Business Logic  

Component /pallets/moonbeam-foreign-assets/src/lib.rs 

Tracking https://github.com/moonbeam-foundation/sr-moonbeam/issues/52 

Attack impact Multiple assets could be configured to correspond to the same XCM 
location, leading to confusion and undefined behavior. 

Severity Low 

Status Mitigated [3] 

Background 

The Moonbeam network allows its users to pay execution fees not only with its native token, GLMR, 
but also a wide range of foreign assets. Multiple types of assets are supported, ranging from ERC20 
tokens deployed either on Moonbeam itself or another EVM compatible blockchain, to native 
currencies from other chains that would be transferred via XCM.  

Issue description 

In moonbeam-foreign-assets the ForeignAssetCreatorOrigin origin can initialize a new foreign 
asset by calling create_foreign_asset(). This function performs some sanity checks [4], one of 
which ensures that the provided xcm_location of the new foreign asset does not already exist. 

ensure!( 
   !AssetsByLocation::<T>::contains_key(&xcm_location), 
   Error::<T>::LocationAlreadyExists 
); 

This assumption may be broken if governance calls change_xcm_location() [5], specifying a 
new_xcm_location which already exists, since there are no such sanity checks. 

Risk 

These calls may only be performed by governance, so the likelihood of abuse is low. Although 
accidental misconfiguration may cause collisions in asset Location, resulting in unexpected behavior 
for foreign assets. 

Mitigation 

We recommend integrating the same sanity check for change_xcm_location(), ensuring the 
new_xcm_location is not already in existence, as implemented in create_foreign_asset(). 

  



 

SRL-Moonbeam_Runtime_3200_3300_3400_Audit_Report_Final_v1.0.docx  Confidential, Page 14 of 19 
 

 

7 Bibliography 

 

[1]  [Online]. Available: 
https://securityresearchlabs.sharepoint.com/:x:/s/Purestake/EQBP8RMQ9IdCn5DqBsQC_boB5
IboSsW5snvEX15VfY70ow. 

[2]  [Online]. Available: https://github.com/moonbeam-foundation/sr-moonbeam. 

[3]  [Online]. Available: https://github.com/moonbeam-foundation/moonbeam/pull/2925. 

[4]  [Online]. Available: https://github.com/moonbeam-
foundation/moonbeam/blob/ca05e285ce6c16146da1a7a8f1f1db9b33aab687/pallets/moonbe
am-foreign-assets/src/lib.rs#L295. 

[5]  [Online]. Available: https://github.com/moonbeam-
foundation/moonbeam/blob/ca05e285ce6c16146da1a7a8f1f1db9b33aab687/pallets/moonbe
am-foreign-assets/src/lib.rs#L334. 

[6]  [Online]. Available: https://github.com/srlabs/substrate-runtime-fuzzer. 

 

 

  



 

SRL-Moonbeam_Runtime_3200_3300_3400_Audit_Report_Final_v1.0.docx  Confidential, Page 15 of 19 
 

Appendix A: Vulnerability categories 

Category Description 

VLN-1: Insufficient Existential 
Deposit 

Inadequate existential deposits can lead to denial-of-service 
attacks by filling the blockchain storage as accounts below 
the deposit are reaped to conserve space 

VLN-2: XCM Exploitation Denial-of-service attacks via XCM can disrupt parachains or 
the relay chain, necessitating proper handling of untrusted 
incoming XCM messages and correct implementation of 
XCMFeeManager 

VLN-3: Reliance on On-Chain 
Randomness 

Weak on-chain randomness can be exploited to predict or 
control outcomes of critical functionalities, as seen with the 
insecure randomness collective flip pallet 

VLN-4: Incorrect Benchmarking Incorrect or missing benchmarking can cause overweight 
blocks and spam attacks by underestimating computational 
complexity or database access, leading to exceeded block 
execution times 

VLN-5: Unsafe Arithmetic Unsafe arithmetic can cause overflows and underflows, 
leading to unexpected states, as demonstrated by the 
overflow vulnerability in the receive_messages_proof 
extrinsic 

VLN-6: Unsafe Conversion Unsafe conversion from larger to smaller-sized values can 
result in precision loss and unexpected states, exemplified by 
the potential overflow in u128 to u64 conversions in 
Polkadot SDK 

VLN -7: Reachable Panic Reachable panics, caused by functions like panic or unwrap, 
and decoding without depth limits, can lead to critical 
severity issues, especially in on_initialize or on_finalize 
hooks 

