

Security Audit Report

KILT Bonding Curve Pallet

v1.0

March 27, 2025

1

Table of Contents
Table of Contents 2
License 3
Disclaimer 4
Introduction 5

Purpose of This Report 5
Codebase Submitted for the Audit 5
Methodology 7
Functionality Overview 7

How to Read This Report 8
Code Quality Criteria 9
Summary of Findings 10
Detailed Findings 12

1. Potential loss of funds due to can_deposit error during the refund process 12
2. Configurations of PolynomialParameters can lead to overflow 12
3. The MaxConsumers constraint limits multi-asset pool usability 13
4. Incomplete asset cleanup in finish_destroy extrinsic may leave residual tokens 14
5. Centralization risks 15
6. Possibility of setting different management teams for assets within the same pool 16
7. Unused _owner parameter in reset_team function 16
8. Missing validations of currencies list during pool creation 17
9. Minimal error handling in try_from implementation 17
10. Redundant defensive assertion in refund_account function 18
11. Inconsistent pool lock state 18
12. Possible optimization in polynomial curve 19
13. Manager change allowed in destroying state pools 19
14. Contracts should implement a two-step ownership transfer 20
15. Unresolved TODO and FIXME comments in the codebase 21
16. Missing event emission for reset_team 21
17. Redundant manager and team updates are allowed 21
18. Dependencies are subject to publicly known vulnerabilities 22

Appendix: Test Cases 24
1. Test case for “The MaxConsumers constraint limits multi-asset pool usability” 24
2. Test cases for “Configurations of PolynomialParameters can lead to overflow” 26

2

License

THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION-NODERIVATIVES
4.0 INTERNATIONAL LICENSE.

3

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/

Disclaimer
THE CONTENT OF THIS AUDIT REPORT IS PROVIDED “AS IS”, WITHOUT REPRESENTATIONS
AND WARRANTIES OF ANY KIND.

THE AUTHOR AND HIS EMPLOYER DISCLAIM ANY LIABILITY FOR DAMAGE ARISING OUT
OF, OR IN CONNECTION WITH, THIS AUDIT REPORT.

THIS AUDIT REPORT WAS PREPARED EXCLUSIVELY FOR AND IN THE INTEREST OF THE
CLIENT AND SHALL NOT CONSTRUE ANY LEGAL RELATIONSHIP TOWARDS THIRD
PARTIES. IN PARTICULAR, THE AUTHOR AND HIS EMPLOYER UNDERTAKE NO LIABILITY OR
RESPONSIBILITY TOWARDS THIRD PARTIES AND PROVIDE NO WARRANTIES REGARDING
THE FACTUAL ACCURACY OR COMPLETENESS OF THE AUDIT REPORT.

FOR THE AVOIDANCE OF DOUBT, NOTHING CONTAINED IN THIS AUDIT REPORT SHALL BE
CONSTRUED TO IMPOSE ADDITIONAL OBLIGATIONS ON COMPANY, INCLUDING WITHOUT
LIMITATION WARRANTIES OR LIABILITIES.

COPYRIGHT OF THIS REPORT REMAINS WITH THE AUTHOR.

This audit has been performed by

Oak Security GmbH

https://oaksecurity.io/
info@oaksecurity.io

4

https://oaksecurity.io/
mailto:info@oaksecurity.io

Introduction

Purpose of This Report

Oak Security GmbH has been engaged by BOTLabs GmbH i. L. to perform a security audit of
KILT Bonding Curve Substrate Pallet.

The objectives of the audit are as follows:

1. Determine the correct functioning of the protocol, in accordance with the project
specification.

2. Determine possible vulnerabilities, which could be exploited by an attacker.

3. Determine smart contract bugs, which might lead to unexpected behavior.

4. Analyze whether best practices have been applied during development.

5. Make recommendations to improve code safety and readability.

This report represents a summary of the findings.

As with any code audit, there is a limit to which vulnerabilities can be found, and unexpected
execution paths may still be possible. The author of this report does not guarantee complete
coverage (see disclaimer).

Codebase Submitted for the Audit
The audit has been performed on the following target:

Repository https://github.com/KILTprotocol/kilt-node

Scope The scope is restricted to the changes applied in the following pull
requests:

● https://github.com/KILTprotocol/kilt-node/pull/764 reviewed at
commit 118ae6f6065324702f006354e52eb602fb5d23bd,
base branch at
e5eb9160560f838c2b3e375686b409552990d858.

