

- Confidential, 26 pages -

Corporate Design

2016

Hyperbridge-ISMP Baseline Security Assurance
Threat model and hacking assessment report

V1.1, 28 June 2024

Cayo Fletcher Smith cayo@srlabs.de

Haroon Basheer haroon@srlabs.de

Mostafa Sattari mostafa@srlabs.de

Rachna Shriwas rachna@srlabs.de

Regina Biró regina@srlabs.de

Abstract. This work describes the result of the thorough and independent
security assurance audit performed by Security Research Labs on the
Hyperbridge project. Security Research Labs is a consulting firm that has been
providing specialized audit services in the Polkadot ecosystem since 2019,
including the Substrate and Polkadot projects.

During this study, Hyperbridge provided access to relevant documentation
and supported the research team effectively. The code in scope from the
Hyperbridge implementation was verified to assure that the business logic of
the protocol for bridging blockchain networks is resilient to hacking and
abuse.

The research team identified several issues ranging from high to info level
severity in both the ISMP codebase and its relevant Smart Contract
implementation, many of which concerned the protocol consensus and state
transition validation logic of counterparty blockchains, runtime configuration
and best practice deviation cases in contracts. In cooperation with the
auditors, Hyperbridge already remediated a subset of the identified issues.

In addition to mitigating the remaining open issues, Security Research Labs
also recommends improving the security design through implementing
penalties for trusted actors like Fishermen to prevent misbehavior and
incentivizing off-chain participants to detect and report malicious behavior
by submitting valid fraud proof messages to the network.

SRL-Hyperbridge-ISMP-baseline_assurance-report Confidential, Page 2 of 26

Das Logo Horizontal

— Pos / Neg

3

Content

1 Disclaimer ... 3
2 Motivation and scope ... 4
3 Methodology .. 4
4 Threat modeling and attacks ... 6
5 Findings summary ... 9
6 Detailed findings ... 10
6.1 Nexus runtime waives XCM message delivery fee ... 10
6.2 No XCM delivery fees configured for sibling parachain messages 11
6.3 Stack exhaustion due to missing DecodeLimit .. 11
6.4 Incorrect weight configuration in Nexus runtime ... 11
6.5 Missing runtime benchmark for ISMP pallets ... 12
6.6 Unsigned extrinsincs allow to execute ISMP messages for free 13
6.7 Fishermen can veto StateCommitment after the challenge_period 13
6.8 Missing priority in Fraud Proof messages ... 14
6.9 Same consensus client can be frozen repeatedly ... 15
6.10 Missing benchmarking to calculate weights ... 15
6.11 Unbounded loop leading to block production stalling .. 16
6.12 Timeout overflow due to unsafe arithmetic in request dispatch 16
6.13 Missing Fraud Proof implementation for Beacon consensus clients 17
6.14 Failure of transfer success may result in unexpected behavior 17
6.15 Denial of service to host configuration updates ... 18
6.16 Configuration could be locked without zero-address sanity checks 19
6.17 Configuration could be locked due to the finality of updates 19
6.18 Missing event emissions would impede off-chain monitoring 20
6.19 Gas optimization report .. 20
7 Evolution suggestions .. 21
7.1 Business logic improvement suggestions ... 21
7.2 Address currently open security issues .. 22
7.3 Further recommended best practices .. 22
Bibliography .. 24

SRL-Hyperbridge-ISMP-baseline_assurance-report Confidential, Page 3 of 26

Das Logo Horizontal

— Pos / Neg

3

1 Disclaimer

This report describes the findings and core conclusions derived from the audit carried out by
Security Research Labs within the agreed-on timeframe and scope as detailed in Chapter 2. Please
note that this report does not guarantee that all existing security vulnerabilities were discovered
in the codebase exhaustively and that following all evolution suggestions described in Chapter 7
may not ensure all future code to be bug free.

SRL-Hyperbridge-ISMP-baseline_assurance-report Confidential, Page 4 of 26

Das Logo Horizontal

— Pos / Neg

3

2 Motivation and scope

Blockchains evolve in a trustless and decentralized environment, which by its own nature could
lead to security issues. Ensuring availability and integrity is a priority for Hyperbridge as it is a
multichain interoperability protocol. As such, a security review of the project should not only
highlight the security issues uncovered during the audit process, but also bring additional insights
from an attacker’s perspective, which the Hyperbridge team can then integrate into their own
threat modeling and development process to enhance the security of the product.

Hyperbridge is a chain-agnostic interoperability protocol that enables developers to build
applications that can securely interoperate with any blockchain. The Hyperbridge protocol
presents developers with a unified interface for the multi-chain that allows for secure and trust-
free transfer of assets and data between different blockchains. It is designed to be modular and
extensible, allowing for the integration of new chains and protocols as the multi-chain ecosystem
grows.

At its core, Hyperbridge implements the ISMP messaging framework. ISMP offers developers a
familiar HTTP-like API for facilitating cross-chain requests to initiate specific logic on the
counterpart chain. This includes the ability to send arbitrary data to connected chains via POST
requests and retrieve application storage information on connected chains through GET requests,
with verification through state proofs.

Additionally, Hyperbridge provides a blockchain network that serves as a crypto-economic
coprocessor for aggregating interoperability proofs built using the Substrate framework. Like
other Substrate-based blockchain networks, it is written in Rust, a memory safe programming
language.

Mainly, Substrate-based chains utilize three technologies: a WebAssembly (WASM) based
runtime, decentralized communication via libp2p, and a block production engine. The
Hyperbridge runtime consists of multiple modules compiled into a WASM Binary Large Object
(blob) that is stored on-chain. Nodes execute the runtime code either natively or will execute the
on-chain WASM blob.

Security Research Labs collaborated with the Hyperbridge team to create an overview containing
the runtime modules in scope and their audit priority. The in-scope components and their
assigned priorities are reflected in Table 1. During the audit, Security Research Labs used a threat
modelling to guide efforts on exploring potential security flaws and realistic attack scenarios.

