

- Confidential, 16 pages -

InvArch Baseline Security Assurance
Threat model and hacking assessment report

V1,0, 12 April 2024

Tobias Müller tobias@srlabs.de

Florian Wilkens florian@srlabs.de

Abstract. This work describes the result of the thorough and
independent security assurance audit of the InvArch parachain
platform performed by Security Research Labs. Security Research
Labs is a consulting firm that has been providing specialized audit
services in the Polkadot ecosystem since 2019, including for the
Substrate and Polkadot projects.

During this study, InvArch provided access to relevant
documentation and supported the research team. The code of
InvArch was verified to assure that the business logic of the product
is resilient to hacking and abuse.

The research team identified several issues ranging from info to
high severity. In cooperation with the auditors, InvArch already
remediated a subset of the identified high severity issues.

In addition to mitigating the remaining open issues, Security
Research Labs recommends documenting the intended behaviour
to ease further comprehension and deploying runtime fuzzers for
continuous assessment of the code.

mailto:tobias@srlabs.de
mailto:florian@srlabs.de

SRL-InvArch-baseline_assurance-report-online.docx Confidential, Page 2 of 16

Content

1 Motivation and scope .. 3

2 Methodology ... 3

3 Threat modeling and attacks .. 5

4 Findings summary.. 8

5 Detailed findings ... 9

5.1 XCM fee payments waived due to setting FeeManager to Unit type 9

5.2 No XCM delivery fees configured for sibling Parachain messages 9

5.3 Underestimated worst-case weight for OcifStaking::unregister_core ... 9

5.4 Incorrect runtime weights for XCM and a set of pallets 10

5.5 Missing decode depth limit in INV4 pallet allows stack exhaustion 11

5.6 Incorrect benchmarks for dependency Substrate-native pallets 11

5.7 Malicious users can bloat storage at little cost via operate_multisig ... 12

5.8 Incorrect weight returned by pallet_checked_inflation::on_initialize . 13

5.9 Unconditional call decoding in vote_multisig is inefficient 14

6 Evolution suggestions .. 14

6.1 Address currently open security issues ... 15

6.2 Further recommended best practices .. 15

7 Bibliography .. 16

SRL-InvArch-baseline_assurance-report-online.docx Confidential, Page 3 of 16

1 Motivation and scope

InvArch positions itself as a transformative platform in realm of blockchain,
emphasizing the creation of Multichain Accounts that empower users to interact
seamlessly across diverse blockchains with a single non-custodial account. By
leveraging Cross-Consensus Messaging (XCM), it ensures cross-chain account
control.

The network introduces a governance model through a multisig protocol, offering
customizable roles, multisig members, dynamic voting, and self-executing
governance. InvArch utilizes Substrate, Polkadot, ORML and Cumulus Frame as well
as custom pallets to implement its core business logic.

In this engagement, the audit team focused on InvArch’s runtime configuration code
and its custom pallets.

Security Research Labs collaborated with the InvArch team to create an overview of
the threats in scope and the priority of the audit. During the audit, Security Research
Labs created a threat model to guide the efforts on exploring potential security flaws
and realistic attack scenarios.

During the assessment of the codebase, security critical parts were identified and
security issues in these components were communicated to the InvArch
development team in the form of GitHub issues in a private repository.

Repository Priority Component(s)

Repo High INV4 Pallet

Rings Pallet

Checked Inflation Pallet

Runtime Configuration (tinkernet)

Medium OCIF Pallet

Table 1. In-scope InvArch components with audit priority

2 Methodology

This report details the baseline security assurance results for the InvArch parachain
with the aim of creating transparency in four steps: treat modeling, security design
coverage checks, implementation baseline check, and finally remediation support:

Threat Modeling. The threat model is based on hacking incentives, i.e., the
motivations to achieve the goals of breaching the confidentiality, integrity, or
availability of InvArch parachain nodes. For each hacking incentive, hacking scenarios
were postulated by which these goals could be achieved. The threat model provides
guidance for the design, implementation, and security testing of InvArch. Our threat
modeling process is outlined in Chapter 3.

Security design coverage check. Next, the InvArch design was reviewed for coverage
against relevant hacking scenarios. For each scenario, the following two aspects were
investigated:

a. Coverage. Is each potential security vulnerability sufficiently covered?

