

Security Audit Report

Polkadot micro-sr25519

v1.0

June 12, 2025

1

Table of Contents
Table of Contents​ 2
License​ 3
Disclaimer​ 4
Introduction​ 5

Purpose of This Report​ 5
Codebase Submitted for the Audit​ 5
Methodology​ 6
Functionality Overview​ 6

How to Read This Report​ 7
Code Quality Criteria​ 8
Summary of Findings​ 9
Detailed Findings​ 10

1. Missing validation for point at infinity​ 10
2. Ambiguous transcript construction due to empty label​ 10
3. Missing flag to enable improved transcription ordering for VRF​ 11
4. Incomplete signature format validation may allow non-canonical inputs​ 11
5. Potential timing side-channel in scalar arithmetic operations​ 12
6. Insufficient input validation​ 12
7. The chain code is generated but not returned to the caller​ 12
8. Insecure RNG injection in signing and VRF functions​ 13
9. Lack of input size restrictions may allow denial of service attacks​ 13
10. Misleading error message in VRF output point identity check​ 14
11. Presence of TODOs and pending items​ 14

2

License

THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION-NODERIVATIVES
4.0 INTERNATIONAL LICENSE.

3

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/

Disclaimer
THE CONTENT OF THIS AUDIT REPORT IS PROVIDED “AS IS”, WITHOUT REPRESENTATIONS
AND WARRANTIES OF ANY KIND.​

THE AUTHOR AND HIS EMPLOYER DISCLAIM ANY LIABILITY FOR DAMAGE ARISING OUT
OF, OR IN CONNECTION WITH, THIS AUDIT REPORT.

THIS AUDIT REPORT WAS PREPARED EXCLUSIVELY FOR AND IN THE INTEREST OF THE
CLIENT AND SHALL NOT CONSTRUE ANY LEGAL RELATIONSHIP TOWARDS THIRD
PARTIES. IN PARTICULAR, THE AUTHOR AND HIS EMPLOYER UNDERTAKE NO LIABILITY OR
RESPONSIBILITY TOWARDS THIRD PARTIES AND PROVIDE NO WARRANTIES REGARDING
THE FACTUAL ACCURACY OR COMPLETENESS OF THE AUDIT REPORT.

FOR THE AVOIDANCE OF DOUBT, NOTHING CONTAINED IN THIS AUDIT REPORT SHALL BE
CONSTRUED TO IMPOSE ADDITIONAL OBLIGATIONS ON COMPANY, INCLUDING WITHOUT
LIMITATION WARRANTIES OR LIABILITIES.​

COPYRIGHT OF THIS REPORT REMAINS WITH THE AUTHOR.

​
​
​
​
​

This audit has been performed by

Oak Security GmbH

https://oaksecurity.io/ ​
info@oaksecurity.io

4

https://oaksecurity.io/
mailto:info@oaksecurity.io

Introduction

Purpose of This Report

Oak Security GmbH has been engaged by Edgeware DAO Association to perform a security
audit of micro-sr25519.

The objectives of the audit are as follows:

1. ​ Determine the correct functioning of the protocol, in accordance with the project
specification.

2. ​ Determine possible vulnerabilities, which could be exploited by an attacker.

3. ​ Determine smart contract bugs, which might lead to unexpected behavior.

4. ​ Analyze whether best practices have been applied during development.

5. ​ Make recommendations to improve code safety and readability.

This report represents a summary of the findings.

As with any code audit, there is a limit to which vulnerabilities can be found, and unexpected
execution paths may still be possible. The author of this report does not guarantee complete
coverage (see disclaimer).

Codebase Submitted for the Audit
The audit has been performed on the following target:​

Repository https://github.com/paulmillr/micro-sr25519

Commit 08dc56e09aab971e7fd5b2f20a6f06c11d4a8daf

Scope All files were in scope.

Fixes verified
at commit

01f903de2c79cfeb71c499d0e9538d0be8b93dc5

Note that only fixes to the issues described in this report have been
reviewed at this commit. Any further changes such as additional features
have not been reviewed.

5

https://github.com/paulmillr/micro-sr25519

Methodology
The audit has been performed in the following steps:

1.​ Gaining an understanding of the code base’s intended purpose by reading the
available documentation.

