

Moonbeam security audit for runtime 2900, 3000
and 3100
Threat model and hacking assessment report

4th of September 2024

Prepared for:
Moonbase One SEZC

Security Research Labs: Moonbeam audit report for runtime 2900, 3000 and 3100 Page 2 of 21

Content
Disclaimer .. 3

All Rights Reserved .. 3

Timeline .. 4

1 Executive Summary ... 5

1.1 Engagement Overview .. 5

1.2 Observations and Risk ... 5

1.3 Recommendations .. 5

2 Evolution suggestions .. 6

2.1 Risk reduction frameworks for enacting runtime migrations ... 6

2.2 Secure development improvement suggestions .. 6

2.3 Security alignment and workflow ... 6

3 Motivation and scope .. 7

4 Methodology ... 8

4.1 Threat modeling and attacks .. 8

4.2 Security design coverage check. ... 10

4.3 Implementation check .. 11

4.4 Remediation support .. 12

5 Dynamic analysis assessment ... 13

5.1 Pallet coverage .. 13

5.2 Precompile coverage ... 14

6 Findings summary.. 16

6.1 Risk profile ... 16

6.2 Issue summary .. 16

7 Detailed findings ... 17

7.1 S2-47: Incorrect gas weighting may stall block production .. 17

7.2 S2-51: Incorrect configuration of runtime weights... 19

Bibliography .. 20

Security Research Labs: Moonbeam audit report for runtime 2900, 3000 and 3100 Page 3 of 21

Disclaimer

This report describes the findings and core
conclusions derived from the audit carried out by
Security Research Labs within the agreed-on
timeframe and scope (described in Chapter 3)

Please note that this report does not guarantee
that all existing security vulnerabilities were
discovered in the codebase exhaustively and
that following all evolution suggestions
described in Chapter 2 may not ensure all
future code to be bug free.

All Rights Reserved

This document contains information, which is
protected by copyright of Security Research
Labs and the company identified as “Prepared
For” on this page.

No part of this document may be extracted or
translated to another language without the
prior written and documented consent of
Security Research Labs and the company
identified as “Prepared For” on this page.

Version: Final, V1.1

Prepared For: Moonbase One SEZC

Date: 4 September 2024

Prepared By: Marc Heuse marc@srlabs.de
Bruno Produit bruno@srlabs.de
Cayo Fletcher-Smith cayo@srlabs.de
Daniel Schmidt schmidt@srlabs.de

mailto:marc@srlabs.de
mailto:bruno@srlabs.de
mailto:cayo@srlabs.de
mailto:schmidt@srlabs.de

Security Research Labs: Moonbeam audit report for runtime 2900, 3000 and 3100 Page 4 of 21

Timeline

The Moonbeam source code has undergone one initial baseline audit alongside a subsequent
continuous security assurance, started in May 2021 by Security Research Labs. Continuous security
checks have been in place. As shown in , specific runtime audits for Moonbeam runtimes 2900, 3000
and 3100 have been performed from January to July 2024.

Date Event

January 1, 2024 Start of Moonbeam audit for runtimes 2900, 3000 and 3100

September 4, 2024 Delivered: Security audit report for Moonbeam runtime 2900, 3000 and 3100

Table 1: Security assurance timeline

Security Research Labs: Moonbeam audit report for runtime 2900, 3000 and 3100 Page 5 of 21

1 Executive Summary

1.1 Engagement Overview

This work describes the result of the security audit for Moonbeam runtime 2900, 3000 and 3100 from
January to July 2024. Security Research Labs is a consulting firm that has been providing specialized
audit services in the Polkadot ecosystem since 2019, including for the Substrate and Polkadot projects.

During this assessment, the Moonbeam team provided access to relevant documentation and
supported the research team effectively. The code of Moonbeam was verified to assure that the
business logic of the product is resilient to hacking and abuse.

Security Research Labs has conducted continual comprehensive security assurance for Moonbase One
SEZC, in partnership with the organization, since our baseline audit in June 2021. Our security
assurance for this audit for runtimes 2900, 3000 and 3100 focused on assessing Moonbeam’s
codebase for resilience against hacking and abuse scenarios. Key areas of scrutiny included: fee
calculation mechanisms; Ethereum virtual machine recreation accuracy in Substrate; precompiled
contracts; governance mechanisms and curves; runtime configurations; and pallet integrations.