SRL-InvArch-baseline_assurance-report-online.docx Confidential, Page 4 of 16

b. Underlying assumptions. Which assumptions must hold true for the design
to effectively reach the desired security goal?

Implementation baseline check. As a third step, the current InvArch implementation
was tested for openings whereby any of the defined hacking scenarios could be
executed.

To effectively review the InvArch codebase, we derived our code review strategy
based on the threat model that we established as the first step. For each identified
threat, hypothetical attacks were developed and mapped to their corresponding
threat category, as outlined in Chapter 3.

Prioritizing by risk, the codebase was assessed for present protections against the
respective threats and attacks as well as the vulnerabilities that make these attacks
possible. For each threat, the auditors:

1. Identified the relevant parts of the codebase, for example the relevant
pallets and the runtime configuration.

2. Identified viable strategies for the code review. Manual code audits, fuzz
testing, and manual tests were performed where appropriate.

3. Ensured the code did not contain any vulnerabilities that could be used to
execute the respective attacks, otherwise, ensured that sufficient protection
measures against specific attacks were present.

4. Immediately reported any vulnerability that was discovered to the
development team along with suggestions around mitigations.

We carried out a hybrid strategy utilizing a combination of code review and dynamic
tests (e.g., fuzz testing) to assess the security of the InvArch codebase.

While fuzz testing and dynamic tests establish baseline assurance, the focus of this
audit was a manual code review of the InvArch codebase to identify logic bugs,
design flaws, and best practice deviations. We reviewed the InvArch repository up to
the commit ea35f6fbe2f364897cf7358128ccec51550e6e5a for the runtime and
commit ce1c1421550019472c622b7896e3fbd7f03d2ec5 for the pallets. The approach
of the review was to trace the intended functionality of the runtime modules in scope
and to assess whether an attacker can bypass, misuse, or abuse these components
or trigger unexpected behavior on the blockchain due to logic bugs or missing checks.
Since the InvArch codebase is entirely open source, it is realistic that a malicious
actor would analyze the source code while preparing an attack.

Fuzz testing is a technique to identify issues in code that handles untrusted input,
which in InvArch's case is extrinsics in the runtime. (Note that the network part is
handled by Substrate, which was not in scope for this review, but is built with a strong
emphasis on security and where fuzz testing is also used). Fuzz testing works by
taking some valid input for a method under test, applying a semi-random mutation
to it, and then invoking the method under test again with this semi-valid input.
Through repeating this process, fuzz testing can unearth inputs that would cause a
crash or other undefined behavior (e.g., integer overflows) in the method under test.
The fuzz testing methods written for this assessment utilized the test runtime
Genesis configuration as well as mocked externalities to execute the fuzz test
effectively against the extrinsics in scope.

SRL-InvArch-baseline_assurance-report-online.docx Confidential, Page 5 of 16

Remediation support. The final step is supporting InvArch with the remediation
process of the identified issues. Each finding was documented and published with
mitigation recommendations. Once the mitigation solution is implemented, the fix is
verified by the auditors to ensure that it mitigates the issue and does not introduce
other bugs.

During the audit, findings were shared via a private GitHub repository. We also used
a private Telegram group chat for asynchronous communication and weekly status
updates.

3 Threat modeling and attacks

The goal of the threat model framework is to be able to determine specific areas of
risk in InvArch’s blockchain system. Familiarity with these risk areas can provide
guidance for the design of the implementation stack, the actual implementation of
the stack, as well as the security testing. This section introduces how risk is defined
and provides an overview of the identified threat scenarios. The Hacking Value,
categorized into low, medium, and high, considers the incentive of an attacker, as
well as the effort required by an attacker to successfully execute the attack. The
hacking value is calculated as:

𝐻𝑎𝑐𝑘𝑖𝑛𝑔 𝑉𝑎𝑙𝑢𝑒 =
𝐼𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒

𝐸𝑓𝑓𝑜𝑟𝑡

While incentive describes what an attacker might gain from performing an attack
successfully, effort estimates the complexity of this same attack. The degrees of
incentive and effort are defined as follows:

Incentive:

• Low: Attacks offer the hacker little to no gain from executing the threat.

• Medium: Attacks offer the hacker considerable gains from executing the
threat.

• High: Attacks offer the hacker high gains by executing this threat.