VLN-8: Insecure Cryptography Use of insecure cryptographic libraries or primitives can 
compromise a Polkadot-SDK-based chain at various 
development stages, requiring extensive reviews for changes 
to cryptographic elements 

VLN-9: Storage Exhaustion Adversaries can attempt to fill blockchain storage cheaply, 
making node operation unsustainable. Charging deposits for 
on-chain storage helps mitigate this issue 

VLN-10: Abusable unsigned and 
Pays::No calls 

Unsigned extrinsics or those returning Pays::No can be 
exploited to spam the blockchain, as seen in the broker 
pallet issue 

VLN-11: Outdated Crates Outdated Rust crates, containing invalid or buggy code, pose 
security risks to the ecosystem and must be monitored and 
updated regularly 

VLN-12: 
Consumers/Providers/Sufficients 

Complexity in entity existence logic often leads to 
mishandled reference counts, causing vulnerabilities like 
preventing the creation of precomputed asset-conversion 
pools 



 

SRL-Moonbeam_Runtime_3200_3300_3400_Audit_Report_Final_v1.0.docx  Confidential, Page 16 of 19 
 

VLN-13: Incorrect Slashing Logic Ineffective or partial slashing fails to deter malicious 
behavior, undermining incentives against misbehavior in 
critical roles 

VLN-14: Replay Issues Replay issues can enable spamming or double-spending 
attacks when nonces are mishandled, such as in crowdloan 
contributions with ExistenceRequirement::AllowDeath 

VLN-15: Insecure Business Logic Business logic vulnerabilities stem from protocol flaws 
enabling valid transaction exploitation. Key issues include 
improper transaction validation, incentive misalignment, and 
unhandled edge cases. 

Appendix B: Code maturity categories 

Category Description 

Arithmetic The proper use of mathematical operations and semantics 

Auditing The use of event auditing and logging to support 
monitoring 

Authentication / Access Controls The use of robust access controls to handle identification 
and authorization and to ensure safe interactions with the 
system 

Complexity Management The presence of clear structures designed to manage 
system complexity, including the separation of system logic 
into clearly defined functions 

Cryptography and Key 
Management 

The safe use of cryptographic primitives and functions, 
along with the presence of robust mechanisms for key 
generation and distribution 

Decentralization The presence of a decentralized governance structure for 
mitigating insider threats and managing risks posed by 
contract upgrades 

Documentation The presence of comprehensive and readable codebase 
documentation 

Low-Level Manipulation The justified use of inline assembly and low-level calls 

Testing and Verification The presence of robust testing procedures (e.g., unit tests, 
integration tests, and verification methods) and sufficient 
test coverage 

Transaction Ordering The system’s resistance to transaction-ordering attacks 

  



 

SRL-Moonbeam_Runtime_3200_3300_3400_Audit_Report_Final_v1.0.docx  Confidential, Page 17 of 19 
 

Appendix C: Technical services 

Security Research Labs delivers extensive technical expertise to meet your security needs. Our 
comprehensive services include software and hardware evaluation, penetration testing, red team 
testing, incident response, and reverse engineering. We aim to equip your organization with the 
security knowledge essential for achieving your objectives. 

 

SOFTWARE EVALUATION We provide assessments of application, system, and mobile code, drawing 
on our employees' decades of experience in developing and securing a wide variety of applications. 
Our work includes design and architecture reviews, data flow and threat modelling, and code 
analysis with targeted fuzzing to find exploitable issues. 

 

BLOCKCHAIN SECURITY ASSESSMENTS We offer specialized security assessments for blockchain 
technologies, focusing on the unique challenges posed by decentralized systems. Our services 
include smart contract audits, consensus mechanism evaluations, and vulnerability assessments 
specific to blockchain infrastructure. Leveraging our deep understanding of blockchain technology, 
we ensure your decentralized applications and networks are secure and robust. 

 

POLKADOT ECOSYSTEM SECURITY We provide comprehensive security services tailored to the 
Polkadot ecosystem, including parachains, relay chains, and cross-chain communication protocols. 
Our expertise covers runtime misconfiguration detection, benchmarking validation, cryptographic 
implementation reviews, and XCM exploitation prevention. Our goal is to help you maintain a secure 
and resilient Polkadot environment, safeguarding your network against potential threats. 