Our testing approach combined static and dynamic analysis techniques, leveraging both automated
tools and manual inspection. We prioritized reviewing critical functionalities and conducting thorough
security tests to ensure the robustness of Moonbeam’s platform. Throughout the review process,
Security Research Labs collaborated closely with Moonbeam, utilizing full access to source code,
documentation and the development team to perform a rigorous assessment.

1.2 Observations and Risk

The research team identified two medium level severity issues, which concerned mostly fee
calculations and weights. Moonbeam has acknowledged and, in cooperation with Security Research
Labs, remediated the identified issues.

1.3 Recommendations

The deployment and roll-out of runtime upgrades pose risks due to potential human error in
deployment methods, rather than the upgrade logic itself. We recommend revisiting and
strengthening the framework of checks and best practices for runtime migrations, coupled with high-
level threat analysis and support from Security Research Labs, to reduce any associated migration
risks.

Security Research Labs: Moonbeam audit report for runtime 2900, 3000 and 3100 Page 6 of 21

2 Evolution suggestions

2.1 Risk reduction frameworks for enacting runtime migrations

The deployment and roll-out of runtime upgrades opens the Moonbeam network up to edge-cases
associated with human error. Considering such edge-cases do not necessarily exist in the upgrade
logic, but instead the methods of deployment, vulnerabilities are difficult to foresee and mitigate
through the current development testing strategy and security review process.

We recommend revisiting the framework of checks and best practices implemented when performing
migrations. We may offer high-level threat analysis and support to ensure these processes are as
robust as possible.

2.2 Secure development improvement suggestions

We recommend to further strengthen the security of the Moonbeam blockchain by implementing the
following recommendations:

Perform threat modeling. Performing threat modeling for all new features and major updates before
coding is crucial for better code security. This practice allows developers to identify potential security
threats and vulnerabilities early in the design phase, enabling them to implement appropriate
mitigations from the outset. Including the threat model in the pull request description ensures that
the entire team is aware of the identified risks and the measures taken to address them, promoting a
proactive security culture and enhancing the overall robustness of the codebase. Additionally, it helps
the audit team to identify gaps in the threat model and focus their assessment. The threat model
should be part of the pull request process.

Use static analysis. Using static analysis tools to detect security flaws in the codebase is essential for
improving code security. These tools, such as Dylint and Semgrep for the Rust ecosystem, analyze the
code without executing it, identifying vulnerabilities, coding errors, and compliance issues early in the
development process. This proactive approach helps developers address potential security issues
before they reach production, ensuring a more secure and reliable codebase.

Perform dynamic analysis. The Moonbeam team received an up-to-date harness and instructions on
how to run our fuzzing campaign on their own servers and customize it to their needs, however so far
this has not been started. Additionally, the existing harness would benefit from more invariant tests
being added. We recommend allocating resources towards integrating fuzzing into the overall testing
process.

2.3 Security alignment and workflow

Throughout the continued collaboration between Security Research Labs and the Moonbeam
development team there existed, although infrequent, notable instances of inadequate alignment.
Such instances include inaccuracies regarding the perceived status of open issues and the acceptance
of associated mitigations.

We recommend the prioritization of security ambassador programs, to ensure alignment and effective
dissemination of progress alongside enhancing proactive communication and collaboration on
security initiatives.

Security Research Labs: Moonbeam audit report for runtime 2900, 3000 and 3100 Page 7 of 21

3 Motivation and scope

This report presents the result of the security audit for Moonbeam runtime 2900, 3000 and 3100 from
January to July 2024. It is important to note that the closed findings from previous engagements are
not included in this document.

Moonbeam is a blockchain network, built using Substrate, deployed on the Polkadot relay-chain,
designed to be Ethereum compatible while extending its feature set with governance, staking and
cross-chain integration support. As a result, hacking scenarios for Moonbeam include attacks from
both the Polkadot ecosystem and relevant Ethereum attacks.

Moonbeam has cultivated a decentralized ecosystem centric around providing Ethereum application
support within the broader Substrate community. This vision has been achieved by:

1. Providing support for Ethereum-style RPC-calls which allows existing Ethereum applications to be
compatible with Substrate via Moonbeam.

2. Mapping existing Substrate accounts to the 20-byte Ethereum address format which allows users
and smart contract applications to interact with accounts uniformly in both Ethereum and
Moonbeam.