2.​ Automated source code and dependency analysis.
3.​ Manual line-by-line analysis of the source code for security vulnerabilities and use of

best practice guidelines, including but not limited to:
a.​ Race condition analysis
b.​ Under-/overflow issues
c.​ Key management vulnerabilities

4.​ Report preparation

Functionality Overview
The micro-sr25519 is a TypeScript implementation of the sr25519 cryptographic scheme used
in the Polkadot ecosystem.

The library provides Schnorr signature functionality on Ristretto compressed Ed25519 curves,
including basic operations for key generation, message signing, and signature verification. It
implements Hierarchical Deterministic Key Derivation (HDKD), supporting both hard and soft
derivation methods for generating child keys from parent keys. The library also includes
Verifiable Random Function (VRF) capabilities for generating cryptographically secure random
outputs with proofs of correctness.

6

How to Read This Report
This report classifies the issues found into the following severity categories:

Severity Description

Critical A serious and exploitable vulnerability that can lead to loss of funds,
unrecoverable locked funds, or catastrophic denial of service.

Major A vulnerability or bug that can affect the correct functioning of the
system, lead to incorrect states or denial of service.

Minor A violation of common best practices or incorrect usage of primitives,
which may not currently have a major impact on security, but may do so
in the future or introduce inefficiencies.

Informational Comments and recommendations of design decisions or potential
optimizations, that are not relevant to security. Their application may
improve aspects, such as user experience or readability, but is not strictly
necessary. This category may also include opinionated
recommendations that the project team might not share.

The status of an issue can be one of the following: Pending, Acknowledged, Partially Resolved,
or Resolved.

Note that audits are an important step to improving the security of smart contracts and can
find many issues. However, auditing complex codebases has its limits and a remaining risk is
present (see disclaimer).

Users of the system should exercise caution. In order to help with the evaluation of the
remaining risk, we provide a measure of the following key indicators: code complexity, code
readability, level of documentation, and test coverage. We include a table with these criteria
below.

Note that high complexity or low test coverage does not necessarily equate to a higher risk,
although certain bugs are more easily detected in unit testing than in a security audit and vice
versa.

7

Code Quality Criteria
The auditor team assesses the codebase’s code quality criteria as follows:

Criteria Status Comment

Code complexity Low The code is straightforward and
closely resembles the reference
implementation

Code readability and clarity High The code is readable and easy to
follow

Level of documentation Low The code does not contain
thorough documentation. Even
though it is based on a reference
implementation, some
implementation differences are only
noted as one-line code comments.

Test coverage Medium The project contains some unit tests
and uses the ZeroRNG random
function to make sure test cases are
reproducible. However, they could
be extended to include other RNG
functions, such as ChaCha20RNG,
as well as fuzz tests.​
​
The tests in
test/basic.test.js:201,23
5 redundantly compare identical
public keys, making the assertions
trivially true.

8

Summary of Findings

No Description Severity Status

1 Missing validation for point at infinity Minor Acknowledged

2 Ambiguous transcript construction due to empty
label

Minor Acknowledged

3 Missing flag to enable improved transcription
ordering for VRF

Minor Acknowledged

4 Incomplete signature format validation may allow
non-canonical inputs

Minor Acknowledged

5 Potential timing side-channel in scalar arithmetic
operations

Minor Resolved

6 Insufficient input validation Minor Acknowledged

7 The chain code is generated but not returned to
the caller

Minor Acknowledged

8 Insecure RNG injection in signing and VRF
functions

Informational Acknowledged

9 Lack of input size restrictions may allow denial of
service attacks

Informational Acknowledged

10 Misleading error message in VRF output point
identity check

Informational Resolved

11 Presence of TODOs and pending items Informational Resolved

9

Detailed Findings

1.​ Missing validation for point at infinity

Severity: Minor

In index.ts:308-311 and index.ts:484-487, there is no validation that the public key
is the point at infinity.

The identity point may invalidate signature scheme security, since scalar multiplication by zero
yields the identity, an attacker could use it as a public key to pass signature verification
without a secret key.

Recommendation

We recommend adding checks that the input data is not the point at infinity.

Examples of similar validation can be found in ChainSafe’s go-schnorrkel, specifically in
sign.go:133, vrf.go:271.

Status: Acknowledged

2.​ Ambiguous transcript construction due to empty label

Severity: Minor

In index.ts:200, the label method in SigningContext invokes appendMessage
with an empty string as the label.

In Merlin transcripts, labels are critical for domain separation and context binding.