Effort:

• Low: Attacks are easy to execute. They require neither elaborate technical
knowledge nor considerable amounts of resources.

• Medium: Attacks are difficult to execute. They might require bypassing
countermeasures, the use of expensive resources or a considerable amount
of technical knowledge.

• High: Attacks are difficult to execute. The attacks might require in-depth
technical knowledge, vast amounts of expensive resources, bypassing
countermeasures, or any combination of these factors.

Incentive and Effort are divided according to Table 2.

Hacking Value Low incentive Medium Incentive High Incentive

High effort Low Medium Medium

https://github.com/InvArch/SRLabs-findings/

SRL-InvArch-baseline_assurance-report-online.docx Confidential, Page 6 of 16

Medium effort Medium Medium High

Low effort Medium High High

Table 2. Hacking value measurement scale.

Hacking scenarios are classified by the risk they pose to the system. The risk level,
also categorized into low, medium, and high, considers the hacking value, as well as
the damage that could result from successful exploitation. The risk of a threat
scenario is calculated by the following formula:

𝑅𝑖𝑠𝑘 = 𝐷𝑎𝑚𝑎𝑔𝑒 × 𝐻𝑎𝑐𝑘𝑖𝑛𝑔 𝑉𝑎𝑙𝑢𝑒 =
𝐷𝑎𝑚𝑎𝑔𝑒 × 𝐼𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒

𝐸𝑓𝑓𝑜𝑟𝑡

Damage describes the negative impact that a given attack, performed successfully,
would have on the victim. The degrees of damage are defined as follows:

Damage:

• Low: Risk scenarios would cause negligible damage to the InvArch network

• Medium: Risk scenarios pose a considerable threat to InvArch’s functionality
as a network.

• High: Risk scenarios pose an existential threat to InvArch’s network
functionality.

Damage and Hacking Value are divided according to Table 3.

Risk Low hacking value Medium hacking
value

High hacking
value Low damage Low Medium Medium

Medium damage Medium Medium High

High damage Medium High High

Table 3. Risk measurement scale

After applying the framework to the InvArch system, different threat scenarios
according to the CIA triad were identified.

The CIA triad describes three security promises that can be violated by a hacking
attack, namely confidentiality, integrity, availability.

Confidentiality:

Confidentiality threat scenarios concern sensitive information regarding the
blockchain network and its users. Native tokens are units of value that exist on the
blockchain - confidentiality threat scenarios include for example attackers abusing
information leaks to steal native tokens from nodes participating in the InvArch
ecosystem and claiming the assets (represented in the token) for themselves.

Integrity:

Integrity threat scenarios threaten to disrupt the functionality of the entire network
by undermining or bypassing the rules that ensure that InvArch

SRL-InvArch-baseline_assurance-report-online.docx Confidential, Page 7 of 16

transactions/operations are fair and equal for each participant. Undermining
InvArch’s integrity often comes with a high monetary incentive, like for example, if
an attacker can double spend or mint tokens for themselves. Other threat scenarios
do not yield an immediate monetary reward, but rather, could threaten to damage
InvArch’s functionality and, in turn, its reputation. For example, invalidating already
executed transactions would violate the core promise that transactions on the
blockchain are irreversible.

Availability:

Availability threat scenarios refer to compromising the availability of data stored by
the InvArch network as well as the availability of the network itself to process normal
transactions. Important threat scenarios regarding availability for blockchain
systems include Denial of Service (DoS) attacks on participating nodes, stalling the
transaction queue, and spamming.

Table 4 provides a high-level overview of the hacking risks concerning InvArch with
identified example threat scenarios and attacks, as well as their respective hacking
value and effort. The complete list of threat scenarios identified along with attacks
that enable them are described in the threat model deliverable SRL-InvArch-
Threat-Model.xlsx that SRL has previously shared with InvArch. This list can
serve as a starting point to the InvArch developers to guide their security outlook for
future feature implementations. By thinking in terms of threat scenarios and attacks
during code review or feature ideation, many issues can be caught or even avoided
altogether.

For InvArch, the auditors attributed the most hacking value to the integrity class of
threats. Since the efforts required to exploit this kind of issue is considered lower,
we identified threat scenarios to the integrity of InvArch as of the highest risk
category. Undermining the integrity of the InvArch chain means making
unauthorized modifications to the system. Some of the scenarios can have a direct
effect on the financials of the system. This can include market manipulation, gaining
tokens for free or as a vault stealing collateral without repercussions.