3. Integrating runtime gas metering to emulate the transaction fee mechanisms present in the
Ethereum blockchain, while remaining compliant with the Substrate weight system. This allows
Solidity smart contracts to exist on Moonbeam without requiring prior Substrate benchmarking.

4. Implementing an extensive precompile feature set, mapping core Substrate pallets to Solidity
interfaces accessible via Ethereum style calls.

Like other Polkadot parachains, Moonbeam is built using the Substrate-framework written in Rust, a
memory safe programming language. Substrate-based chains utilize three technologies: a
WebAssembly (WASM) based runtime, decentralized communication via libp2p, and a block
production engine.

Moonbeam’s runtime consists of multiple modules compiled into a WASM Binary Large Object (blob)
that is stored on-chain. Nodes execute the runtime code either natively or will execute the on-chain
WASM blob.

In the initial baseline assurance audit Security Research Labs collaborated with the Moonbeam
development team to create an overview containing modules in scope and their audit priority.
Following our baseline assurance we gradually expanded our scope as new features became available
and collaboratively outlined audit priority with the Moonbeam development team.

Security Research Labs: Moonbeam audit report for runtime 2900, 3000 and 3100 Page 8 of 21

4 Methodology

This report details the results of our security audit on the Moonbeam runtimes 2900, 3000 and 3100
between January to July 2024 with the aim of creating transparency in the following steps: threat
modeling, security design coverage checks, reviewing runtime changes and finally remediation
support.

4.1 Threat modeling and attacks

The goal of the threat model framework is to be able to determine specific areas of risk in Moonbeam
network. Familiarity with these risk areas can provide guidance for the design of the implementation
stack, the actual implementation of the stack, as well as the security testing. This section introduces
how risk is defined and provides an overview of the identified threat scenarios. The Hacking Value,
categorized into low, medium, and high, considers the incentive of an attacker, as well as the effort
required by an attacker to successfully execute the attack. The hacking value is calculated as:

𝐻𝑎𝑐𝑘𝑖𝑛𝑔 𝑉𝑎𝑙𝑢𝑒 =
𝐼𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒

𝐸𝑓𝑓𝑜𝑟𝑡

While incentive describes what an attacker might gain from performing an attack successfully, effort
estimates the complexity of this same attack. The degrees of incentive and effort are defined as
follows:

Incentive:

• Low: Attacks offer the hacker little to no gain from executing the threat.

• Medium: Attacks offer the hacker considerable gains from executing the threat.

• High: Attacks offer the hacker high gains by executing this threat.

Effort:

• Low: Attacks are easy to execute. They require neither elaborate technical knowledge nor
considerable amounts of resources.

• Medium: Attacks are difficult to execute. They might require bypassing countermeasures, the
use of expensive resources or a considerable amount of technical knowledge.

• High: Attacks are difficult to execute. The attacks might require in-depth technical knowledge,
vast amounts of expensive resources, bypassing countermeasures, or any combination of
these factors.

Incentive and effort are divided according to Table 2.

Hacking value Low incentive Medium incentive High incentive

High effort Low Medium Medium

Medium effort Medium Medium High

Low effort Medium High High

Table 2: Hacking value measurement matrix

Security Research Labs: Moonbeam audit report for runtime 2900, 3000 and 3100 Page 9 of 21

Hacking scenarios are classified by the risk they pose to the system. The risk level, also categorized
into low, medium, and high, considers the hacking value, as well as the damage that could result from
successful exploitation. The risk of a threat scenario is calculated by the following formula:

𝑅𝑖𝑠𝑘 = 𝐷𝑎𝑚𝑎𝑔𝑒 × 𝐻𝑎𝑐𝑘𝑖𝑛𝑔 𝑉𝑎𝑙𝑢𝑒 =
𝐷𝑎𝑚𝑎𝑔𝑒 × 𝐼𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒

𝐸𝑓𝑓𝑜𝑟𝑡

Damage describes the negative impact that a given attack, performed successfully, would have on the
victim. The degrees of damage are defined as follows:

Damage:

• Low: Risk scenarios would cause negligible damage to the Moonbeam network

• Medium: Risk scenarios pose a considerable threat to Moonbeam’s functionality as a network.

• High: Risk scenarios pose an existential threat to Moonbeam’s network functionality.

Damage and Hacking Value are divided according to Table 3.