● https://github.com/KILTprotocol/kilt-node/pull/834 reviewed at
commit 9d6bab4718832874b3cca2518e1cb77e7fab71b0,

5

https://github.com/KILTprotocol/kilt-node
https://github.com/KILTprotocol/kilt-node/pull/764
https://github.com/KILTprotocol/kilt-node/pull/834

base branch at
118ae6f6065324702f006354e52eb602fb5d23bd.

Fixes verified
at commit

0360ad2101b9dd6a765f056306360c880b991b9f

Note that only fixes to the issues described in this report have been
reviewed at this commit. Any further changes such as additional features
have not been reviewed.

6

Methodology
The audit has been performed in the following steps:

1. Gaining an understanding of the code base’s intended purpose by reading the
available documentation.

2. Automated source code and dependency analysis.
3. Manual line-by-line analysis of the source code for security vulnerabilities and use of

best practice guidelines, including but not limited to:
a. Race condition analysis
b. Under-/overflow issues
c. Key management vulnerabilities

4. Report preparation

Functionality Overview
The KILT Bonding Curve Pallet implements a bonding curve mechanism to manage the
issuance, exchange, and pricing of tokens within the KILT Protocol. It allows tokens to be
minted and burned dynamically based on a predefined mathematical curve, ensuring that
prices adjust algorithmically according to supply and demand.

The pallet supports different bonding curve formulas, making it adaptable to various
economic models within the network.

7

How to Read This Report
This report classifies the issues found into the following severity categories:

Severity Description

Critical A serious and exploitable vulnerability that can lead to loss of funds,
unrecoverable locked funds, or catastrophic denial of service.

Major A vulnerability or bug that can affect the correct functioning of the
system, lead to incorrect states or denial of service.

Minor A violation of common best practices or incorrect usage of primitives,
which may not currently have a major impact on security, but may do so
in the future or introduce inefficiencies.

Informational Comments and recommendations of design decisions or potential
optimizations, that are not relevant to security. Their application may
improve aspects, such as user experience or readability, but is not strictly
necessary. This category may also include opinionated
recommendations that the project team might not share.

The status of an issue can be one of the following: Pending, Acknowledged, Partially Resolved,
or Resolved.

Note that audits are an important step to improving the security of smart contracts and can
find many issues. However, auditing complex codebases has its limits and a remaining risk is
present (see disclaimer).

Users of the system should exercise caution. In order to help with the evaluation of the
remaining risk, we provide a measure of the following key indicators: code complexity, code
readability, level of documentation, and test coverage. We include a table with these criteria
below.

Note that high complexity or low test coverage does not necessarily equate to a higher risk,
although certain bugs are more easily detected in unit testing than in a security audit and vice
versa.

8

Code Quality Criteria
The auditor team assesses the codebase’s code quality criteria as follows:

Criteria Status Comment

Code complexity Medium -

Code readability and clarity Medium-High -

Level of documentation High The client provided detailed
documentation outlining the
specifications of the intended
system behavior.

Test coverage Medium-High cargo tarpaulin reports a test
coverage of 89.38% for the
pallet-bonded-coins package

9

Summary of Findings

No Description Severity Status

1 Potential loss of funds due to can_deposit error
during the refund process

Major Resolved

2 Configurations of PolynomialParameters can
lead to overflow

Minor Acknowledged

3 The MaxConsumers constraint limits multi-asset
pool usability

Minor Resolved

4 Incomplete asset cleanup in finish_destroy
extrinsic may leave residual tokens

Minor Acknowledged

5 Centralization risks Minor Partially
Resolved

6 Possibility of setting different management teams
for assets within the same pool

Minor Resolved

7 Unused _owner parameter in reset_team
function

Informational Resolved

8 Missing validations of currencies list during pool
creation

Informational Resolved

9 Minimal error handling in try_from
implementation

Informational Acknowledged

10 Redundant defensive assertion in
refund_account function

Informational Resolved

11 Inconsistent pool lock state Informational Resolved

12 Possible optimization in polynomial curve Informational Resolved

13 Manager change allowed in destroying state pools Informational Resolved

14 Contracts should implement a two-step ownership
transfer

Informational Acknowledged

15 Unresolved TODO and FIXME comments in the
codebase

Informational Resolved

16 Missing event emission for reset_team Informational Resolved

17 Redundant manager and team updates are allowed Informational Acknowledged

10

18 Dependencies are subject to publicly known
vulnerabilities

Informational Acknowledged

11

Detailed Findings

1. Potential loss of funds due to can_deposit error during the
refund process

Severity: Major

In pallets/pallet-bonded-coins/src/lib.rs:1007-1143, the
refund_account extrinsic allows users to burn their bonded tokens and claim collateral
proportionally.