Consequently, using an empty label can result in ambiguous or overlapping transcript states,
undermining the uniqueness guarantees of the transcript.

Recommendation

We recommend always using a unique, descriptive label when absorbing context data into
the transcript.

Status: Acknowledged

10

3.​ Missing flag to enable improved transcription ordering for VRF

Severity: Minor

In index.ts:381-415, the public key is committed to the transcript after the nonce,
aligning with the Kusama ordering scheme.

This contrasts with the secure ordering recommended in this discussion, where the public key
commit precedes the nonce. The current ordering maintains compatibility with Polkadot and
Kusama but diverges from the strategy that mitigates risks of attacks exploiting discrepancies
between public and secret key alignments.

This vulnerability could be leveraged by a malicious actor to undermine the VRF’s security
assumptions, particularly in environments expecting stronger cryptographic assurances.

Recommendation

We recommend introducing a configurable flag in the library, analogous to the KUSAMA_VRF
parameter in the Schnorrkel Rust implementation.

This flag should allow developers to opt into the more secure transcript ordering.

Status: Acknowledged

4.​ Incomplete signature format validation may allow non-canonical
inputs

Severity: Minor

In index.ts:301–304, the signature verification logic only partially enforces the
sr25519/Schnorrkel specification.

While it correctly checks for the presence of the Schnorrkel marker by verifying that the most
significant bit (bit 7) of the final signature byte is set, it neglects to validate that the remaining
bits in that byte, bits 0 through 6, are cleared. According to the sr25519 specification, these
bits must be zero to ensure canonical signature encoding.

Failing to enforce this requirement can result in the acceptance of non-canonical signatures
and could undermine the strict format guarantees that cryptographic protocols rely on for
integrity and interoperability.

Recommendation

We recommend updating the verification logic to fully enforce the sr25519 specification by
ensuring that only the Schnorrkel marker bit is set in the final byte of the signature and that all
other bits are properly cleared.

Status: Acknowledged

11

https://moderncrypto.org/mail-archive/curves/2020/001012.html

5.​ Potential timing side-channel in scalar arithmetic operations

Severity: Minor

Scalar arithmetic operations in the codebase may be susceptible to timing side-channel
attacks due to variable-time behavior in the underlying bigInt implementation.

In JavaScript environments, the risk is mitigated to some extent by execution engine
optimizations, which obscure precise timing characteristics. However, these protections are
not absolute, and timing analysis remains a viable attack vector, particularly in high-value or
adversarial settings.

Recommendation

We recommend considering explicit constant-time implementations for critical paths.

Status: Resolved

6.​ Insufficient input validation

Severity: Minor

The secretFromSeed and getSharedSecret functions, defined respectively in
index.ts:247 and index.ts:320, lack comprehensive input validation.

For example, they do not check for zeroed arrays or structurally invalid inputs, which could
lead to incorrect computations.

Recommendation

We recommend implementing robust input validation for these functions, including checks for
zeroed data and correct format and length.

Status: Acknowledged

7.​ The chain code is generated but not returned to the caller

Severity: Minor

In index.ts:363,373, the execution calculates chain code using a SigningContext,
specifically by calling the challengeBytes method.

Despite calculating bytes intended as a new chain code, these bytes are discarded and not
returned by the function.

12

Consequently, this is inefficient and fails to leverage the dynamically generated chain code for
further key derivation or processing.

Recommendation

We recommend returning the generated chain code as in the Schnorrkel Rust
implementation.

Status: Acknowledged

8.​ Insecure RNG injection in signing and VRF functions

Severity: Informational

The signing and verifiable random function (VRF) routines in the library accept an overridable
rng parameter. This introduces a security risk if the supplied RNG is weak, deterministic, or
replayable. Under such conditions, the nonce values used in cryptographic operations
become predictable, enabling a malicious actor to derive private keys.

This risk is exacerbated by the use of randomBytes from @noble/hashes/utils, which
may default to insecure sources in environments lacking a cryptographically secure
pseudo-random number generator (CSPRNG). Such misconfiguration could occur due to
compromised dependencies or developer oversight, creating exploitable conditions for key
leakage.

Recommendation

We recommend implementing one or more of the following mitigations:

●​ Enforce usage of a secure, internal CSPRNG without accepting external RNG
parameters.

●​ If parameterization is necessary, document the security assumptions clearly and
rename the functions to indicate the reliance on external RNG input.