Risk Low hacking value Medium hacking value High hacking value

Low damage Low Medium Medium

Medium damage Medium Medium High

High damage Medium High High

Table 3: Risk management matrix

After applying the framework to the Moonbeams system, different threat scenarios according to the
CIA triad were identified.

The CIA triad describes three security promises that can be violated by a hacking attack, namely
confidentiality, integrity, availability.

Confidentiality:

Confidentiality threat scenarios concern sensitive information regarding the blockchain network and
its users. Confidentiality threat scenarios include, for example, attackers abusing information leaks to
steal native tokens from nodes participating in the Moonbeam ecosystem and claiming the assets for
themselves.

Integrity:

Integrity threat scenarios threaten to disrupt the functionality of the entire network by undermining
or bypassing the rules that ensure that Moonbeam transactions/operations are fair and equal for each
participant. Undermining Moonbeam’s integrity often comes with high monetary incentives, for
example, if an attacker can double spend or arbitrarily mint tokens. Other threat scenarios may not
yield an immediate monetary reward, but instead threaten to damage Moonbeam’s functionality and
reputation. For example, unexpected or undocumented discrepancies between the virtual machine
implementations in Moonbeam and the Ethereum network.

Security Research Labs: Moonbeam audit report for runtime 2900, 3000 and 3100 Page 10 of 21

Availability:

Availability threat scenarios refer to compromising both the accessibility of data stored by the network
and the ability for the network to process transactions. Important threat scenarios regarding
availability for blockchain systems include denial of service (DoS) attacks on collator nodes, stalling
the transaction queue, and halting block production.

Table 4 offers an overview of the hacking risks associated with Moonbeam, detailing example threat
scenarios, potential attacks examples, and their corresponding hacking value and effort. An initial
threat model, shared with the team on 22nd of June 2021 (available online at [1]), served as the
foundation for all subsequent security reviews. Given the ongoing nature of this engagement, each
component review warranted its own focused internal threat model which, when necessary, was
thoroughly discussed with the development team.

The complete list of threat scenarios identified along with attacks that enable them are described in
the threat model deliverable. By thinking in terms of threat scenarios and attacks during code review
or feature ideation, many issues can be caught or even avoided altogether.

Security
promise

 Hacking
value

Example threat scenarios Hacking
effort

Example attack ideas

Confidentiality Medium Compromise a user's
private key

High Targeted attacks to
compromise a user's
private key

Social engineering

Integrity High Censor certain
transactions

Medium Block transactions by
overweight extrinsics

Bypass fees Exploit bug to waive fees

Tamper collator
nomination

Stall collator nomination

Fabricate false
transaction

Replay transactions

Availability High Stall block production Low

Spam overweight
extrinsics

Clutter chain storage Abuse cheap storage
mechanisms

Spam the network with
bogus transactions

Clutter XCM queue via
XCMP spam

Table 4: Risk overview. The threats for Moonbeam’s blockchain were classified using the CIA security
triad model, mapping threats to the areas: (1) Confidentiality, (2) Integrity, and (3) Availability.

4.2 Security design coverage check.

Moonbeam feature designs were reviewed for coverage against relevant hacking scenarios. For each
scenario, the following two aspects were investigated:

a. Coverage. Is each potential security vulnerability sufficiently covered?

Security Research Labs: Moonbeam audit report for runtime 2900, 3000 and 3100 Page 11 of 21

b. Underlying assumptions. Which assumptions must hold true for the design to effectively
reach the desired security goal?

4.3 Implementation check

Moonbeam features were tested for openings whereby any of the defined hacking scenarios could be
executed.

To effectively review the Moonbeam codebase and new features, we derived our code review strategy
based on both: the key areas of interest and priority detailed by the Moonbeam development team;
alongside our own internal threat models created for each feature review. For each identified threat,
hypothetical attacks were developed and mapped to their corresponding threat category, as outlined
in Chapter 4.1.

Prioritizing by risk, the code was assessed for present protections against the respective threats and
attacks as well as the vulnerabilities that make these attacks possible. For each threat, the auditors:

1. Identified the relevant parts of the codebase, for example the relevant pallets and the runtime
configuration.

2. Identified viable strategies for the code review. Manual code audits, fuzz testing, and manual
tests were performed where appropriate.

3. Ensured the code did not contain any vulnerabilities that could be used to execute the
respective attacks, otherwise, ensured that sufficient protection measures against specific
attacks were present.