In lines 1117-1126, the implementation defines a guard that ensures that the amount is
non-zero and that the collateral can be deposited in the who account. In case of failure, the
extrinsic does not fail and returns Ok. The comment associated with this clause states:

“Funds are burnt but the collateral received is not sufficient to be deposited to the account.
This is tolerated as otherwise, we could have edge cases where it’s impossible to refund at
least some accounts.”

However, there are other potential failure scenarios for the can_deposit method beyond
insufficient collateral. Specifically, if the collateral asset is marked as not sufficient and the
caller has already reached the maximum number of allowed consumers (MaxConsumers
limit), the can_deposit check will fail.

This scenario would result in the user irreversibly losing their funds, as the bonded tokens are
burned, but the collateral cannot be deposited into their account.

Recommendation

We recommend implementing additional validation checks before burning bonded tokens to
ensure that the can_deposit method will not fail due to MaxConsumers limitations.

Status: Resolved

2. Configurations of PolynomialParameters can lead to overflow

Severity: Minor

The PolynomialParameters struct, in
pallets/pallet-bonded-coins/src/curves/polynomial.rs:108-115, defines
parameters for the CurveInput::Polynomial curve, represented by the equation:

 𝑓(𝑥) = 𝑚
3 𝑥3 + 𝑛

2 𝑥2 + 𝑜𝑥

12

However, the implementation lacks validation to restrict values that could cause arithmetic
overflow.

The calculate_costs function, defined in
pallets/pallet-bonded-coins/src/curves/polynomial.rs:138 responsible
for computing costs for the polynomial curve, is susceptible to overflow due to the squared
operations.

Consequently, depending on the values of m, n, o, and the number of currencies involved, the
function may overflow during minting operations, potentially leading to a locked pool where
no further tokens can be minted.

Test cases showcasing the issue are provided in Appendix.

Recommendation

We recommend enforcing boundary checks on m, n, and o to ensure their values remain
within a safe range.

Status: Acknowledged

The client states that overflow only limits the maximum number of tokens that can be minted.
They acknowledge that transparency regarding these implicit limits could be improved and
have therefore added documentation in the Bonding Coin Specification. Additionally, they are
exploring ways to make these limits more explicit and to clarify overflow conditions. However,
they do not consider overflow a vulnerability at this time and assert that any fixed-precision
system of this nature will inherently have technical limits that restrict the number of tokens
that can be minted.

3. The MaxConsumers constraint limits multi-asset pool usability

Severity: Minor

In pallets/pallet-bonded-coins/src/lib.rs:360-415, the create_pool
extrinsic enables users to create a new pool with support for up to MAX_CURRENCIES (50)
different currencies. During this process, the function iterates through the specified currencies
and invokes Fungibles::create with the is_sufficient parameter set to false.
This configuration enforces the chain’s existential deposit rules, requiring the system to verify
if it can safely add a consumer reference to an account.

However, the MaxConsumers limit, set to 16, restricts the number of non-sufficient assets an
account can hold. This constraint prevents users from holding all fifty currencies in a pool and
may lead to unexpected failures when minting tokens if the limit is exceeded.

As a result, pool designs that require a single user to manage more than eight currencies
become impractical, significantly reducing the flexibility and usability of multi-asset pools.

A test case showcasing the issue is provided in Appendix.

13

Recommendation

We recommend revising the pool creation logic to allow certain assets to be marked as
sufficient where appropriate.

Status: Resolved

4. Incomplete asset cleanup in finish_destroy extrinsic may
leave residual tokens

Severity: Minor

In pallets/pallet-bonded-coins/src/lib.rs:1255-1261, the
finish_destroy extrinsic allows permissionless completion of a pool’s destruction,
including asset removal and deposit refunds to the owner. The function calls
T::Fungibles::finish_destroy to finalize asset destruction.

However, if the destruction process was initiated forcibly, there may still be tokens held by
users.

In such cases, finish_destroy alone is insufficient, as the total supply has not been
burned and it does not account for remaining balances in user accounts.

Recommendation

We recommend calling T::Fungibles::destroyAccounts before executing
T::Fungibles::finish_destroy. This ensures that all remaining tokens are properly
removed before finalizing the asset destruction.