Security
promise

Hacking
value

Example threat
scenarios

Hacking
effort

Example attack
ideas

Confidentiality High Steal token from
node (scenario
also applies to
single node)

High Attack to calculate
private keys of
network participants

Integrity High Circumvent
approval
mechanism of
DAOs to execute
calls without
approval majority

Medium Multisig approval
circumvention

Availability Medium Delay the new
block production
by slowing it

Low

Transaction
spamming

SRL-InvArch-baseline_assurance-report-online.docx Confidential, Page 8 of 16

Table 4. Risk overview. The threats for InvArch’s blockchain were classified using the
CIA security triad model, mapping threats to the areas: (1) Confidentiality, (2)
Integrity, and (3) Availability.

4 Findings summary

We identified 8 issues – summarized in Table 5 – during our analysis of the runtime
modules in scope in the InvArch codebase that enable some of the attacks outlined
above. In summary, 0 critical severity, 5 high severity, 2 medium severity, 0 low
severity and 1 info severity issues were found.

Please note that in our methodology, critical severity issues refer to high severity
issues that could be exploited immediately by an attacker on already deployed
infrastructure, including a parachain or a non-incentivized testnet.

Issue Severity References Status

All XCM fee payments are
waived due to setting
FeeManager to the unit type

High Issue #8 Open

No XCM delivery fees
configured for sibling
parachain messages

High Issue #7 Open

Underestimated worst-case
weight for
OcifStaking::unregister_
core

High Issue #6 Open

Incorrect runtime weights
for XCM and a set of pallets

High Issue #5 Open

Missing decode depth limit
in INV4 pallet allows stack
exhaustion

High Issue #1 Fixed

Incorrect benchmarks for
dependency Substrate-
native pallets

Medium Issue #4 Open

Malicious users can bloat
storage at little cost via
operate_multisig

Medium Issue #3 Open

Incorrect weight returned
by
pallet_checked_inflation
::on_initialize

Low Issue #9 Open

Unconditional call decoding
in vote_multisig is
inefficient and potentially
inflates weight

Info Issue #2 Fixed

Table 5 Issue summary

https://github.com/InvArch/SRLabs-findings/issues/8
https://github.com/InvArch/SRLabs-findings/issues/7
https://github.com/InvArch/SRLabs-findings/issues/6
https://github.com/InvArch/SRLabs-findings/issues/5
https://github.com/InvArch/SRLabs-findings/issues/1
https://github.com/InvArch/InvArch-Frames/commit/a0273e1dea2a96ea1e3e08e51334fabf58103134
https://github.com/InvArch/SRLabs-findings/issues/4
https://github.com/InvArch/SRLabs-findings/issues/3
https://github.com/InvArch/SRLabs-findings/issues/9
https://github.com/InvArch/SRLabs-findings/issues/2
https://github.com/InvArch/InvArch-Frames/commit/a0273e1dea2a96ea1e3e08e51334fabf58103134

SRL-InvArch-baseline_assurance-report-online.docx Confidential, Page 9 of 16

5 Detailed findings

5.1 XCM fee payments waived due to setting FeeManager to Unit type

Location Tinkernet Runtime

Tracking Issue #8

Attack impact Attackers can cause congestion, possibly leading to
long delivery delays, storage exhaustion and/or
dropping of messages.

Severity High

Status Open

The current XcmConfig for both tinkernet and invarch configures XCM fees
through type FeeManager = (); effectively waiving all fee payments rendering
fee-based congestion control ineffective as fees are not actually charged.

The risk is that attackers can cause congestion, potentially leading to long delivery
delays, storage exhaustion and/or message drops.

A suitable mitigation is to not waive fees by configuring an appropriate FeeHandler,
as performed in the Kusama ecosystem.

5.2 No XCM delivery fees configured for sibling Parachain messages

Location Tinkernet Runtime

Tracking Issue #7

Attack impact Attackers can cause congestion, possibly leading to
long delivery delays, storage exhaustion and/or
dropping of messages.

Severity High

Status Open

There are no fees charged for delivering XCM messages across parachains. In the
tinkernet runtime configuration, this is configured
through PriceForSiblingDelivery by type PriceForSiblingDelivery = ();.