Repository Priority Component(s) Reference

polytope-labs/hyperbridge High ISMP [1]

High Nexus runtime [2]

polytope-labs/evm-solidity High handlerV1.sol
Evmhost.sol

[3]

Table 1 In-scope Hyperbridge components with audit priority

3 Methodology

This report details the baseline security assurance results for the Hyperbridge parachain with the
aim of creating transparency in four steps, treat modeling, security design coverage checks,
implementation baseline check and finally remediation support:

SRL-Hyperbridge-ISMP-baseline_assurance-report Confidential, Page 5 of 26

Das Logo Horizontal

— Pos / Neg

3

1. Threat Modeling. The threat model is considered in terms of hacking incentives, i.e., the
motivations to achieve the goals of breaching the integrity, confidentiality, or availability of
Hyperbridge parachain nodes. For each hacking incentive, hacking scenarios were postulated, by
which these goals could be achieved. The threat model provides guidance for the design,
implementation, and security testing of Hyperbridge. Our threat modeling process is outlined in
Chapter 4.

2. Security design coverage check. Next, the Hyperbridge design was reviewed for coverage
against relevant hacking scenarios. For each scenario, the following two aspects were
investigated:

a. Coverage. Is each potential security vulnerability sufficiently covered?

b. Underlying assumptions. Which assumptions must hold true for the design to effectively
reach the desired security goal?

3. Implementation baseline check. As a third step, the current Hyperbridge implementation was
tested for openings whereby any of the defined hacking scenarios could be executed.

To effectively review the Hyperbridge codebase, we derived our code review strategy based on
the threat model that we established as the first step. For each identified threat, hypothetical
attacks were developed and mapped to their corresponding threat category, as outlined in
Chapter 4.

Prioritizing by risk, the codebase was assessed for present protections against the respective
threats and attacks as well as the vulnerabilities that make these attacks possible. For each threat,
the auditors:

1. Identified the relevant parts of the codebase, for example the relevant pallets and the
runtime configuration.

2. Identified viable strategies for the code review. Manual code audits, fuzz testing, and
manual tests were performed where appropriate.

3. Ensured the code did not contain any vulnerabilities that could be used to execute the
respective attacks, otherwise, ensured that sufficient protection measures against
specific attacks were present.

4. Immediately reported any vulnerability that was discovered to the development team
along with suggestions around mitigations.

We carried out a hybrid strategy utilizing a combination of code review and dynamic tests (e.g.,
fuzz testing) to assess the security of the Hyperbridge codebase.

While fuzz testing and dynamic tests establish a baseline assurance, the focus of this audit was
manual code review of the Hyperbridge codebase to identify logic bugs, design flaws, and best
practice deviations. We reviewed the Hyperbridge repository up to the commit 922aafb. The
approach of the review was to trace the intended functionality of the runtime modules in scope
and to assess whether an attacker can bypass/misuse/abuse these components or trigger
unexpected behavior on the blockchain due to logic bugs or missing checks. Since the Hyperbridge
codebase is entirely open source, it is realistic that a malicious actor would analyze the source
code while preparing an attack.

Fuzz testing is a technique to identify issues in code that handles untrusted input, which in
Hyperbridge's case is extrinsics in the runtime. (Note that the network part is handled by
Substrate, which was not in scope for this review, but is built with a strong emphasis on security

SRL-Hyperbridge-ISMP-baseline_assurance-report Confidential, Page 6 of 26

Das Logo Horizontal

— Pos / Neg

3

and where fuzz testing is also used). Fuzz testing works by taking some valid input for a method
under test, applying a semi-random mutation to it, and then invoking the method under test again
with this semi-valid input. Through repeating this process, fuzz testing can unearth inputs that
would cause a crash or other undefined behavior (e.g., integer overflows) in the method under
test. The fuzz testing methods written for this assessment utilized the test runtime Genesis
configuration as well as mocked externalities to execute the fuzz test effectively against the
extrinsics in scope.

4. Remediation support. The final step is supporting Hyperbridge with the remediation process
of the identified issues. Each finding was documented and published with mitigation
recommendations. Once the mitigation solution is implemented, the fix is verified by the auditors
to ensure that it mitigates the issue and does not introduce other bugs.

During the audit, findings were shared via a private GitHub repository [4]. We also used a private
Telegram channel for asynchronous communication and status updates.

4 Threat modeling and attacks

The goal of the threat model framework is to be able to determine specific areas of risk in
Hyperbridge’s blockchain system. Familiarity with these risk areas can provide guidance for the
design of the implementation stack, the actual implementation of the stack, as well as the security
testing. This section introduces how risk is defined and provides an overview of the identified
threat scenarios. The Hacking Value, categorized into low, medium, and high, considers the
incentive of an attacker, as well as the effort required by an attacker to successfully execute the
attack. The hacking value is calculated as:

𝐻𝑎𝑐𝑘𝑖𝑛𝑔	𝑉𝑎𝑙𝑢𝑒 = 	
𝐼𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒
𝐸𝑓𝑓𝑜𝑟𝑡

While incentive describes what an attacker might gain from performing an attack successfully,
effort estimates the complexity of this same attack. The degrees of incentive and effort are
defined as follows:

Incentive:

• Low: Attacks offer the hacker little to no gain from executing the threat.

• Medium: Attacks offer the hacker considerable gains from executing the threat.

• High: Attacks offer the hacker high gains by executing this threat.

Effort:

• Low: Attacks are easy to execute. They require neither elaborate technical knowledge nor
considerable amounts of resources.

• Medium: Attacks are difficult to execute. They might require bypassing countermeasures,
the use of expensive resources or a considerable amount of technical knowledge.

• High: Attacks are difficult to execute. The attacks might require in-depth technical
knowledge, vast amounts of expensive resources, bypassing countermeasures, or any
combination of these factors.

Incentive and Effort are divided according to Table 2.

SRL-Hyperbridge-ISMP-baseline_assurance-report Confidential, Page 7 of 26

Das Logo Horizontal

— Pos / Neg

3

Hacking Value Low incentive Medium Incentive High Incentive

High effort Low Medium Medium

Medium effort Medium Medium High

Low effort Medium High High

Table 2. Hacking value measurement scale.