Status: Acknowledged

The client states that calling (force_)start_destroy transitions all linked assets to a
destroying state, allowing the assets pallet’s permissionless destroy_accounts
transaction to remove any residual accounts. They chose not to re-expose or wrap this
functionality within their pallet to prevent unbounded transaction sizes that could exceed
block limits, particularly for pools with numerous bonded currencies. As a result, pool
destruction is a multi-step process that may involve multiple extrinsics.

To enhance clarity, they have added a “Pool Life Cycle” section to the Bonding Coin
Specification, detailing the necessary steps.

14

5. Centralization risks

Severity: Minor

During the audit, multiple centralization concerns were identified within the bonding curve
pallets.

While certain privileged roles, such as managers, are necessary for managing critical
configurations, excessive control can undermine the system’s trustlessness.

Key centralization risks include:

● Excessive control by the pool manager

○ The pool manager can initiate the refund process. Additionally, since the
refund_account extrinsic applies for refunds proportionally across all
bonded currencies, assuming equal value, the refund process can be abused
to perform market manipulations.

○ The pool manager can trigger pool destruction and obtain any funds deposited
into it by using force_start_destroy and skipping the refunding process.

○ The pool manager can impose a Lock on the pool.

○ The pool manager can assign or modify the currency management team.

○ The pool manager can freeze assets.

● Root privileges

○ The ForceOrigin requires EnsureRoot, meaning all administrative actions
require root access. Relying on root centralizes power within a single entity.

○ The ForceOrigin can trigger pool destruction and obtain any funds
deposited into it by using force_start_destroy and skipping the
refunding process.

Recommendation

We recommend evaluating and documenting the centralization risks of the protocol.

Status: Partially Resolved

The client implemented a flag to enable a more granular configuration of manager privileges
and added a section outlining centralization risks to enhance transparency and risk
awareness.

15

6. Possibility of setting different management teams for assets
within the same pool

Severity: Minor

The reset_team function implemented in
pallets/pallet-bonded-coins/src/lib.rs:474 is intended for setting the
management team for a currency issued by a given pool.

However, since pools can contain multiple currencies, this function only updates the
management team for a single currency at a time.

This creates a scenario where different entities can manage different currencies within the
same pool, leading to inconsistent control.

Such a situation may result in unexpected behavior, including disruptions if one of the
currencies is suddenly frozen, impacting overall pool operations.

Recommendation

We recommend modifying the implementation to ensure that a single entity is responsible for
managing all currencies within a given pool.

Status: Resolved

7. Unused _owner parameter in reset_team function

Severity: Informational

In the reset_team implementation within the traits module in
pallets/pallet-bonded-coins/src/trait.rs:90, the _owner parameter is never
used in the function logic. The function simply ignores it and instead retrieves the owner from
AssetsPallet::<T, I>::owner(id.clone()).

In pallets/pallet-bonded-coins/src/lib.rs, this function is called with
pool_id_account as the owner parameter. There's no guarantee that pool_id_account
will always equal the value retrieved from owner(id) call, causing incorrect assumptions in
the code.

Recommendation

We recommend either utilizing the provided _owner parameter or removing it from the
function definition to improve code clarity and prevent potential mismatches.

Status: Resolved

16

8. Missing validations of currencies list during pool creation

Severity: Informational

In pallets/pallet-bonded-coins/src/lib.rs:360, the create_pool extrinsic is
responsible for creating a pool by taking a vector of currencies and their metadata and then
generating the corresponding fungible assets.

However, while NextAssetId ensures unique asset IDs, there is no validation to prevent
multiple currencies with identical metadata (names and symbols) from being created within
the same pool. This could lead to user confusion when interacting with the pool, as multiple
assets with identical identifiers may be indistinguishable.

Additionally, the extrinsic does not enforce a non-empty pool constraint, allowing the creation
of empty pools that serve no functional purpose.

Recommendation

We recommend implementing validation to:

● Ensure currency metadata (names and symbols) are unique within a given pool.

● Reject empty pools by enforcing a minimum number of currencies required for pool
creation.

Status: Resolved

9. Minimal error handling in try_from implementation

Severity: Informational

In pallets/pallet-bonded-coins/src/curves/square-root.rs:116, the
try_from implementation uses an overly simplistic error type, returning an empty () value
upon failure.

This approach provides no meaningful context about the nature of the conversion failure,
making debugging and error handling more challenging for both developers and users.

Recommendation

We recommend replacing the empty unit error type with a custom error enum that provides
more specific information about conversion failures, such as whether the problem occurred
with parameter m or n, or the specific reason for the conversion failure.