4. Immediately reported any vulnerability that was discovered to the development team along
with suggestions around mitigations.

We carried out a hybrid strategy utilizing a combination of code review, static testing and dynamic
tests (e.g., fuzz testing) to assess the security of the Moonbeam codebase.

While static testing, fuzz testing and dynamic tests establish baseline assurance, the focus of our
security assurance is primarily manual code review. The approach of feature reviews was to trace the
intended functionality of modules in scope and to assess whether an attacker can
bypass/misuse/abuse these components or trigger unexpected behavior on the blockchain. Since the
Moonbeam codebase is entirely open source, it is realistic that a malicious actor would analyze the
source code while preparing an attack.

Fuzz testing – is a technique to identify issues in code that handles untrusted input, which in
Moonbeam’s case are extrinsics and more specifically precompile calls. Fuzz testing works by taking
some valid input for a method under test, applying a semi-random mutation, and then invoking the
method under test again with this semi-valid input.

When applying an input we monitor for adverse side-effects, such as crashes, that indicate broken
logic. We also include invariants that, if broken, do not necessarily indicate broken logic but instead
imply failed developer assumptions and business logic.

Through repeating this process, fuzz testing can unearth inputs that would cause a crash or other
undefined behavior (e.g., integer overflows) in the method under test.

Security Research Labs: Moonbeam audit report for runtime 2900, 3000 and 3100 Page 12 of 21

4.4 Remediation support

The final step is supporting Moonbeam with the remediation process of identified issues. Each finding
was documented and disclosed to the Moonbeam development team with accompanying mitigation
recommendations.

Our remediation recommendations are specifically tailored with an understanding of Moonbeam’s
business strategy and core success factors. As such we often support multiple remediation strategies
to accommodate Moonbeam’s unique requirements and risk management plan.

Once the remediation is live, the fix is verified by our auditors to ensure that it mitigates the issue and
does not introduce alternative bugs.

Throughout our collaboration, findings were disclosed via their private GitHub repository. We also
engaged in asynchronous communication and status updates – in addition, bi-weekly jour fixe
meetings were held to provide detailed updates and address open questions.

Security Research Labs: Moonbeam audit report for runtime 2900, 3000 and 3100 Page 13 of 21

5 Dynamic analysis assessment

Throughout our security review from January to July 2024, we maintained an in-depth coverage
guided fuzzing campaign to expand our assurance to include a variety of Moonbeam specific edge-
cases. By integrating fuzz testing into our overall review strategy, we uncovered issues that would
likely not have been detected through manual code analysis.

Harness creation and genesis configuration – We chose our in-house developed and opensource tool
Ziggy as our fuzzing orchestration tool. We designed a heavily customized harness to ensure that many
of the Ethereum-style features were accessible to the fuzzer in a meaningful way.

Collaboration – Alongside our own maintenance of the Moonbeam fuzzing harness and in the interest
of transparency and close-collaboration; we shared our in-house fuzzing tools and techniques with the
Moonbeam team. This helped us identify areas of improvement (e.g., coverage priority) alongside
enabling greater test coverage for the Moonbeam development team.

We place great emphasis on iteratively improving the efficiency of fuzz testing in our Moonbeam
review workflow. This encompasses the following key areas:

1. Improvement of genesis configuration to ensure our fuzzer has adequate capabilities to
interface with the entirety of the Moonbeam codebase.

2. Coverage analysis to identify modules our fuzzer struggles to reach, which is often due to
additional genesis requirements.

3. Injection of new seeds into the corpus, often derived from test cases and known call-
sequences.

4. Continued invariant design derived from known developer assumptions (e.g., from smoke-
tests) and key areas of priority.

5. Crash analysis and issue triage to appropriately assess the impact, risk and validity of
automated findings.

Continually maintaining our fuzzing process has yielded a multitude of security findings and proves
critical in our ability to identify edge-cases specific to the Moonbeam ecosystem.

5.1 Pallet coverage

To improve pallet coverage, we manually derive call-sequences, known as seeds, from Moonbeam
test cases. These seeds are introduced to the corpus to ensure the fuzzer understands how to reach
greater depths in the associated functionality.

Table 5 below details the line coverage achieve by our fuzzing campaign on each individual pallet.