Status: Acknowledged

9.​ Lack of input size restrictions may allow denial of service attacks

Severity: Informational

The audited library does not enforce maximum length constraints on input parameters,
including message, context, and extra.

In environments where this library is leveraged in a backend service, unrestricted input sizes
pose a denial of service (DoS) risk.

13

An attacker could exploit this by submitting excessively large inputs, which would result in
severe performance degradation due to the library’s internal byte-by-byte processing using
166-byte chunks (STROBE_R). Operations like absorb, squeeze, and overwrite, and
VRF functionalities in index.ts:453-454 and index.ts:478-479 are particularly
susceptible.

Additionally, constructs like SigningContext in JavaScript environments allow allocation of
Uint8Array instances exceeding 4GB, exacerbating the potential impact of the lack of input
size restrictions.

Recommendation

We recommend documenting the performance implications of large input sizes and
annotating the affected functions with clear code comments.

Specifically, implementors should be advised to apply strict input size validation in the sign,
verify, vrf.sign, vrf.verify operations.

Status: Acknowledged

10.​ Misleading error message in VRF output point identity check

Severity: Informational

In index.ts: 493-496, the VRF verification function includes a check to detect the
identity (zero) point as the output.

While this validation is correctly implemented, the associated error message inaccurately
suggests that the identity check applies to the public key rather than the output point. This
misrepresentation may confuse developers and hinder debugging or security assessments.

Recommendation

We recommend updating the error message to accurately reflect that the identity point check
pertains to the VRF output point, not the public key.

Status: Resolved

11.​ Presence of TODOs and pending items

Severity: Informational

The audited codebase includes unresolved TODO comments and pending items, which
represent incomplete or unverified segments of the code.

It is best practice to resolve them before the code is released into production.

14

Specific instances were identified at:

●​ index.ts:73
●​ index.ts:260

Recommendation

We recommend removing or resolving all TODO comments and pending items prior to
release.

Status: Resolved

15

Differential Fuzz Testing Report

Polkadot micro-sr25519

v1.0

June 12, 2025

1

Table of Contents
Table of Contents​ 2
License​ 3
Disclaimer​ 4
Introduction​ 5

Purpose of This Report​ 5
Codebase Submitted for the Audit​ 6
Methodology​ 7
Functionality Overview​ 7
Differential fuzzing methodology and results​ 8

Overview​ 8
Architecture​ 8
Observations​ 9
Tested operations​ 9

How to Read This Report​ 11
Code Quality Criteria​ 12
Summary of Findings​ 13
Detailed Findings​ 14

1. micro-sr25519 secret keys are encoded as ed25519 bytes, which is different than
schnorrkel default encoding​ 14

Appendix A: Test Cases​ 15
1. Test case for “micro-sr25519 secret keys are encoded as ed25519 bytes, which is
different than schnorrkel default encoding”​ 15

2

License

THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION-NODERIVATIVES
4.0 INTERNATIONAL LICENSE.

3

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/

Disclaimer
THE CONTENT OF THIS AUDIT REPORT IS PROVIDED “AS IS”, WITHOUT REPRESENTATIONS
AND WARRANTIES OF ANY KIND.​

THE AUTHOR AND HIS EMPLOYER DISCLAIM ANY LIABILITY FOR DAMAGE ARISING OUT
OF, OR IN CONNECTION WITH, THIS AUDIT REPORT.

THIS AUDIT REPORT WAS PREPARED EXCLUSIVELY FOR AND IN THE INTEREST OF THE
CLIENT AND SHALL NOT CONSTRUE ANY LEGAL RELATIONSHIP TOWARDS THIRD
PARTIES. IN PARTICULAR, THE AUTHOR AND HIS EMPLOYER UNDERTAKE NO LIABILITY OR
RESPONSIBILITY TOWARDS THIRD PARTIES AND PROVIDE NO WARRANTIES REGARDING
THE FACTUAL ACCURACY OR COMPLETENESS OF THE AUDIT REPORT.

FOR THE AVOIDANCE OF DOUBT, NOTHING CONTAINED IN THIS AUDIT REPORT SHALL BE
CONSTRUED TO IMPOSE ADDITIONAL OBLIGATIONS ON COMPANY, INCLUDING WITHOUT
LIMITATION WARRANTIES OR LIABILITIES.​

COPYRIGHT OF THIS REPORT REMAINS WITH THE AUTHOR.