Status: Acknowledged

17

The client states that error reporting for parameter validation can be improved, and they are
considering the addition of more informative error messages and logging in the future.

However, they note that propagating these errors to callers is challenging without introducing
a larger set of broad error cases, as pallet errors are implemented as simple enums that do
not support carrying detailed error messages.

10. Redundant defensive assertion in refund_account function

Severity: Informational

In pallets/pallet-bonded-coins/src/lib.rs:1078, a devensive_assert
check validating if sum_of_issuances is bigger or equal to burnt amount is performed.

However, this assertion is meaningless since sum_of_issuances has already been
guaranteed to be at least equal to burnt in the code directly above it. The burnt value is
explicitly added to sum_of_issuances, making it impossible to be bigger than the
mentioned sum.

Recommendation

We recommend removing this redundant assertion to simplify the code.

Status: Resolved

11. Inconsistent pool lock state

Severity: Informational

In pallets/pallet-bonded-coins/src/lib.rs:571-587, the set_lock extrinsic
allows a pool manager to lock a pool using a Locks object that determines whether minting
and burning operations are disabled.

However, the function does not enforce validation to ensure that both allow_mint and
allow_burn are set to false. As a result, a pool can be incorrectly marked as
PoolStatus::Locked even when minting and burning are still allowed.

This leads to an inconsistent state where a pool appears locked while operations remain
enabled. The expected behavior in such cases is for the status to remain
PoolStatus::Active.

18

Recommendation

We recommend adding a validation check within the set_lock function to ensure that a
pool is only transitioned to PoolStatus::Locked when both allow_mint and
allow_burn are explicitly disabled.

Status: Resolved

12. Possible optimization in polynomial curve

Severity: Informational

The calculate_costs function in
pallets/pallet-bonded-coins/src/curves/polynomial.rs can be optimized to
reduce unnecessary computations.

The function calculates helper variables before using them to compute term1 and term2,
which rely on the m and n coefficients as multipliers.

However, if m or n is equal to zero, the corresponding term (term1 or term2) will also
evaluate to zero.

In such cases, performing these calculations is redundant and results in unnecessary
computational overhead.

Recommendation

We recommend introducing pre-checks for m and n coefficients to bypass unnecessary
calculations when their values are zero.

Status: Resolved

13. Manager change allowed in destroying state pools

Severity: Informational

In pallets/pallet-bonded-coins/src/lib.rs:530, the reset_manager
function allows changing the pool manager. However, a manager change should not be
permitted when the pool is in a non-live (destroying) state. Allowing this could lead to
inconsistencies or unintended control transfers in pools that are being decommissioned.

19

Recommendation

We recommend introducing a check to prevent manager changes when the pool is not in a
live state.

Status: Resolved

14. Contracts should implement a two-step ownership transfer

Severity: Informational

In pallets/pallet-bonded-coins/src/lib.rs:525-547, the reset_manager
extrinsic allows the current manager to execute a one-step ownership transfer. While this is
common practice, it presents a risk for the ownership of the contract to become lost if the
owner transfers ownership to an incorrect address. More than that, transferring managership
to a non-existing address or resigning manager duties, when the pool is locked, prevents the
pool from ever being unlocked.

A two-step ownership transfer will allow the current owner to propose a new owner, and then
the account that is proposed as the new owner may call a function that will allow them to
claim ownership and actually execute the config update.

Recommendation

We recommend implementing a two-step ownership transfer. The flow can be as follows:

1. The current manager proposes a new manager address that is validated.

2. The new manager account claims ownership, which applies the configuration
changes.

At the same time, making the pool permissionless can be allowed as a single step by ensuring
that it is unlocked at the same time.

Status: Acknowledged

The client states that they have decided against implementing two-step ownership changes
for two primary reasons:

1. Assigning a None manager is a standard part of the lifecycle for unpermissioned
pools, which is incompatible with a two-step transfer process.

2. Two-step ownership transfers are not common practice in similar pallets. The client
believes that errors in ownership transfers are rare, better prevented at the application
level, and can be addressed through chain governance mechanisms.

20

15. Unresolved TODO and FIXME comments in the codebase

Severity: Informational

The following instances of TODO comments were identified within the given scope of this
audit (excluding tests):

● pallets/pallet-bonded-coins/src/curves/mod.rs:169
● pallets/pallet-bonded-coins/src/lib:327
● pallets/pallet-bonded-coins/src/lib:1418
● pallets/pallet-bonded-coins/src/lib:1491
● runtimes/peregrine/src/weights/pallet_bonded_assets:46

Totally, there are more than 40 TODO and FIXME comments throughout the codebase.