The risk is that attackers may send spam messages across chains without paying an
fee. Excessive messages could lead to XCM queue size exhaustion by excessive
storage usage until messages are delivered. This could also lead to delays in message
delivery for other users.

To mitigate this issue, charge adequate message delivery fees in the runtime
configuration template. To prevent excessive delivery times and storage exhaustion,
an exponential fee mechanism should be used as configured in Kusama.

5.3 Underestimated worst-case weight for OcifStaking::unregister_core

Location OCIF Pallet

Tracking Issue #6

https://github.com/InvArch/SRLabs-findings/issues/8
https://github.com/InvArch/InvArch-Node/blob/b99d5b2828fac4620cd887b09894d3aa9252ef84/tinkernet/runtime/src/xcm_config.rs#L223
https://github.com/polkadot-fellows/runtimes/blob/522df29f65dc188c5ae99ed58aac441b99b497d5/system-parachains/asset-hubs/asset-hub-kusama/src/xcm_config.rs#L592
https://github.com/InvArch/SRLabs-findings/issues/7
https://github.com/InvArch/InvArch-Node/blob/b99d5b2828fac4620cd887b09894d3aa9252ef84/tinkernet/runtime/src/xcm_config.rs#L247
https://github.com/polkadot-fellows/runtimes/blob/5bf21d73c0456eb7c5910aafa78445f93a61bdc9/system-parachains/asset-hubs/asset-hub-kusama/src/lib.rs#L684-L684
https://github.com/InvArch/SRLabs-findings/issues/6

SRL-InvArch-baseline_assurance-report-online.docx Confidential, Page 10 of 16

Attack impact Under-weighted extrinsics enable attacker to create
overweight blocks that could cause block production
timeouts.

Severity High

Status Open

The unregister_core extrinsic in OcifStaking is underestimating the worst-case
weight by a factor 100.

In the worst-case, the unregister_core function underestimates the weight by
factor 100. A single core can hold up to MaxStakersPerCore unique stakers that can
unstake at the same time by calling unregister_core extrinsic.

#[pallet::call_index(1)]
#[pallet::weight(
 <T as Config>::WeightInfo::unregister_core() +
 <T as Config>::MaxStakersPerCore::get().div(100) * <T as
Config>::WeightInfo::unstake()
)]
pub fn unregister_core(origin: OriginFor<T>) ->
DispatchResultWithPostInfo {
...

A risk exists, because extrinsics must have a weight that is calculated based on the
worst-case computational complexity and database access of the extrinsic. Under-
weighted extrinsics enable attackers to create overweight blocks that could
subsequently cause block production timeouts. This can slow down transaction
processing and potentially stall the chain if all collators miss their block production
slots.

To mitigate the risk, ensure that unregister_core is using the worst-case weight of:

<T as Config>::WeightInfo::unregister_core() +
<T as Config>::MaxStakersPerCore::get() * <T as
Config>::WeightInfo::unstake()

5.4 Incorrect runtime weights for XCM and a set of pallets

Location Tinkernet Runtime

Tracking Issue #5

Attack impact Under weighted extrinsics enables attacker to create
overweight blocks that could cause block production
timeouts.

Severity High

Status Open

The runtime weights for pallet XCM is configured using TestWeightInfo.

In tinkernet, runtime weights are configured to Zero via type WeightInfo = (); as
for the following pallets:

▪ orml_tokens

▪ orml_currencies

https://github.com/InvArch/InvArch-Frames/blob/fecfbd863b88b7b990927f9922e38b1299e7dc5d/OCIF/staking/src/lib.rs#L504
https://github.com/InvArch/InvArch-Frames/blob/fecfbd863b88b7b990927f9922e38b1299e7dc5d/OCIF/staking/src/lib.rs#L504
https://github.com/InvArch/InvArch-Frames/blob/fecfbd863b88b7b990927f9922e38b1299e7dc5d/OCIF/staking/src/lib.rs#L504
https://github.com/InvArch/SRLabs-findings/issues/5
https://github.com/InvArch/InvArch-Node/blob/b99d5b2828fac4620cd887b09894d3aa9252ef84/tinkernet/runtime/src/xcm_config.rs#L315

SRL-InvArch-baseline_assurance-report-online.docx Confidential, Page 11 of 16

▪ orml_vesting

▪ pallet_scheduler

▪ pallet_preimage

▪ pallet_multisig

▪ pallet_uniques

▪ orml_tokens2

The risk stems from these pallet extrinsic weights not depending on the actual
runtime configuration. This could lead to underweight extrinsic. Setting the weights
to () effectively make it a zero-cost execution for extrinsic which can lead to an
attacker spamming and bloating network storage freely.