 

TELCO SECURITY We deliver specialized security assessments for telecommunications networks, 
addressing the unique challenges of securing large-scale and critical communication infrastructures. 
Our services encompass vulnerability assessments, secure network architecture reviews, and 
protocol analysis. With a deep understanding of telco environments, we ensure robust protection 
against cyberthreats, helping maintain the integrity and availability of your telecommunications 
services. 

 

DEVICE TESTING Our comprehensive device testing services cover a wide range of hardware, from 
IoT devices and embedded systems to consumer electronics and industrial controls. We perform 
rigorous security evaluations, including firmware analysis, penetration testing, and hardware-level 
assessments, to identify vulnerabilities and ensure your devices meet the highest security standards. 
Our goal is to safeguard your hardware against potential attacks and operational failures. 

 

CODE AUDITING We provide in-depth code auditing services to identify and mitigate security 
vulnerabilities within your software. Our approach includes thorough manual reviews, automated 
static analysis, and targeted fuzzing to uncover critical issues such as logic flaws, insecure coding 
practices, and exploitable vulnerabilities. By leveraging our expertise in secure software 
development, we help you enhance the security and reliability of your codebase, ensuring robust 
protection against potential threats. 

 

PENETRATION & RED TEAM TESTING We perform high-end penetration tests that mimic the work of 
sophisticated adversaries. We follow a formal penetration testing methodology that emphasizes 



 

SRL-Moonbeam_Runtime_3200_3300_3400_Audit_Report_Final_v1.0.docx  Confidential, Page 18 of 19 
 

repeatable, actionable results that give your team a sense of the overall security posture of your 
organization. 

 

SOURCE CODE-ASSISTED SECURITY EVALUATIONS We conduct security evaluations and penetration 
tests based on our code-assisted methodology that lets us find deeper vulnerabilities, logic flaws, 
and fuzzing targets than a black-box test would reveal. This gives your team a stronger assurance 
that the significant security-impacting flaws have been found and corrected. 

 

SECURITY DEVELOPMENT LIFECYCLE CONSULTING We guide organizations through the Security 
Development Lifecycle to integrate security at every phase of software development. Our services 
include secure coding training, threat moelling, security design reviews, and automated security 
testing implementation. By embedding security practices into your development processes, we help 
you proactively identify and mitigate vulnerabilities, ensuring robust and secure software delivery 
from inception to deployment. 

 

REVERSE ENGINEERING We assist clients with reverse engineering efforts that are not associated 
with malware or incident response. We also provide expertise in investigations and litigation by 
acting as experts in cases of suspected intellectual property theft. 

 

HARDWARE EVALUATION We evaluate new hardware devices ranging from novel microprocessor 
designs, embedded systems, mobile devices, and consumer-facing end products to core networking 
equipment that powers Internet backbones. 

 

VULNERABILITY PRIORITIZATION We streamline vulnerability information processing by 
consolidating data from compliance checks, audit findings, penetration tests, and red team insights. 
Our prioritization and automation strategies ensure that the most critical vulnerabilities are 
addressed promptly, enhancing your organization's security posture. By systematically categorizing 
and prioritizing risks, we help you focus on the most impactful threats, ensuring efficient and 
effective remediation efforts. 

 

SECURITY MATURITY REVIEW We conduct comprehensive security maturity reviews to evaluate 
your organization's current security practices and identify areas for improvement. Our assessments 
cover a wide range of criteria, including policy development, risk management, incident response, 
and security awareness. By benchmarking against industry standards and best practices, we provide 
actionable insights and recommendations to enhance your overall security posture and guide your 
organization toward achieving higher levels of security maturity. 

 

SECURITY TEAM INCUBATION We provide comprehensive support for building security teams for 
new, large-scale IT ventures. From Day 1, our ramp-up program offers essential security advisory and 
assurance, helping you establish a robust security foundation. With our proven track record in 
securing billion-dollar investments and launching secure telco networks globally, we ensure your 
new enterprise is protected against cyberthreats from the start. 

 

HACKING INCIDENT SUPPORT We offer immediate and comprehensive support in the event of a 
hacking incident, providing expert analysis, containment, and remediation. Our services include 



 

SRL-Moonbeam_Runtime_3200_3300_3400_Audit_Report_Final_v1.0.docx  Confidential, Page 19 of 19 
 

detailed forensics, malware analysis, and root cause determination, along with actionable 
recommendations to prevent future incidents. With our rapid response and deep expertise, we help 
you mitigate damage, recover swiftly, and strengthen your defenses against potential threats. 

 