Recommendation

We recommend resolving or removing the given TODO and FIXME comments.

Status: Resolved

16. Missing event emission for reset_team

Severity: Informational

In pallets/pallet-bonded-coins/src/lib.rs:474, the reset_team extrinsic
updates the admin and freezer roles.

However, the update is not announced to potential on-chain listeners, as no event is emitted
upon a successful execution. This lack of notification can lead to inconsistencies in off-chain
tracking and governance monitoring.

Recommendation

We recommend declaring and emitting an event whenever an administrative team update
occurs.

Status: Resolved

17. Redundant manager and team updates are allowed

Severity: Informational

The reset_team and reset_manager extrinsics defined respectively in
pallets/pallet-bonded-coins/src/lib.rs:474-503 and
pallets/pallet-bonded-coins/src/lib.rs:527-547, allow updates to
administrative roles but do not validate whether the new values differ from the existing ones.

21

● reset_team: Updates the admin and freezer roles using the
PoolManagingTeam structure.

● reset_manager: Allows setting a new manager via an optional new_manager
account ID.

Since no validation is performed, redundant updates can be executed unnecessarily,
consuming resources without changing the system state.

Recommendation

We recommend implementing a validation check to reject redundant updates when the new
values match the existing ones. In the case of reset_manager, the current manager must
be the signer, making this validation straightforward.

Status: Acknowledged

The client states that resource allocation is governed by economic principles, such as
transaction fees, and that resources are consumed regardless of whether a transaction results
in an error or a state change. Also, they state that rejecting a transaction simply because the
system is already in the desired state is suboptimal from a user experience perspective.

18. Dependencies are subject to publicly known vulnerabilities

Severity: Informational

The project dependencies are not up-to-date and contain publicly known Rust vulnerabilities:

1. Infinite loop based on network input (rustls)

2. Timing variability (curve25519-dalek)

3. Punycode labels that do not produce any non-ASCII when decoded (idna)

Additionally:

● Dependencies parity-util-mem and parity-wasm are deprecated

● The version of parity-scale-codec in use is 3.1.5 and was released in June
2022. The latest version is 3.7.4.

Recommendation

We recommend updating the aforementioned dependencies and regularly performing
automated dependency checks using the cargo audit command.

Status: Acknowledged

22

https://rustsec.org/advisories/RUSTSEC-2024-0336
https://rustsec.org/advisories/RUSTSEC-2024-0344
https://rustsec.org/advisories/RUSTSEC-2024-0421.html

The client states that dependencies are shared across all pallets within the repository. While
they ensure that known vulnerabilities are addressed prior to each runtime release, they are
unable to update or manage dependencies on a per-pallet basis, including for the specific
pallet under review.

23

Appendix: Test Cases
1. Test case for “The MaxConsumers constraint limits multi-asset

pool usability”
The following test case can be executed in
pallets/pallet-bonded-coins/src/tests/transactions/mint_into.rs.

#[test]
fn mint_with_50_currencies_maxconsumers_limitation() {
 // 1. Create 50 different bonded currency IDs
 let mut currencies = Vec::with_capacity(50);
 for i in 0..50 {
 currencies.push(1 + i);
 }

 // 2. Create a pool_id deterministically from these 50 currencies.
 let pool_id: AccountIdOf<Test> = calculate_pool_id(¤cies);

 // 3. Use a polynomial curve with a large cubic coefficient to grow

quickly.
 // If you want an even more explosive cost, try increasing 'm'.
 let curve = Curve::Polynomial(PolynomialParameters {
 m: Float::from_num(1),
 n: Float::from_num(2),
 o: Float::from_num(3),
 });

 // 4. Provide a huge initial collateral so we don't fail from

insufficient funds.
 // We want to see if the cost arithmetic itself will overflow.
 let initial_collateral = u128::MAX / 10;

 // Build the pool with all 50 currencies, each initially at zero

supply.
 ExtBuilder::default()
 .with_native_balances(vec![(ACCOUNT_00, ONE_HUNDRED_KILT)]) //

for fees
 .with_collaterals(vec![DEFAULT_COLLATERAL_CURRENCY_ID])
 .with_bonded_balance(vec![
 (DEFAULT_COLLATERAL_CURRENCY_ID, ACCOUNT_00,

initial_collateral),
])