All pallet extrinsics, even the Substrate ones, should be benchmarked with the actual
runtime configuration by including them in the define_benchmarks! block.

A best practice example can be found in the Kusama runtime implementation.

5.5 Missing decode depth limit in INV4 pallet allows stack exhaustion

Location INV4 Pallet

Tracking Issue #1

Attack impact Stack exhausting could lead to a crash of the runtime
which in turn impacts the availability of the nodes

Severity High

Status Fixed

The INV4 pallet allows executing an encoded call via the extrinsic vote_multisig.
The call has to be proposed for voting first by operate_multisig and gets decoded
without any depth limit once a vote was processed via vote_multisig.

The risk is that attackers can cause stack exhaustion, which will lead to a crash of the
wasm runtime. Having a user-reachable panic in an extrinsic is a bad situation but it
can be recovered by creating blocks without including the failing calls from gossip
(possibly with a small number of patched collators/validators). That way a chain can
continue producing blocks so that an emergency code upgrade can be applied via
on-chain governance.

This risk can be mitigated by using a depth limit when decoding calls by way of
decode_with_depth_limit.

5.6 Incorrect benchmarks for dependency Substrate-native pallets

Location Tinkernet runtime

Tracking Issue #4

Attack impact Under weighted extrinsics enables attacker to create
overweight blocks that could cause block production
timeouts.

Severity Medium

Status Open

https://docs.substrate.io/test/benchmark/#adding-benchmarks
https://github.com/paritytech/polkadot/blob/01fd49a7fafa01f133e2dec538a2ef7c697a26aa/runtime/kusama/src/lib.rs#L1578-L1587
https://github.com/InvArch/SRLabs-findings/issues/1
https://github.com/InvArch/InvArch-Frames/commit/a0273e1dea2a96ea1e3e08e51334fabf58103134
https://github.com/InvArch/InvArch-Frames/blob/6db87cb73ca8ed507e151a0839de69f961f6e46a/INV4/pallet-inv4/src/multisig.rs#L243
https://github.com/InvArch/SRLabs-findings/issues/4

SRL-InvArch-baseline_assurance-report-online.docx Confidential, Page 12 of 16

InvArch depends on a subset of FRAME pallets. The benchmarks for these pallets are
done using the substrate-node template, instead of the correct InvArch runtime
(i.e., tinkernet).

InvArch relies on weights for their FRAME pallet dependencies that are
benchmarked with the substrate-node template runtime instead of the actual
runtime.

Below you can find an example of an incorrect benchmark for pallet_identity:

impl pallet_identity::Config for Runtime {
...
type WeightInfo = pallet_identity::weights::SubstrateWeight<Runtime>;
}

So far, this issue has been spotted for most pallets in the runtime, also for some that
are already part of define_benchmark!

As pallet extrinsic benchmarks can be dependent on the actual runtime
configuration, this can lead to either overweighted or underweighted extrinsics for
all extrinsics that are using the substrate-node template runtime weights
(SubstrateWeight).

All pallet extrinsics, even the Substrate ones, should be benchmarked with the actual
runtime configuration by including them in the define_benchmarks! block.

A best practice example can be found in the Kusama runtime implementation.

5.7 Malicious users can bloat storage at little cost via operate_multisig

Location INV4 Pallet

Tracking Issue #3

Attack impact Storage clutter

Severity Medium

Status Open

The operate_multisig extrinsic (and more specifically the inner_operate_multisig
function) accepts parameter like metadata and call. These will ultimately be inserted
into the Multisig storage if owner_balance is below minimum_support. As both the
boxed call and the metadata arguments have a significant size (up to 60kb
combined), a malicious user could insert a high number of Multisig objects into the
storage (utilizing accounts that do not have approval majority). This action can be
executed the cost of the weight for operate_multisig only.