​
​
​
​
​

This audit has been performed by

Oak Security GmbH

https://oaksecurity.io/ ​
info@oaksecurity.io

4

https://oaksecurity.io/
mailto:info@oaksecurity.io

Introduction

Purpose of This Report

Oak Security GmbH has been engaged by Edgeware DAO Association to perform a security
audit of micro-sr25519.

This report concerns the differential fuzz testing of the TypeScript micro-sr25519
implementation (paulmillr/micro-sr25519) against the Rust schnorrkel reference
implementation (w3f/schnorrkel). The objective of this effort is to discover inconsistencies
between the two implementations by means of differential fuzzing and to report any issues or
unexpected behavior.

The objectives of the audit are as follows:

1. ​ Determine the correct functioning of the protocol, in accordance with the project
specification.

2. ​ Determine possible vulnerabilities, which could be exploited by an attacker.

3. ​ Determine smart contract bugs, which might lead to unexpected behavior.

4. ​ Analyze whether best practices have been applied during development.

5. ​ Make recommendations to improve code safety and readability.

This report represents a summary of the findings.

As with any code audit, there is a limit to which vulnerabilities can be found, and unexpected
execution paths may still be possible. The author of this report does not guarantee complete
coverage (see disclaimer).

5

Codebase Submitted for the Audit
The audit has been performed on the following target:​

Repository https://github.com/paulmillr/micro-sr25519

Commit 08dc56e09aab971e7fd5b2f20a6f06c11d4a8daf

Scope All files were in scope.

6

https://github.com/paulmillr/micro-sr25519

Methodology
The differential fuzz testing was conducted in the following steps:

1.​ Gaining an understanding of the code base’s intended purpose by reading the
available documentation.

2.​ Execute unit tests for both the JavaScript and Rust implementations to establish
baseline correctness.

3.​ Enumerate fuzz targets for key operations and run cargo fuzz run for each target in
parallel.

4.​ Set up a Dockerfile to enable easy reproduction of the fuzz tests in containerized
environments.

5.​ Run the differential fuzzing setup on the Hetzner's cpx51 cloud server (16 vCPU EPYC
7002, 32GB RAM) for 48h.

6.​ Monitor and log discrepancies between the JavaScript and Rust implementations,
capturing any diverging cases.

7.​ Analyze and classify any issues discovered, then prepare the final report.

Functionality Overview
The micro-sr25519 is a TypeScript implementation of the sr25519 cryptographic scheme used
in the Polkadot ecosystem.

The library provides Schnorr signature functionality on Ristretto compressed Ed25519 curves,
including basic operations for key generation, message signing, and signature verification. It
implements Hierarchical Deterministic Key Derivation (HDKD), supporting both hard and soft
derivation methods for generating child keys from parent keys. The library also includes
Verifiable Random Function (VRF) capabilities for generating cryptographically secure random
outputs with proofs of correctness.

7

Differential fuzzing methodology and results

Overview

The differential fuzzing suite implements a fuzz testing harness for the micro-sr25519
TypeScript library.

The suite aims to identify mismatches in signing, verification, key derivation (HDKD), and
verifiable random function (VRF) outputs through systematic input generation and
instrumentation.

Instrumentation and campaign logic are available at:
https://github.com/oak-security/polkadot-micro-sr25519-fuzz.

Architecture

To minimize performance overhead, a persistent Node.js subprocess is spawned from a Rust
orchestrator. This avoids reinitializing the V8 engine for each test case.

Communication between the Rust orchestrator and the Node.js runtime is performed over
stdin/stdout, using a lightweight line-delimited JSON protocol for structured messages.

The fuzzer is built in Rust, using cargo-fuzz and libFuzzer to perform coverage-guided
mutations of inputs.

The Rust Schnorrkel library is used as an oracle to deterministically generate correct
signatures, keys, and VRF outputs. Inputs are mutated by libFuzzer to maximize code
coverage in the TypeScript implementation. Malformed input is not tested by the differential
fuzz targets, due to the time constraints of the time-boxed security review.

Each operation is developed as a separate fuzz target, which receives a stream of random u8
bytes (ranging from 0 to 4096 bytes by default in libFuzzer) and extracts the appropriate
variables necessary for the function inputs. For example, the sign target uses the first 32
bytes for the seed, the next byte for the RNG function definition, and the remaining bytes for
the message to be signed. It then signs the message using Rust's library, sends the same
input to the Node.js subprocess, and compares the response outputs.