Hacking scenarios are classified by the risk they pose to the system. The risk level, also categorized
into low, medium, and high, considers the hacking value, as well as the damage that could result
from successful exploitation. The risk of a threat scenario is calculated by the following formula:

𝑅𝑖𝑠𝑘 = 𝐷𝑎𝑚𝑎𝑔𝑒 × 𝐻𝑎𝑐𝑘𝑖𝑛𝑔	𝑉𝑎𝑙𝑢𝑒 =
𝐷𝑎𝑚𝑎𝑔𝑒 × 𝐼𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒

𝐸𝑓𝑓𝑜𝑟𝑡

Damage describes the negative impact that a given attack, performed successfully, would have
on the victim. The degrees of damage are defined as follows:

Damage:

• Low: Risk scenarios would cause negligible damage to the Hyperbridge network

• Medium: Risk scenarios pose a considerable threat to Hyperbridge’s functionality as a
network.

• High: Risk scenarios pose an existential threat to Hyperbridge’s network functionality.

Damage and Hacking Value are divided according to Table 3.

Risk Low hacking value Medium hacking
value

High hacking value
Low damage Low Medium Medium

Medium damage Medium Medium High

High damage Medium High High

Table 3. Risk measurement scale

After applying the framework to the Hyperbridge system, different threat scenarios according to
the CIA triad were identified.

The CIA triad describes three security promises that can be violated by a hacking attack, namely
confidentiality, integrity, availability.

Confidentiality:

Confidentiality threat scenarios concern sensitive information regarding the blockchain network
and its users. Native tokens are units of value that exist on the blockchain - confidentiality threat
scenarios include for example attackers abusing information leaks to steal native tokens from
nodes participating in the Hyperbridge ecosystem and claiming the assets (represented in the
token) for themselves.

Integrity:

SRL-Hyperbridge-ISMP-baseline_assurance-report Confidential, Page 8 of 26

Das Logo Horizontal

— Pos / Neg

3

Integrity threat scenarios threaten to disrupt the functionality of the entire network by
undermining or bypassing the rules that ensure that Hyperbridge transactions/operations are fair
and equal for each participant. Undermining Hyperbridge’s integrity often comes with a high
monetary incentive, like for example, if an attacker can double spend or mint tokens for
themselves. Other threat scenarios do not yield an immediate monetary reward, but rather, could
threaten to damage Hyperbridge’s functionality and, in turn, its reputation. For example,
replaying bridged transactions would violate the core promise that transactions on the bridge are
not replayable.

Availability:

Availability threat scenarios refer to compromising the availability of data stored by the
Hyperbridge network as well as the availability of the network itself to process normal
transactions. Important threat scenarios regarding availability for blockchain systems and bridges
in particular include Denial of Service (DoS) attacks, stalling the bridge operations, and spamming.

Table 4 provides a high-level overview of the hacking risks concerning Hyperbridge with identified
example threat scenarios and attacks, as well as their respective hacking value and effort. The
complete list of threat scenarios identified along with attacks that enable them are described in
the threat model deliverable. This list can serve as a starting point to the Hyperbridge developers
in order to guide their security outlook for future feature implementations. By thinking in terms
of threat scenarios and attacks during code review or feature ideation, many issues can be caught
or even avoided altogether.

For Hyperbridge, the auditors attributed the most hacking value to the integrity class of threats.
Since the efforts required to exploit this kind of issue is considered lower, we identified threat
scenarios to the integrity of Hyperbridge as of the highest risk category. Undermining the integrity
of the Hyperbridge chain means making unauthorized modifications to the system. Some of the
scenarios can have a direct effect on the financials of the system. This can include griefing attacks
by timeout messages, replaying ISMP messages, gaining tokens through message failures or
double spending.

Security
promise

Hacking
value

Example threat
scenarios

Hacking
effort

Example attack ideas

Confidentiality High - Take over another
user's account

High - Social engineering

Integrity High - Replay ISMP
messages
- Modify the request
and response receipts
- Abuse bridge
transaction failures for
financial profit

Medium - Exploit a bug in
validation scheme to
accept an invalid
transaction
- Abuse different
encoding schemes across
the chains to perform
malicious activity

SRL-Hyperbridge-ISMP-baseline_assurance-report Confidential, Page 9 of 26

Das Logo Horizontal

— Pos / Neg

3

Availability Mediu
m

- Stall the bridge
operations
- DoS the ISMP
handlers
- Harm the chain
functionality by
cluttering its storage

Low

- DoS the
Fishermen/Relayers by
spamming them with
fraudulent messages
- Cheaply fill up
blockchain storage
- Transaction spam
attacks by users

Table 4. Risk overview. The threats for Hyperbridge were classified using the CIA security triad
model, mapping threats to the areas: (1) Confidentiality, (2) Integrity, and (3) Availability.

5 Findings summary

We identified 13 issues - summarized in Table 5- during our analysis of the ISMP module in scope
in the Hyperbridge Rust codebase that enable some of the attacks outlined above. In summary, 6
high severity, 3 medium severity, 1 low severity and 3 info severity issues were found.

Please note that in our methodology, critical severity issues refer to high severity issues that could
be exploited immediately by an attacker on already deployed infrastructure, including a parachain
or a non-incentivized testnet.

Issue Severity References Status

Nexus runtime waives XCM message delivery
fee

High [5] Risk accepted

No XCM delivery fees configured for sibling
parachain messages

High [6] Risk accepted

Stack exhaustion due to missing DecodeLimit High [7] Fixed [8]

Incorrect weight configuration in Nexus
runtime

High [9] Fix in progress
[8]

Missing runtime benchmark for ISMP pallets High [10] Fix in progress
[8]

Unsigned extrinsics allow executing ISMP
messages for free

High [11] Closed

Fishermen can veto StateCommitment after
the challenge_period

Medium [12] Risk accepted

Missing priority in Fraud Proof messages Medium [13] Risk accepted

Same consensus client can be frozen
repeatedly

Medium [14] Fixed [15]

Missing benchmarking to calculate weights Low [16] Risk accepted

Unbounded loop leading to block production
stalling

Info [17] Closed

SRL-Hyperbridge-ISMP-baseline_assurance-report Confidential, Page 10 of 26

Das Logo Horizontal

— Pos / Neg

3

Timeout overflow due to unsafe arithmetic
in request dispatch

Info [18] Fixed [19]

Missing fraud proof implementation for
Beacon consensus client

Info [20] Risk accepted

Table 5 Issue summary for the ISMP Rust codebase

We identified 5 security vulnerabilities and 3 code efficiency issues – summarized in Table 6 –
throughout our investigation of the ISMP Solidity modules EvmHost and HandlerV1. Our analysis
concluded with 1 high severity, 1 medium severity, 3 low severity, and 3 gas optimization issues.