This is the relevant snippet from inner_operate_multisig:

// Wrap the call making sure it fits the size boundary
let bounded_call: BoundedCallBytes<T> = (*call)
 .encode()
 .try_into()
 .map_err(|_| Error::<T>::MaxCallLengthExceeded)?;
 // SRL: the above is bounded to Config::MaxCallLength which is set
to 50k in tinkernet

https://github.com/InvArch/InvArch-Node/blob/ea35f6fbe2f364897cf7358128ccec51550e6e5a/tinkernet/runtime/src/lib.rs#L757
https://docs.substrate.io/test/benchmark/#adding-benchmarks
https://github.com/polkadot-fellows/runtimes/blob/main/relay/kusama/src/lib.rs#L1983-L2016
https://github.com/InvArch/SRLabs-findings/issues/3
https://github.com/InvArch/InvArch-Frames/blob/c37d52bd1d2f2f69c0be873db52343ab85398a7a/INV4/pallet-inv4/src/lib.rs#L415
https://github.com/InvArch/InvArch-Frames/blob/c37d52bd1d2f2f69c0be873db52343ab85398a7a/INV4/pallet-inv4/src/multisig.rs#L120

SRL-InvArch-baseline_assurance-report-online.docx Confidential, Page 13 of 16

// Insert proposal in storage, it's now in the voting stage
Multisig::<T>::insert(
 core_id,
 call_hash,
 MultisigOperation {
 tally: Tally::from_parts(
 owner_balance,
 Zero::zero(),
 BoundedBTreeMap::try_from(BTreeMap::from([(
 owner.clone(),
 Vote::Aye(owner_balance),
)]))
 .map_err(|_| Error::<T>::MaxCallersExceeded)?,
),
 original_caller: owner.clone(),
 actual_call: bounded_call,
 metadata,
 // SRL: metadata is bounded to Config::MaxMetadata which is set
to 10k in tinkernet
 fee_asset,
 },
);

An attacker could call the extrinsic multiple times to clutter the storage.

To mitigate this issue, we suggest implementing deposits for all extrinsic that save
data to the storage to prevent storage bloating issues. The deposit can optionally be
refunded once the storage is freed up, i.e., the call is executed. This can be achieved
via the FeeCharger that is already used to collect the deposit for creating a Core.

5.8 Incorrect weight returned by pallet_checked_inflation::on_initialize

Location Checked Inflation Pallet

Tracking Issue #9

Attack impact Underestimated weight may lead to block deadlines
not being met in the worst case

Severity Low

Status Open

The on_initialize hook of all included pallets are executed as part of every
produced block. Their return values of type Weight are used by the runtime to
calculate the remaining time available for extrinsic calls in the block to still meet the
block deadline.

The Weight returned by pallet_checked_inflation::on_initialize does not
correctly reflect the storage accesses made in the respective control flow paths and
thus underestimates the actual runtime required to execute the function. The
following return statements are affected:

In line 181:
// should be: T::DbWeight::get().reads_writes(7, 3)
T::DbWeight::get().reads_writes(3, 4)

In line 247:
// should be: T::DbWeight::get().reads_writes(8, 2)
T::DbWeight::get().reads_writes(5, 2)

https://github.com/InvArch/InvArch-Frames/blob/c37d52bd1d2f2f69c0be873db52343ab85398a7a/INV4/pallet-inv4/src/inv4_core.rs#L75
https://github.com/InvArch/SRLabs-findings/issues/9
https://github.com/InvArch/InvArch-Frames/commit/a0273e1dea2a96ea1e3e08e51334fabf58103134
https://github.com/InvArch/InvArch-Frames/blob/c37d52bd1d2f2f69c0be873db52343ab85398a7a/pallet-checked-inflation/src/lib.rs#L181
https://github.com/InvArch/InvArch-Frames/blob/c37d52bd1d2f2f69c0be873db52343ab85398a7a/pallet-checked-inflation/src/lib.rs#L247

SRL-InvArch-baseline_assurance-report-online.docx Confidential, Page 14 of 16

In line 249:
// should be: T::DbWeight::get().reads_writes(6, 2)
T::DbWeight::get().reads_writes(4, 2)

In line 252:
// should be: T::DbWeight::get().reads(6)
T::DbWeight::get().reads(4)

While the issue is not directly exploitable, as attackers cannot actively call an
on_initialize hook compared to an extrinsic, a wrongly estimated Weight affects
the remaining runtime of any block as the hook is included in all of them. In the
worst-case this can lead to block deadlines not being met as the runtime tries to fit
in a costly extrinsic that would have fit given the wrongly estimated runtime budget.