Component Code path Coverage

asset-manager pallets/asset-manager/src 22.94%

erc20-xcm-bridge pallets/erc20-xcm-bridge/src 94.24%

ethereum-xcm pallets/ethereum-xcm/src 66.67%

moonbeam-lazy-migrations pallets/moonbeam-lazy-migrations/src 54.63%

moonbeam-oribters pallets/moonbeam-oribters/src 28.26%

parachain-staking pallets/parachain-staking/src 32.29%

proxy-genesis-companion pallets/proxy-genesis-companion/src 69.23%

Security Research Labs: Moonbeam audit report for runtime 2900, 3000 and 3100 Page 14 of 21

xcm-transactor pallets/xcm-transactor/src 48.24%

Table 5: Moonbeam pallets fuzzing coverage

5.2 Precompile coverage

To allow coverage into the precompiled contracts we implement a genesis configuration to map the
fuzzer's AccountId to an Ethereum-compatible 20-byte address. Coverage is then improved by
deriving seeds from precompile test-cases. Existing limitations in precompile coverage are found in
modules that rely on relay-chain feedback, for example, relay-data-verifier.

Table 6 details the line coverage achieved by our fuzzing campaign on each individual pallet.

Component Code path Coverage

asset-erc20 precompiles /asset-erc20/src 4.86%

author-mapping precompiles/author-mapping/src 93.24%

balances-erc20 precompiles/balances-erc20/src 78.35%

batch precompiles/batch/src 86.99%

call-permit precompiles/call-permit/src 74.29%

collective precompiles/collective/src 88.99%

conviction-voting precompiles/conviction-voting/src 46.93%

crowdloan-rewards precompiles/crowdloan-rewards/src 82.98%

gmp precompiles/gmp/src 7.11%

identity precompiles/identity/src 20.84%

parachain-staking precompiles/parachain-staking/src 66.55%

preimage precompiles/preimage/src 93.55%

proxy precompiles/proxy/src 50.65%

randomness precompiles/randomness/src 39.59%

referenda precompiles/referenda/src 42.6%

relay-data-verifier precompiles/relay-data-verifier/src 1.82%

relay-encoder precompiles/relay-encoder/src 52.8%

utils-evm precompiles/utils/src/evm 91.67%

utils-solidity precompiles/utils/src/solidity 84%

xcm-transactor precompiles/xcm-transactor/src 52.23%

xcm-utils precompiles/xcm-utils/src 75.82%

Security Research Labs: Moonbeam audit report for runtime 2900, 3000 and 3100 Page 15 of 21

xtokens precompiles/xtokens/src 60%

Table 6: Moonbeam precompiles fuzzing coverage

Security Research Labs: Moonbeam audit report for runtime 2900, 3000 and 3100 Page 16 of 21

6 Findings summary

For our security audit from January to July 2024, Security Research Labs identified 2 medium security
issues. These findings, in Table 7., are the culmination of various security testing processes
implemented during our commitment to enhancing and preserving Moonbeam’s security.

 Critical 0
 High 0
 Medium 2
 Low 0
 Total Issues 2

Please note that in our methodology, critical severity issues refer to high severity issues that could be
exploited immediately by an attacker on already deployed infrastructure.

6.1 Risk profile

The chart below summarizes vulnerabilities according to business impact and likelihood of
exploitation, increasing to the top right.

 Impact to Business (Hacking value)

 S2-47

S2-51

 Likelihood (Ease) of Exploitation

6.2 Issue summary

Tracking Issue Severity Status

S2-47 [2] Incorrect gas weighting may stall block production Medium Mitigated [3] [4]

S2-51 [5] Incorrect configuration of runtime weights Medium Mitigated [6]

 Table 7: Code review issue summary

Security Research Labs: Moonbeam audit report for runtime 2900, 3000 and 3100 Page 17 of 21

7 Detailed findings

7.1 S2-47: Incorrect gas weighting may stall block production

Attack scenario An attacker brute-forces colliding storage keys to unbalance the Trie then
executes two computational storage reads via extcodesize over XCM

Location runtime/moonbeam/src/lib.rs
Attack impact Block production could be entirely halted without remediation since XCM

implies forced execution
Severity Medium
Status Mitigated [3] [4]
Tracking [2]

Background and Context
Moonbeam uses Frontier to generate gas costs for EVM code execution then converts the gas
calculation to an equivalent substrate weight by using WeightPerGas for ref_time and
GasLimitPovSizeRatio [7] for proof_size. Since opcodes, specifically extcodesize, rely on this static
conversion from gas to weigh, computationally expensive storage reads may result in inaccuracies in
the recorded proof_size.