Three different RNG implementations, Zero, Incrementer, and ChaCha20, are supported to
test constant, incremental, and pseudo-random input patterns, respectively. As the report
shows, this was paramount to uncover Issue 1 highlighted in this report, which is not apparent
by using only a constant random number generator function (Zero RNG).

A continuous integration script was included in the differential fuzzing repository to reuse the
corpus on new pushes and can later be integrated into the main micr-sr25519 repository to
automatically check for regressions on future updates.

8

https://github.com/oak-security/polkadot-micro-sr25519-fuzz

Observations

The 4 KiB input size limit proved sufficient for effective fuzzing, as all tested primitives
consume 128 bytes or less, and increasing the buffer size to 16 KiB had no measurable impact
on basic block coverage. While larger inputs may influence deeper hash or codec branches,
they offered diminishing returns in this context.

An entropic scheduling strategy was employed, but quickly reached a plateau, as it could be
seen in Jazzer logs. The final corpus was trimmed down to just three inputs without any loss
in coverage.

Throughout the campaign, the system remained stable: no hangs or out-of-memory conditions
were observed, and memory usage consistently stayed under 900 MiB.

Tested operations

The operations were tested on Hetzner's cpx51 cloud server (16 vCPU EPYC 7002, 32GB
RAM) for 48h.

Operation Fuzz target Passing

sr25519.sign(pair.secretKey, msg) sign ✅

sr25519.verify(msg, polkaSig,
pair.publicKey)

verify ✅

sr25519.secretFromSeed(seed) secret_from_seed ✅

sr25519.getPublicKey(secretKey) get_public_key ✅

sr25519.getSharedSecret(secretKey,
publicKey)

get_shared_secret ✅

sr25519.HDKD.secretHard(pair.secre
tKey, cc)

secret_hard ✅

sr25519.HDKD.secretSoft(pair.secre
tKey, cc)

secret_soft ✅

sr25519.HDKD.publicSoft(pubSelf,
cc)

public_soft ✅

sr25519.vrf.sign(msg,
pair.secretKey)

vrf_sign ✅

9

sr25519.vrf.verify(msg, sig,
pair.publicKey)

vrf_verify ✅

10

How to Read This Report
This report classifies the issues found into the following severity categories:

Severity Description

Critical A serious and exploitable vulnerability that can lead to loss of funds,
unrecoverable locked funds, or catastrophic denial of service.

Major A vulnerability or bug that can affect the correct functioning of the
system, lead to incorrect states or denial of service.

Minor A violation of common best practices or incorrect usage of primitives,
which may not currently have a major impact on security, but may do so
in the future or introduce inefficiencies.

Informational Comments and recommendations of design decisions or potential
optimizations, that are not relevant to security. Their application may
improve aspects, such as user experience or readability, but is not strictly
necessary. This category may also include opinionated
recommendations that the project team might not share.

The status of an issue can be one of the following: Pending, Acknowledged, Partially Resolved,
or Resolved.

Note that audits are an important step to improving the security of smart contracts and can
find many issues. However, auditing complex codebases has its limits and a remaining risk is
present (see disclaimer).

Users of the system should exercise caution. In order to help with the evaluation of the
remaining risk, we provide a measure of the following key indicators: code complexity, code
readability, level of documentation, and test coverage. We include a table with these criteria
below.

Note that high complexity or low test coverage does not necessarily equate to a higher risk,
although certain bugs are more easily detected in unit testing than in a security audit and vice
versa.

11

Code Quality Criteria
The auditor team assesses the codebase’s code quality criteria as follows:

Criteria Status Comment

Code complexity Low The code is straightforward and
closely resembles the reference
implementation

Code readability and clarity High The code is readable and easy to
follow

Level of documentation Low The code does not contain
thorough documentation. Even
though it is based on a reference
implementation, some
implementation differences are only
noted as one-line code comments.

Test coverage Medium The project contains some unit tests
and uses the ZeroRNG random
function to make sure test cases are
reproducible. However, they could
be extended to include other RNG
functions, such as ChaCha20RNG,
as well as fuzz tests.