To mitigate this, adjust the affected return statements and continuously update and
review the values in case of changes in business logic that alter the number of storage
accesses performed.

5.9 Unconditional call decoding in vote_multisig is inefficient and potentially inflates
weight

Location INV4 Pallet

Tracking Issue #2

Attack impact Unnecessary decoding of calls may lead to higher
resource consumption

Severity Info

Status Fixed

The vote_multisig extrinsic processes a given vote on a previously proposed call
and executes it once support and approval thresholds are met.
However, the decoding of the proposed call executes before the thresholds are
tested although the decode result is only needed in case the conditions are met.

While this issue is not directly security related, the unconditional call to decode is
inefficient and poses computational overhead in the case of unmet thresholds. This
problem is increasingly relevant for large multisigs where proposed calls are likely to
stay in an extended voting phase where each call to vote_multisig unnecessarily
decodes the call before just updating the new vote tally.

To mitigate this, simply move the decoding of the proposed call into the condition
after thresholds are checked.

6 Evolution suggestions

The overall impression of the auditors was that InvArch as a product is designed and
written with security in mind. To ensure that InvArch is secure against unknown or
yet undiscovered threats, we recommend considering the evolution suggestions and
best practices described in this section.

https://github.com/InvArch/InvArch-Frames/blob/c37d52bd1d2f2f69c0be873db52343ab85398a7a/pallet-checked-inflation/src/lib.rs#L249
https://github.com/InvArch/InvArch-Frames/blob/c37d52bd1d2f2f69c0be873db52343ab85398a7a/pallet-checked-inflation/src/lib.rs#L252
https://github.com/InvArch/SRLabs-findings/issues/2
https://github.com/InvArch/InvArch-Frames/commit/a0273e1dea2a96ea1e3e08e51334fabf58103134
https://github.com/InvArch/InvArch-Frames/blob/6db87cb73ca8ed507e151a0839de69f961f6e46a/INV4/pallet-inv4/src/multisig.rs#L243
https://github.com/InvArch/InvArch-Frames/blob/6db87cb73ca8ed507e151a0839de69f961f6e46a/INV4/pallet-inv4/src/multisig.rs#L247
https://github.com/InvArch/InvArch-Frames/blob/6db87cb73ca8ed507e151a0839de69f961f6e46a/INV4/pallet-inv4/src/multisig.rs#L247

SRL-InvArch-baseline_assurance-report-online.docx Confidential, Page 15 of 16

6.1 Address currently open security issues

We recommend addressing already known security issues in a timely manner to
prevent attackers from exploiting them – even if an open issue has a limited impact,
an attacker might use it as part of their exploitation chain, which may have a more
severe impact on InvArch.

The issues identified are mainly concerned with underweighted extrinsics which
allows an attacker to perform attacks relatively cheaply. We recommend two main
strategies for short term mitigation of the issues identified: 1) Assign correct weights
and 2) benchmark all pallets with the actual runtime configuration. To sustainably
address weight issues, we suggest a period re-evaluation of the weights to determine
whether the weights assigned still reflect the effort required by attackers.

6.2 Further recommended best practices

Documentation: We recommend producing an explanatory document describing
the higher-level goals and the mechanics of the implemented functionality. A
description of the intended behaviour will help users, developers, and auditors alike
to comprehend the code and to assess whether the implementation matches the
description.

Regular code review and continuous fuzz testing. Regular code reviews are
recommended to avoid introducing new logic or arithmetic bugs, while continuous
fuzz testing can identify potential vulnerabilities early in the development process.
Ideally, InvArch should continuously fuzz their code on each commit made to the
codebase. The Polkadot codebase provides a good example of multiple fuzzing
harnesses based on honggfuzz [3].

Regular updates. New releases of Substrate may contain fixes for critical security
issues. Since InvArch is a product that heavily relies on Substrate, updating to the
latest version as soon as possible whenever a new release is available is
recommended.

SRL-InvArch-baseline_assurance-report-online.docx Confidential, Page 16 of 16

7 Bibliography

[1] [Online]. Available:
https://github.com/paritytech/polkadot/tree/master/xcm/xcm-
simulator/fuzzer.