Issue Severity References Status

Transfer failure could cause unexpected
behavior and financial loss

High [21] Fixed [22]

Host configuration can be permanently
locked by denial of service

Medium [23] Fixed [22]

Configuration could be locked due to missing
zero-address sanity checks

Low [24] Fixed [22]

Configuration could be locked due to the
finality of updates

Low [25] Open

Missing event emissions would cause
incomplete off-chain monitoring

Low [26] Fixed [22]

Gas optimization report Info-Gas [27] [28] [29] Fixed [22]

Table 6 Issue summary for the Solidity contracts

6 Detailed findings

6.1 Nexus runtime waives XCM message delivery fee

Attack scenario An attacker can send XCM messages without paying any
delivery fee

Location parachain/runtime/nexus
Tracking [5]
Attack impact An attacker can cause congestion, storage exhaustion and/or

dropping of messages
Severity High
Status Risk accepted

The Nexus runtime does not set the FeeManager for XCM configuration waiving all fees for the
XCM messages. An attacker can exploit this to cause congestion, possibly leading to long delivery
delays, storage exhaustion and/or dropping of messages.

We recommend following the fix implemented in the polkadot runtime update v1.3 [30] which
introduces a proper implementation for the FeeManager.

The issue was acknowledged by the Hyperbridge team, and the risk accepted since XCM is not
intended to be used in Hyperbridge for parachain messaging.

SRL-Hyperbridge-ISMP-baseline_assurance-report Confidential, Page 11 of 26

Das Logo Horizontal

— Pos / Neg

3

6.2 No XCM delivery fees configured for sibling parachain messages

Attack scenario An attacker can send XCM messages across parachains without
paying any delivery fee

Location parachain/runtime/nexus
Tracking [6]
Attack impact An attacker can send spam messages to cause XCM queue size

exhaustion and delay in message delivery
Severity High
Status Risk accepted

The Nexus runtime configuration sets the PriceForSiblingDelivery to NoPriceForMessageDelivery
implying that there are no fees charged for XCM messages across parachains.

An attacker can exploit this vulnerability, to send spam messages across chains without paying
any fee. Excessive messages could lead to XCM queue size exhaustion by excessive storage usage
until messages are delivered. This could also lead to delays in message delivery for other users.

We recommend charging adequate message delivery fees in the runtime configuration. An
exponential fee mechanism such as in Kusama [31], should be used to prevent excessive delivery
time and storage exhaustion.

The issue was acknowledged by the Hyperbridge team, and the risk accepted since XCM is not
intended to be used in Hyperbridge for parachain messaging.

6.3 Stack exhaustion due to missing DecodeLimit

Attack scenario The extrinsic decompress_call in pallet_call_decompressor can
be called without a decode depth limit

Location modules/ismp/pallets/call-decompressor
Tracking [7]
Attack impact An attacker can cause stack exhaustion and denial of service.
Severity High
Status Fixed [8]

The extrinsic decompress_call in pallet-call-decompressor accepts a compressed call as an
argument which then is decoded without a depth limit.

An attacker can exploit this vulnerability to create deeply nested calls that may exhaust the stack
size during decoding due to excessive recursion. If this call is sent through a bridge that requires
forced execution, it can permanently stall the receiving chain.

We recommend using DecodeLimit [32], which accepts a nesting level.

The issue was fixed by the Hyperbridge team. The remediation included fixing 2 parts:
decode_with_depth_limit [8] and fine tuning the maximum depth for the decoding that is custom
to Hyperbridge runtime [33].

6.4 Incorrect weight configuration in Nexus runtime

Attack scenario Incorrect weight configuration in the Nexus runtime can be
exploited for zero cost execution

SRL-Hyperbridge-ISMP-baseline_assurance-report Confidential, Page 12 of 26

Das Logo Horizontal

— Pos / Neg

3

Location parachain/runtimes/nexus
Tracking [9]
Attack impact An attacker may spam and bloat the network storage
Severity High
Status Fix in progress [8]

The weights for the ISMP, XCM and other Substrate pallets are not configured correctly in the
Nexus runtime.

The following misconfigurations were identified:

1. pallets using TestWeightInfo

2. pallet runtime weights set to Zero with type WeightInfo = ()

3. weights configured using substrate-node template

Setting the weights to () effectively makes it a zero-cost execution for extrinsics. This leads to an
attacker spamming and bloating network storage freely using an underweight extrinsic.

We recommend configuring the weights for the custom and FRAME pallets using the actual Nexus
runtime configuration. An example for configuring weights with the actual runtime be found in
the Asset Hub Polkadot parachain runtime [34].

The issue was partially mitigated in PR #234 [8], by using the weights generated by the
benchmark. The missing updated weights for pallet-collator-selection will be added by the
Hyperbridge team after the upgrade to a higher polkadot-sdk version.

6.5 Missing runtime benchmark for ISMP pallets

Attack scenario An attacker can spam Hyperbridge with underweight extrinsics
Location parachain/runtimes/nexus
Tracking [10]
Attack impact Incorrect benchmarking can lead to spamming, storage bloating

and block stalling
Severity High
Status Fix in progress [8]

The configurable weights of the following pallets in the ISMP module are not included in the
runtime benchmarks of the Nexus runtime:

- pallet-assets

- pallet-ismp

- cumulus-pallet-parachain-system

- pallet-message-queue

- pallet-sudo

- pallet-xcm

SRL-Hyperbridge-ISMP-baseline_assurance-report Confidential, Page 13 of 26

Das Logo Horizontal

— Pos / Neg

3

Excluding pallets with configurable weights from benchmarking may result in overweight or
underweight extrinsics. This potentially leads to low-effort attacks such as spamming, storage
bloating, and block stalling when invoking extrinsics.