12

Summary of Findings

No Description Severity Status

1 micro-sr25519 secret keys are encoded as
ed25519 bytes, which is different than schnorrkel
default encoding

Informational Acknowledged

13

Detailed Findings
1.​ micro-sr25519 secret keys are encoded as ed25519 bytes, which

is different than schnorrkel default encoding

Severity: Informational

In index.ts:255,266,350,368, the micro-sr25519 TypeScript functions encode secret
keys using the ed25519 byte format, whereas the Rust schnorrkel reference uses a different
internal format by default.

More specifically, calling keypair.secret.to_bytes from schnorrkel yields a different
output than sr25519.secretFromSeed. To have the same output, to_ed25519_bytes
should be used.

This inconsistency can lead to interoperability issues if keys are shared directly between the
implementations.

A test case showcasing the issue is provided in the Appendix.

Recommendation

We recommend documenting the encoding difference in the micro-sr25519 README and
providing helper functions to convert between the ed25519-based format and the schnorrkel
format.

Status: Acknowledged

14

Appendix A: Test Cases
1.​ Test case for “micro-sr25519 secret keys are encoded as

ed25519 bytes, which is different than schnorrkel default
encoding”

 fn get_test_keypair_from_seed(seed_hex: &str) -> Keypair {​
 let seed_bytes = hex::decode(seed_hex).unwrap();​
 let seed: [u8; 32] = seed_bytes.try_into().unwrap();​
 let mini = MiniSecretKey::from_bytes(&seed).unwrap();​
 mini.expand_to_keypair(ExpansionMode::Ed25519)​
 }​
​

 #[test]​
 fn test_secret_from_seed() {​
 let seed_hex =
"0aff05000000000000";​
 let kp = get_test_keypair_from_seed(seed_hex);​
 let secret_key_ed25519_bytes = kp.secret.to_ed25519_bytes();​
 assert_eq!(hex::encode(secret_key_ed25519_bytes),​

"487908c2cf7893dbaf0a658031d97553724c277d8094e4327091f98139398153c48de404fc3c07d

5ade70ee7730e34aad5ca8a2dedc85b618a19b3a2a408f9f0"​

);​
 }

function getTestKeypairFromSeed(seedString) {​
 const seed = new Uint8Array(Buffer.from(seedString, "hex"));​
 const secretKey = sr25519.secretFromSeed(seed);​
 const publicKey = sr25519.getPublicKey(secretKey);​
 return { secretKey, publicKey };​
}​
​

 test("test_secret_from_seed", () => {​
 const { secretKey } = getTestKeypairFromSeed(​
 "0aff05000000000000",​
);​
 expect(Buffer.from(secretKey).toString("hex")).toBe(​

"487908c2cf7893dbaf0a658031d97553724c277d8094e4327091f98139398153c48de404fc3c07d

5ade70ee7730e34aad5ca8a2dedc85b618a19b3a2a408f9f0",​
);​
 });

15

	Polkadot micro-sr25519
	Table of Contents
	
	License
	
	Disclaimer
	Introduction
	Purpose of This Report
	Codebase Submitted for the Audit
	Methodology
	Functionality Overview

	How to Read This Report
	
	Code Quality Criteria
	
	Summary of Findings
	
	Detailed Findings
	1.​Missing validation for point at infinity
	2.​ Ambiguous transcript construction due to empty label
	3.​Missing flag to enable improved transcription ordering for VRF
	4.​Incomplete signature format validation may allow non-canonical inputs
	5.​Potential timing side-channel in scalar arithmetic operations
	6.​Insufficient input validation
	7.​The chain code is generated but not returned to the caller
	8.​ Insecure RNG injection in signing and VRF functions
	9.​ Lack of input size restrictions may allow denial of service attacks
	10.​ Misleading error message in VRF output point identity check
	11.​ Presence of TODOs and pending items

	Polkadot micro-sr25519
	Table of Contents
	
	License
	
	Disclaimer
	Introduction
	Purpose of This Report
	
	Codebase Submitted for the Audit
	Methodology
	Functionality Overview
	Differential fuzzing methodology and results
	Overview
	Architecture
	Observations
	Tested operations

	
	How to Read This Report
	
	Code Quality Criteria
	
	Summary of Findings
	
	Detailed Findings
	1.​micro-sr25519 secret keys are encoded as ed25519 bytes, which is different than schnorrkel default encoding

	Appendix A: Test Cases
	1.​Test case for “micro-sr25519 secret keys are encoded as ed25519 bytes, which is different than schnorrkel default encoding”
	