24

 .with_pools(vec![(
 pool_id.clone(),
 generate_pool_details(
 currencies.clone(),
 curve,
 true, // transferable
 None, // no forced state
 None, // manager
 Some(DEFAULT_COLLATERAL_CURRENCY_ID),
 None,
 None,
),
)])
 .build_and_execute_with_sanity_tests(|| {

 // --
 // 5. MINT INTO EACH CURRENCY TO BUILD LARGE SUPPLY
 // --
 // By minting a large amount in each currency, we

significantly raise
 // its supply. This will become part of the

"accumulated_passive_issuance"
 // for the *other* currencies in subsequent calls.
 let mint_each = 1u128;
 let max_cost = u128::MAX; // effectively "no slippage" limit

 let origin:RuntimeOrigin =

frame_system::RawOrigin::Signed(ACCOUNT_00).into();
 for (idx, _currency_id) in

currencies.iter().enumerate() {

 let result = BondingPallet::mint_into(
 origin.clone(),
 pool_id.clone(),
 idx as u32, // currency index in the bonded

list
 ACCOUNT_00, // beneficiary
 mint_each, // amount to mint
 max_cost,
 50, // curve type or slip page param
);

 match result {
 Ok(_) => {

25

 // If it succeeded, it means you

haven't overflowed yet with these numbers
 println!("Test minted amount

correctly");
 }
 Err(e) => {
 println!("Test error => {:?}", e);
 }
 }
 }
 });
}

2. Test cases for “Configurations of PolynomialParameters can
lead to overflow”

The following test case can be executed in
pallets/pallet-bonded-coins/src/tests/transactions/mint_into.rs.

#[test]
fn single_currency_mint_until_overflow() {
 // 1. We only have one currency in the bonded list
 let currency_id = DEFAULT_BONDED_CURRENCY_ID;
 let pool_id: AccountIdOf<Test> = calculate_pool_id(&[currency_id]);

 // 2. Use a polynomial curve that grows quickly
 // so that repeated small mints eventually reach overflow

territory.
 let curve = Curve::Polynomial(PolynomialParameters {
 m: Float::from_num(10u128.pow(15)),
 n: Float::from_num(10000),
 o: Float::from_num(1),
 });

 // 3. Provide enough collateral so we never fail due to insufficient

funds
 // (we want to see an arithmetic overflow, not a FundsUnavailable

error).
 let initial_collateral = u128::MAX / 10;

 // 4. Build the pool with a single currency, starting at zero

supply.
 ExtBuilder::default()
 .with_native_balances(vec![(ACCOUNT_00, ONE_HUNDRED_KILT)]) //

26

for fees
 .with_collaterals(vec![DEFAULT_COLLATERAL_CURRENCY_ID])
 .with_bonded_balance(vec![
 (DEFAULT_COLLATERAL_CURRENCY_ID, ACCOUNT_00,

initial_collateral),
])
 .with_pools(vec![(
 pool_id.clone(),
 generate_pool_details(
 vec![currency_id],
 curve,
 true, // transferable
 None, // no forced state
 None, // manager
 Some(DEFAULT_COLLATERAL_CURRENCY_ID),
 None,
 None,
),
)])
 .build_and_execute_with_sanity_tests(|| {
 let origin:RuntimeOrigin =

frame_system::RawOrigin::Signed(ACCOUNT_00).into();
 let max_cost = u128::MAX; // no practical slippage limit

 let mut total_minted = 0u128;
 loop {
 // Mint exactly 1 token each time
 let result = BondingPallet::mint_into(
 origin.clone(),
 pool_id.clone(),
 0, // index of the single currency
 ACCOUNT_00, // beneficiary
 10u128.pow(9),
 max_cost, // slippage guard
 1,
);

 match result {
 Ok(_) => {
 total_minted = total_minted.saturating_add(1);
 // If it succeeds, keep going until we overflow.
 }
 Err(e) => {
 println!(
 "Minting overflowed (or failed) after

27

iteration {}. Error: {:?}",
 total_minted, e
);
 // If this is ArithmeticError::Overflow, we've

triggered an overflow as intended.
 break;
 }
 }
 }
 });
}

#[test]
fn mint_with_50_currencies_accumulate_passive() {
 // 1. Create 50 different bonded currency IDs
 let mut currencies = Vec::with_capacity(50);
 for i in 0..50 {
 currencies.push(1 + i);
 }

 // 2. Create a pool_id deterministically from these 50 currencies.
 let pool_id: AccountIdOf<Test> = calculate_pool_id(¤cies);