We recommend including the above-mentioned pallets in the try_benchmarks! macro for
appropriate runtime benchmarks.

The issue was partially mitigated in PR #234 [8] by adding the pallets in the runtime benchmarks,
except for pallet-xcm which needs more changes to be included in the benchmarking logic.

6.6 Unsigned extrinsincs allow to execute ISMP messages for free

Attack scenario An attacker can use unsigned extrinsics to submit ISMP
messages for free

Location modules/ismp
Tracking [11]
Attack impact An attacker can spam the network without facing any

consequence
Severity High
Status Closed

The ISMP messages are implemented as unsigned extrinsics, which allows a malicious attacker to
freely execute these messages.

Aside from the spamming risk considered, an attacker can exploit the extrinsic design flaw without
facing any punishments or blacklisting.

We recommend implementing a check in the extrinsic such that only messages of type
FraudProofMessages are accepted, and other message types (Consensus, Response, Request and
Timeout) are blocked from being handled at handle_incoming_message.

It was clarified by the Hyperbridge team that unsigned transactions are checked for validity before
adding to the transaction pool thus preventing spamming the transaction pool and the issue was
closed. It was later identified in Finding 6.9, that this can be circumvented if valid
FraudProofMessages are sent repeatedly. Since the messages don’t have a nonce, they will be
added to the transaction pool allowing for spamming.

6.7 Fishermen can veto StateCommitment after the challenge_period

Attack scenario Fishermen as trusted actors can veto a state commitment even
after the challenge period is elapsed

Location modules/ismp/pallets/fishermen
Tracking [12]
Attack impact The integrity and trustworthiness of the system might be

compromised if errors or fraud are discovered after the
challenge period

Severity Medium
Status Risk accepted

Fishermen are trusted actors in the network that check if the StateCommitment describes a valid
state transition on the counterparty network. If the challenge_period elapses without any veto

SRL-Hyperbridge-ISMP-baseline_assurance-report Confidential, Page 14 of 26

Das Logo Horizontal

— Pos / Neg

3

from Fishermen, it can be safely concluded that the provided StateCommitment are indeed
canonical.

However, in the implementation, Fishermen may veto the StateCommitment without checking
whether the challenge_period has elapsed in the extrinsic veto_state_commitment.

Any attempt to veto the state commitment after the challenge period would require expensive
solutions such as rolling back the blockchain state. The integrity and trustworthiness of the system
might be compromised if errors or fraud are discovered after the challenge period.

Since Fishermen are not required to submit any fraud proofs, this allows compromised or rogue
Fishermen to repeatedly veto the canonical chain's StateCommitment creating instability in the
system and still gain rewards for the veto.

As a safety measure, implement additional safeguards for the Fishermen before vetoing any
StateCommitment. Handle and implement the timeout error as described in the design
document: “Assert that the configured challenge_period for the StateCommitment has elapsed”
[35].

The issue was acknowledged by the Hyperbridge team, and the risk accepted to allow vetoes
occurring past the challenge period because of slow block propagation through the network.

6.8 Missing priority in Fraud Proof messages

Attack scenario A fraud proof message may be censored or delayed for
processing

Location modules/ismp
Tracking [13]
Attack impact A malicious consensus client can inflict more faults into the

consensus mechanism until frozen
Severity Medium
Status Risk accepted

ISMP supports different message types including Fraud Proof messages where they are handled
with same priority as other types of ISMP messages on the chain. This can lead to a Fraud Proof
message being censored or getting delayed in processing if there are multiple unhandled ISMP
messages in the queue.

Furthermore, a malicious consensus client inflicting more faults into the consensus mechanism.
They will also not be frozen promptly for their byzantine behaviour if there are no incentive for
Fraud Proof messages submission.

We recommend considering the following:

- Fraud Proof messages should be handled with a high priority over other ISMP messages.
This can be achieved by handling FraudProofMessage separately from other messages in
the validate_unsigned and assigning a high priority in ValidTransaction.

- Incentivize Fraud Proof messages by for example, implementing rewarding the submitter
or refunding the protocol fee, after the freeze is in effect. This can be done if the
freeze_client results in MessageResult::FrozenClient. Incentivizing Fraud Proofs will
encourage users to submit Fraud Proof and help in freezing the malicious consensus client
in time.

SRL-Hyperbridge-ISMP-baseline_assurance-report Confidential, Page 15 of 26

Das Logo Horizontal

— Pos / Neg

3

The issue was acknowledged by the Hyperbridge team, and the risk accepted since the current
implementation handles FraudProofMessages in a batch with the other messages.

6.9 Same consensus client can be frozen repeatedly

Attack scenario An attacker can submit Fraud Proof for the same consensus
client repeatedly

Location modules/ismp
Tracking [14]
Attack impact 1. A consensus client can be frozen repeatedly

2. A malicious user can spam the chain by sending Fraud
Proof messages for free

Severity Medium
Status Fixed [15]

When a valid Fraud Proof message is submitted through an extrinsic, the consensus client can be
frozen for their byzantine behaviour. Since Fraud Proof messages do not contain a nonce, when
submitted through unsigned calls, they will be processed again to freeze the same client. As a
security measurement, a hashing mechanism in place that prevents duplicate messages.
However, as the hash represents the hash of all messages in the batch, a malicious actor can easily
circumvent this by submitting different batches of different lengths and therefore, producing
different hashes.

The lack of checks for already submitted Fraud Proofs for the same consensus client via the
unsigned call handle_unsigned or the singed handle call, exposes the following risks:

- The same valid Fraud Proof can be submitted multiple times to repeatedly freeze the
same consensus client.

- Since anyone is allowed to submit unsigned extrinsics in pallet-hyperbridge, a malicious
user may spam the chain via repeatedly submitting the same valid Fraud Proof for free
[36].

We recommend adding an additional protection in freeze_client through
is_consensus_client_frozen such that Fraud Proof message for already frozen client is rejected.