Problem Details
When performing the extcodesize opcode, which returns the size of bytecode stored at a H160
address, account_code_metadata() attempts to perform a storage read to AccountCodesMetadata [8]
which contains the structure CodeMetadata and subsequently the code size: u64 [9] for a given
storage key (H160 address).

If the data is non-existent in AccountCodesMetadata, another storage read [10] is performed to
AccountCodes which houses the full bytecode as code, this is subsequently checked by and returned
as code.len by from_code() [11] to satisfy the extcodesize call. If code exists within AccountCodes,
but not inside AccountCodesMetadata, the metadata for the account (e.g CodeMetadata.size:u64) is
updated immediately [12].

When deploying a new smart contract, the create_account() function ensures that
AccountCodesMetadata is correctly initialized [13], thereby making it impossible to abuse the gas to
weight conversion by deploying large contract bytecode without metadata then forcing large storage
reads to the code in AccountCodes.

An attacker can circumvent the inability to perform reads to AccountCodes by calling extcodesize on
a non-existent address, this will return nothing on the lookup for size:u64 in CodeMetadata, which
subsequently forces a storage read to AccountCodes.

To abuse this an attacker may brute force a number of Sybil H160 addresses such that after the SCALE-
encoding and Blake2_128Concat hashing occurs the resulting storage keys collide for the first 32-bits.

This scenario focuses on unbalancing the Trie nodes through partial storage key collision. This may
cause storage reads to require significantly more computation when traversing child nodes. If
accomplished an attacker may call extcodesize with a specific, non-existent, address which would
perform two computationally expensive storage reads to AccountCodesMetadata and AccountCodes.

Risk
To consume the full block-size proof_size limit (5-megabytes) an attacker must first ensure that each
extcodesize lookup results in a storage read totalling in a proof_size of 2800-bytes.

Security Research Labs: Moonbeam audit report for runtime 2900, 3000 and 3100 Page 18 of 21

An attacker may reach the proof_size limit, provided they can force the extcodesize storage reads
to traverse an additional 5.5 full Trie-nodes, since each full node, in base-16, requires 32 × 16 = 516
bytes alongside some small overhead.

An attacker may purposefully abuse this by first bloating the storage Trie then performing the two-
storage reads caused by extcodesize on a non-existent address over XCM.

If this is exploited over XCM: the nature of forced execution will ensure overweight blocks are
unavoidable, resulting in denial-of-service to Moonbeam.

Security Research Labs acknowledged that this issue is conducive to the underlying substrate storage
schema, and as such could apply to many different storages reads. Considering this, we worked closely
to provide recommendations that heavily reduce the risk of this specific instance to an acceptable
baseline.

Recommendation
We initially recommended deriving the gas value from the maximum execution time (ref_time) and
maximum PoV size usage (proof_size) so that the worst-case scenario (including trie unbalancing) is
accounted for.

Following close collaboration with the Moonbeam development team we agreed on the
implementation of halting mechanisms to pause the processing of incoming XCM messages, alongside
the introduction of an execution-error if CodeMetadata is absent, instead of relying on the subsequent
storage read to AccountCodes. This remediation strategy effectively mitigates the particular risks
associated with the double storage-read and exploitation of this theoretical issue via XCM.

Moonbeam has since integrated the XCM halting mechanism [3] and removed the secondary
AccountCodes storage read from the execution path [4]. This mitigation will be live in runtime 3200.

Security Research Labs: Moonbeam audit report for runtime 2900, 3000 and 3100 Page 19 of 21

7.2 S2-51: Incorrect configuration of runtime weights

Attack scenario Malicious or inadvertent calls to incorrectly weighted extrinsics may cause
service issues

Location runtime/*
Attack impact Underweighted extrinsic calls may result block rejection upon relay-chain

validation
Severity Medium
Status Mitigated [6]
Tracking [5]

Background and Context
There are multiple instances of runtime weights being incorrectly configured to the default
SubstrateWeight<Runtime> provided from Parity.

Problem Details
The runtime weights for pallets: cumulus-pallet-parachain-system, cumulus-pallet-dmp-queue
and pallet-message-queue have been misconfigured in the moonbase/, moonbeam/ and moonriver/
runtimes.