 // 3. Use a polynomial curve with a large cubic coefficient to grow

quickly.
 // If you want an even more explosive cost, try increasing 'm'.
 let curve = Curve::Polynomial(PolynomialParameters {
 m: Float::from_num(1),
 n: Float::from_num(2),
 o: Float::from_num(3),
 });

 // 4. Provide a huge initial collateral so we don't fail from

insufficient funds.
 // We want to see if the cost arithmetic itself will overflow.
 let mut funded_accounts = Vec::new();
 let mut native_accounts = Vec::new();

 let initial_collateral_each = u128::MAX / 10 / 50 ; // arbitrary

large share
 for i in 0..50 {
 let acct = AccountId::new([i as u8; 32]);
 funded_accounts.push((DEFAULT_COLLATERAL_CURRENCY_ID,

acct.clone(), initial_collateral_each));
 native_accounts.push((acct, ONE_HUNDRED_KILT))

28

 }

 // Build the pool with all 50 currencies, each initially at zero

supply.
 ExtBuilder::default()
 .with_native_balances(native_accounts) // for fees
 .with_collaterals(vec![DEFAULT_COLLATERAL_CURRENCY_ID])
 .with_bonded_balance(funded_accounts)
 .with_pools(vec![(
 pool_id.clone(),
 generate_pool_details(
 currencies.clone(),
 curve,
 true, // transferable
 None, // no forced state
 None, // manager
 Some(DEFAULT_COLLATERAL_CURRENCY_ID),
 None,
 None,
),
)])
 .build_and_execute_with_sanity_tests(|| {

 // --
 // 5. MINT INTO EACH CURRENCY TO BUILD LARGE SUPPLY
 // --
 // By minting a large amount in each currency, we

significantly raise
 // its supply. This will become part of the

"accumulated_passive_issuance"
 // for the *other* currencies in subsequent calls.
 let big_mint_each = 2u128.saturating_mul(10u128.pow(16)); //

try bigger if you need more extreme
 let max_cost = u128::MAX; // effectively "no slippage" limit

 for (idx, _currency_id) in currencies.iter().enumerate() {
 let account =

AccountId::new([idx.try_into().unwrap(); 32]);
 let origin:RuntimeOrigin =

frame_system::RawOrigin::Signed(account.clone()).into();

 let result = BondingPallet::mint_into(
 origin.clone(),
 pool_id.clone(),

29

 idx as u32, // currency index in the bonded

list
 account, // beneficiary
 big_mint_each, // amount to mint
 max_cost,
 50, // curve type or slip page param
);

 match result {
 Ok(_) => {
 // If it succeeded, it means you

haven't overflowed yet with these numbers
 println!("Test minted amount

without overflow!");
 }
 Err(e) => {
 println!("Test error => {:?}", e);
 // If you see

ArithmeticError::Overflow, you've successfully triggered an overflow
 }
 }
 }
 });
}

30

	KILT Bonding Curve Pallet
	Table of Contents
	
	License
	
	Disclaimer
	Introduction
	Purpose of This Report
	Codebase Submitted for the Audit
	Methodology
	Functionality Overview

	How to Read This Report
	
	Code Quality Criteria
	
	Summary of Findings
	
	Detailed Findings
	1.​Potential loss of funds due to can_deposit error during the refund process
	2.​Configurations of PolynomialParameters can lead to overflow
	3.​The MaxConsumers constraint limits multi-asset pool usability
	4.​Incomplete asset cleanup in finish_destroy extrinsic may leave residual tokens
	5.​Centralization risks
	6.​Possibility of setting different management teams for assets within the same pool
	7.​Unused _owner parameter in reset_team function
	8.​Missing validations of currencies list during pool creation
	9.​ Minimal error handling in try_from implementation
	10.​ Redundant defensive assertion in refund_account function
	11.​ Inconsistent pool lock state
	12.​ Possible optimization in polynomial curve
	13.​ Manager change allowed in destroying state pools
	14.​ Contracts should implement a two-step ownership transfer
	15.​ Unresolved TODO and FIXME comments in the codebase
	16.​ Missing event emission for reset_team
	17.​ Redundant manager and team updates are allowed
	18.​ Dependencies are subject to publicly known vulnerabilities

	Appendix: Test Cases
	1.​Test case for “The MaxConsumers constraint limits multi-asset pool usability”
	2.​Test cases for “Configurations of PolynomialParameters can lead to overflow”