The issue was fixed by the Hyperbridge team by adding the check as suggested [15].

6.10 Missing benchmarking to calculate weights

Attack scenario Underweight extrinsics can be utilized to spam the network
Location modules/ismp/pallets
Tracking [16]
Attack impact An attacker may perform denial of service attack cheaply in

comparison to the actual weight.
Severity Low
Status Risk accepted

The weights of the extrinsics in pallets call-decompressor, fishermen and relayer are not based on
benchmark values and have a fixed value of 1_000_000.

The affected extrinsics are:

SRL-Hyperbridge-ISMP-baseline_assurance-report Confidential, Page 16 of 26

Das Logo Horizontal

— Pos / Neg

3

- decompress_call

- add

- remove

- veto_state_commitment

- accumulate_fees

- withdraw_fees

Incorrect fee calculation due to lack of benchmarking can aid an attacker to exploit low fees to
the flood the network with transactions. Unsigned extrinsics can be particularly vulnerable to DoS
attacks since they don’t require authentication and can be submitted in large numbers to
overwhelm the network.

We recommend benchmarking all signed extrinsics to reflect the accurate estimation. The issue
was partially fixed and acknowledged [37].

6.11 Unbounded loop leading to block production stalling

Attack scenario The call to dispatch_to_evm can result in an unbounded loop
Location modules/ismp/pallets/pallet
Tracking [17]
Attack impact The extrinsics can be abused to halt block production on the

chain
Severity Info
Status Closed

The pallet ismp-demo allows dispatching request messages to EVM chains via dispatch_to_evm
extrinsic. However, this extrinsic has an unbounded loop that can be abused to halt block
production on the chain.

There are two ways of fixing this issue, and ideally both should be implemented to assure maximal
safety:

1. Implement benchmarking and make the benchmark dependent on count

2. Bound the value of count to a reasonable range

The issue was marked as ‘Closed’ after the Hyperbridge team clarified that the demo pallet will
not be used in the production network.

6.12 Timeout overflow due to unsafe arithmetic in request dispatch

Attack scenario Integer overflow can be triggered by setting a very high number
in the timeout field making it represent a timeout in the past

Location modules/ismp/pallets/demo
Tracking [18]
Attack impact The request will expire before it is even sent out. In future, if

bridge operators are penalized for timeouts, it can also affect the
availability of the network

Severity Info

SRL-Hyperbridge-ISMP-baseline_assurance-report Confidential, Page 17 of 26

Das Logo Horizontal

— Pos / Neg

3

Status Fixed [19]

When a request is dispatched over ISMP, a malicious actor could trigger an integer overflow in
the timeout_timestamp computation logic.

The timeout_timestamp will then represent a timestamp in the past, and the request will have
expired before it was even sent-out. This can be triggered using pallet-ismp-demo's get_request
extrinsic by setting a very high number in the timeout field of the params struct.

Considering the current design and implementation of the Hyperbridge project, we do not see
any security risk arising in case the timeout overflow is triggered. In the future, if the bridge
operators can be penalized for timeouts, this issue could become problematic, affecting the
availability of the network.

We recommend using safe arithmetic (e.g. saturating math) on the timeout_timestamp
operation. As a generic defensive programming suggestion, we recommend using safe arithmetic
throughout the codebase.

The issue was fixed by the Hyperbridge team by adding saturating_add for the calculation [19].

6.13 Missing Fraud Proof implementation for Beacon consensus clients

Attack scenario Fraud Proof message submitted on the Beacon client will return
an unimplemented error and the proof will be rejected

Location modules/ismp/clients/sync-committee
Tracking [20]
Attack impact The Beacon consensus client will not be frozen after an invalid

consensus state resulting in multiple invalid transactions
Severity Info
Status Risk accepted

Hyperbridge supports different consensus clients where each instance should implement the
ConsensusClient trait. One fundamental function from this trait is the verify_fraud_proof which is
used to verify a Fraud Proof.

However, for the Beacon consensus client this function is not implemented. Any attempt to
submit Fraud Proof messages for the Beacon chain through the consensus client will thus return
an error and get rejected. Hence, the Beacon consensus client will not be frozen and the Relayer
will continue to relay request and response messages to the Beacon chain resulting in multiple
invalid transactions.

We recommend implementing Fraud Proof verification for Beacon consensus clients.

The issue was acknowledged by the Hyperbridge team, and the risk accepted, planning to rely on
Fishermen as a contingency plan.

6.14 Failure of transfer success may result in unexpected behavior

Attack scenario An attacker, using an account with insufficient ERC-20 tokens
can invoke functionality that requires the transfer of funds

Location evm/src/hosts/EvmHost.sol
Tracking [21]

SRL-Hyperbridge-ISMP-baseline_assurance-report Confidential, Page 18 of 26

Das Logo Horizontal

— Pos / Neg

3

Attack impact System behavior would be undefined and may result in financial
loss

Severity High
Status Fixed [22]

Throughout the codebase there are multiple instances of unchecked return values when
interacting with the transfer() and transferFrom() functions of an external ERC-20 contract. These
missing checks make it impossible to halt execution upon failed transfers.

In the case of fundRequest() and fundResponse(), the funding status and value would be recorded
in metadata.fee irrespective of the aforementioned transferFrom() succeeding.

We recommend ensuring that all calls to external ERC-20 contracts have appropriate return value
checks. Furthermore we recommend integrating the use of the SafeERC20 library from Open
Zeppelin [38] to appropriately handle arbitrary ERC-20 tokens which may either revert on failure
or return false.

This issue was fixed in [22] by Hyperbridge by implementing the safeERC20 library, and
appropriately checking the result of transfer.

6.15 Denial of service to host configuration updates

Attack scenario Configuration update forces too many entries into fisherman
array, causing denial of service on iteration via out-of-gas

Location evm/src/hosts/EvmHost.sol
Tracking [23]
Attack impact The host configuration _hostParams would be completely locked

and unchangeable
Severity Medium
Status Fixed [22]

When the host configuration _hostParams is updated, the logic iterates over an unbounded
storage array _hostParams.fishermen. Each address entry inside the array is read, matched to the
key value pair, and then deleted from the _fishermen mapping.