An example of such misconfiguration is illustrated below:

impl cumulus_pallet_parachain_system::Config for Runtime {
...
type WeightInfo =

 cumulus_pallet_parachain_system::weights::SubstrateWeight<Runtime>;
}

Risk
Since the weights are not dependent on benchmarking performed in the context of the specific
runtime. This may lead to overweight extrinsics causing blocks to be rejected by the relay-chain,
resulting in availability issues.

Recommendation
We recommended performing all benchmarking in the context of the specific runtime and avoiding
the use of default Substrate weights by including them in the define_benchmarks! block [14]. An
example can be viewed in the Kusama runtime template [15].

Moonbeam remediated this issue by introducing accurate weighting for the pallets [6]. This will be live
in runtime-3200.

Security Research Labs: Moonbeam audit report for runtime 2900, 3000 and 3100 Page 20 of 21

Bibliography

[1] [Online]. Available:
https://securityresearchlabs.sharepoint.com/:x:/s/Purestake/EQBP8RMQ9IdCn5DqBsQC_boB
5IboSsW5snvEX15VfY70ow?e=XZgXaJ.

[2] [Online]. Available: https://github.com/moonbeam-foundation/sr-moonbeam/issues/47.

[3] [Online]. Available: https://github.com/moonbeam-foundation/moonbeam/pull/2745.

[4] [Online]. Available: https://github.com/moonbeam-foundation/frontier/pull/224/files.

[5] [Online]. Available: https://github.com/moonbeam-foundation/sr-moonbeam/issues/51.

[6] [Online]. Available: https://github.com/moonbeam-foundation/moonbeam/pull/2909.

[7] [Online]. Available: https://github.com/moonbeam-
foundation/moonbeam/blob/ef76ba7b98dab867c17579be68e8bca5bdf6e688/runtime/moo
nbeam/src/lib.rs#L411.

[8] [Online]. Available: https://github.com/moonbeam-
foundation/frontier/blob/5d0e5c4c3e2bbeeb60bd0520c2ad6a92532a75da/frame/evm/src/li
b.rs#L866.

[9] [Online]. Available: https://github.com/moonbeam-
foundation/frontier/blob/5d0e5c4c3e2bbeeb60bd0520c2ad6a92532a75da/frame/evm/src/li
b.rs#L610.

[10] [Online]. Available: https://github.com/moonbeam-
foundation/frontier/blob/5d0e5c4c3e2bbeeb60bd0520c2ad6a92532a75da/frame/evm/src/li
b.rs#L870.

[11] [Online]. Available: https://github.com/moonbeam-
foundation/frontier/blob/5d0e5c4c3e2bbeeb60bd0520c2ad6a92532a75da/frame/evm/src/li
b.rs#L615.

[12] [Online]. Available: https://github.com/moonbeam-
foundation/frontier/blob/5d0e5c4c3e2bbeeb60bd0520c2ad6a92532a75da/frame/evm/src/li
b.rs#L886.

[13] [Online]. Available: https://github.com/moonbeam-
foundation/frontier/blob/5d0e5c4c3e2bbeeb60bd0520c2ad6a92532a75da/frame/evm/src/li
b.rs#L857.

[14] [Online]. Available: https://docs.substrate.io/test/benchmark/#adding-benchmarks.

[15] [Online]. Available:
https://github.com/paritytech/polkadot/blob/01fd49a7fafa01f133e2dec538a2ef7c697a26aa
/runtime/kusama/src/lib.rs#L1578-L1587.

Security Research Labs: Moonbeam audit report for runtime 2900, 3000 and 3100 Page 21 of 21

	Timeline
	1 Executive Summary
	1.1 Engagement Overview
	1.2 Observations and Risk
	1.3 Recommendations

	2 Evolution suggestions
	2.1 Risk reduction frameworks for enacting runtime migrations
	2.2 Secure development improvement suggestions
	2.3 Security alignment and workflow

	3 Motivation and scope
	4 Methodology
	4.1 Threat modeling and attacks
	4.2 Security design coverage check.
	4.3 Implementation check
	4.4 Remediation support

	5 Dynamic analysis assessment
	5.1 Pallet coverage
	5.2 Precompile coverage

	6 Findings summary
	6.1 Risk profile
	6.2 Issue summary

	7 Detailed findings
	7.1 S2-47: Incorrect gas weighting may stall block production
	7.2 S2-51: Incorrect configuration of runtime weights

	Bibliography