This process serves to remove old entries from the _fishermen mapping, before updating the
_hostParams.fishermen array, and reinitializing the new entries (via iteration) into the _fishermen
mapping.

If the entries inside _fishermen are inadvertently set too high by the host manager, it would be
impossible to subsequently update any configuration parameters since execution will revert with
out-of-gas on the initial iteration process.

We recommend bounding the number of entries inside the _hostParams.fishermen array to some
safe defined threshold. Alternatively, if a large volume of Fishermen addresses is required for
system functionality, implement appropriate mechanisms to segment the update process over
multiple blocks.

This issue was fixed in [22] by Hyperbridge by implementing input bounding for the
_hostParams.fishermen array.

SRL-Hyperbridge-ISMP-baseline_assurance-report Confidential, Page 19 of 26

Das Logo Horizontal

— Pos / Neg

3

6.16 Configuration could be locked without zero-address sanity checks

Attack scenario Misconfiguration could set privileged roles to unusable
addresses

Location evm/src/hosts/EvmHost.sol
Tracking [24]
Attack impact Critical functionality such as configuration updates would be

permanently unreachable with no remediation
Severity Low
Status Fixed [22]

When updating the host parameters configuration struct via updateHostParamsInternal(), the
critical config data _hostParams is directly updated using the input struct params.

Misconfiguration of the hostManager data field within the input params would result in
updateHostParamsInternal() being unreachable due to the onlyManager access control modifier,
thereby permanently locking all host configurations.

Privileged roles, especially hostManager should be safeguarded from misconfiguration to the
zero-address. We recommend integrating address zero input filtering to ensure that data fields
storing privileged roles such as hostManager have appropriate sanity checks.

This issue was resolved in [22] by the Hyperbridge team by implementing zero address and
contract existence checks for the host manager address.

6.17 Configuration could be locked due to the finality of updates

Attack scenario Misconfiguration in updates could set privileged roles to
insufficient participants with absolute finality

Location evm/src/hosts/EvmHost.sol
Tracking [25]
Attack impact General usage functionality alongside critical processes would

be permanently unreachable with no remediation.
Severity Low
Status Risk accepted

Similar to the concerns and rationale expressed in 6.16: the finality of single-step updates to the
privileged hostManager contract address increases the attack surface to include misconfiguration
and human error.

Such misconfiguration could result from overlooking critical functionality required for the new
hostManager contract address to interact sufficiently with the host. Such mistakes would be
unrectifiable, potentially locking certain functionality in the host, in-line with the
misconfiguration’s severity.

We recommend implementing a 2-step, propose and accept, solution to offer appropriate escape
clauses to privilege transfer. In this mitigation the current manager should propose a
pendingManager that must be claimed by the recipient before full privilege transferal occurs.

SRL-Hyperbridge-ISMP-baseline_assurance-report Confidential, Page 20 of 26

Das Logo Horizontal

— Pos / Neg

3

6.18 Missing event emissions would impede off-chain monitoring

Attack scenario The exploitation of unknown future edge-cases could occur
unnoticed

Location evm/src
Tracking [26]
Attack impact The inability to efficiently triage live-exploitations in a timely

manner would amplify the associated impact of any given
exploit.

Severity Low
Status Fixed [22]

Throughout the codebase we noticed various instances of unsatisfactory support for off-chain
monitoring solutions, in that the transmission of necessary system data was often neglected.

Shipping data off-chain is important in most smart contract systems to maintain continued
security, although in cross-chain applications, such as Hyperbridge, it should be considered as a
critical design decision. We argue this, since cross-chain exploit remediation is often more
challenging, especially if caught late into the attack lifecycle.

We recommend integrating more event emissions throughout all system functionality, and
indexing event parameters that should be reasonably searchable by off-chain tools. Such
parameters would include participant addresses and cross-chain messages.

Hyperbridge implemented this guidance in [22], thereby increasing their ability to trace an
attacker’s actions and improve response times to edge-cases.

6.19 Gas optimization report

Impact Inefficient Solidity source code often results in higher execution
costs which may impact community sentiment

Location evm/src
Tracking [27] [28] [29]
Severity Info – Gas
Status Fixed [22]

Throughout our investigation we found multiple instances where source code logic could be
optimized to improve runtime transaction fees for system participants.

We recommend incrementing loop iterators with ++i instead of i++. This improvement, reported
in [27], avoids returning the incremented iterator in a secondary temporary variable, which saves
gas due to the reduced compiled complexity.

When comparing unsigned integers to zero, as detailed in [28], the not-equal-to operator (!=) is
more gas efficient than the greater-than operator (>). This improvement has no impact on
execution logic since unsigned integers are non-negative.

Furthermore, as expressed in [29], reverting directly in conditional logic is more efficient than
relying on the built-in conditional checks of require statements.

Finally, reverting with custom errors also significantly reduces gas over emitting lengthy string
descriptions.

SRL-Hyperbridge-ISMP-baseline_assurance-report Confidential, Page 21 of 26

Das Logo Horizontal

— Pos / Neg

3

Execution costs and source code should be optimized to ensure more positive community
sentiment and reduce operational overheads from privileged accounts.

Instance Description Saving
Iterator incrementation
[27]

Use prefix (++i) not postfix (i++) iterator
incrementation in loops.

5i-gas

Zero comparison [28] Revert with custom errors inside conditional logic
not require statements with string descriptions.

220-gas

Reversion logic [29] Use != instead of > when comparing unsigned
integers to zero.

22-gas

7 Evolution suggestions

The overall impression of the auditors was that ISMP as a messaging protocol is designed and
implemented with protection against typical blockchain bridge threats and attacks such as
spamming and message replaying in mind. However, to ensure that the ISMP messaging
framework is secure against rogue and collusion of trusted network participants, we recommend
considering the evolution suggestions and best practices described in this section.

7.1 Business logic improvement suggestions

We recommend following design suggestions to the ISMP codebase to improve the overall
security posture of the protocol:

Implement penalty for Fishermen’s misbehavior. To deter rogue behavior from trusted actors
like Fishermen, they should be subject to slashing or blacklisting for any misbehavior. Actions such
as vetoing a valid state commitment within the challenge period window through collusion with
other Fishermen or after the challenge period elapsed to cause state roll back should be punished.
Implementing slashing or backlisting will ensures that long term robustness and security
guarantee is enshrined through the trusted actors like Fishermen. As the design of the Fishermen
evolves to a permissionless entity [39], slashing and blacklisting mechanisms will become critical
safety features to deter malicious behavior.

Implement Fraud Proof submission requirements for Fishermen. Considering the permissionless
nature and potential incentivization for the Fishermen role in the future, it is recommended to
make the vetoing of Fishermen based on verifiable Fraud Proofs, as such any state commitments
vetoed by permissionless Fishermen are backed by valid Fraud Proofs, such that honest behavior
is promoted to secure the network. Consider implementing Fraud Proof requirements for vetoes
from permissionless Fishermen in the later iterations of the ISMP protocol for a resilient security
model.

Implement refund of protocol fees for valid Fraud Proof messages. In the current ISMP design,
Fraud Proof messages are submitted by anyone through an unsigned extrinsic with valid proofs
for detecting invalid state transition which could result in freezing of the consensus client. A
payment is required for any ISMP messages as protocol fee at the source chain to prevent
spamming, this could also deter honest participant form submitting a valid proof. As the protocol
continues to evolve to provide bridging across different blockchain ecosystems, Fraud Proof
messages form the tenet of security for Hyperbridge. As such, submission of valid Fraud Proof
messages should be encouraged and even rewarded to make the entire ecosystem robust and
mature. Implement refund or reward for Fraud Proof messages that were submitted through
signed extrinsics that resulted in freezing of misbehaving clients.

SRL-Hyperbridge-ISMP-baseline_assurance-report Confidential, Page 22 of 26

Das Logo Horizontal

— Pos / Neg

3

7.2 Address currently open security issues

We recommend addressing known security issues in a timely manner to prevent attackers from
exploiting them – even if an open issue has a limited impact, an attacker might use it as part of
their exploitation chain, which may have a more severe impact on Hyperbridge.

Implement weight benchmarking. Introduce and regularly update benchmarking to measure and
analyze the execution time and resource consumption of different runtime functions based on
their weights. Kindly refer the Polkadot runtimes for benchmarking best practices [40] and weight
configuration [41].

Prioritize Fraud Proof messages for timely processing. To mitigate the risk of Fraud Proof
messages being delayed due to high message volume, introduce a priority mechanism for these
messages. This will ensure that the system can swiftly detect and address fraudulent activities,
thereby safeguarding the integrity and security of the blockchain network.

Implement Fraud Proof Message verification for Beacon consensus clients. Implement
verify_fraud_proof for the Beacon consensus client so that the consensus client can be frozen in
case of an invalid consensus state and further invalid transactions can be prevented.

Improve the update granularity for configuration parameters. As mentioned in sections 6.16 and
6.17 the update mechanisms for privileged roles are unsafely subject to misconfiguration. This is
partially due to missing sanity checks and escape clauses, although the lack of granularity in
updates makes integrating appropriate checks unintuitive. Consider separating the update
mechanisms targeting the specific configuration parameters in _hostParams to allow the
seamless application of necessary sanity operations, without impacting the ease of configuration
for less critical data. In the described evolution above _hostParams.hostManager and
_hostParams.admin would be updated separately to, for example, _hostParams.fishermen or
_hostParams.timeout.

Design with security monitoring in mind. To enhance security and off chain monitoring capability
of the bridges, consider monitoring the Solidity side of the system with relevant data
requirements for the off-chain tools. To support this, all ISMP handler’s data should be indexed
and emitted via events.

7.3 Further recommended best practices

Engage in an economic audit. Although SRLabs has some knowledge of economic attacks, our
primary goal during engagements is to find logic vulnerabilities through code assurance.
Therefore, an economic audit for the ISMP actors such as Relayer and Fishermen, and the pallet
configuration is recommended to ensure the safety of Hyperbridge platform and users.

Improve documentation and coding practice. Increasing the in-line comments to reflect the
protocol design could enhance the efficiency of assessing the ISMP features and design choices
for security weaknesses. Additionally, naming the variables [42] with meaningful identifiers to
reflect their purpose will facilitate understanding the control flow of the code during internal or
external code review processes. Introduce expressive names for the data structures as
PostRequest and GetRequest instead of Post and Get [43]. Remove unimplemented errors to
maintain a clean code base [44]. Enhancing these aspects could significantly streamline the review
process, facilitate a better understanding of the code's purpose and design, and contribute to a
more efficient and effective security evaluation

Improve repository organization. Implementing test logic and business logic in a single file is
considered a best practice deviation [45] [46]. Such an approach clutters the code, making it
difficult to navigate and maintain. We recommend separating the test logic from the pallet

SRL-Hyperbridge-ISMP-baseline_assurance-report Confidential, Page 23 of 26

Das Logo Horizontal

— Pos / Neg

3

implementation in a test file or module. This will improve the long-term maintainability and may
prevent the introduction of bugs to the pallets as the pallet implementation continues to evolve.

Regular code review and continuous fuzz testing. Regular code reviews are recommended to
avoid introducing new logic or arithmetic bugs, while continuous fuzz testing can identify
potential vulnerabilities early in the development process. Ideally, Hyperbridge should
continuously fuzz their code on each commit made to the codebase. The substrate-runtime-fuzzer
[47] provides a good example of multiple fuzzing harnesses.

Regular updates. New releases of polkadot-sdk may contain fixes for critical security issues. Since
Hyperbridge is a product that heavily relies on polkadot-sdk, updating to the latest version as
soon as possible whenever a new release is available is recommended.

Further investigation of Solidity modules. The investigation conducted on EvmHost.sol and
HandlerV1.sol was heavily constrained in scope. Based on our investigation we believe that the
Solidity implementation requires further analysis from a team specialized in smart contract
auditing. We recommend investing further resources into the security of the Solidity codebase,
including the associated custom libraries.

SRL-Hyperbridge-ISMP-baseline_assurance-report Confidential, Page 24 of 26

Das Logo Horizontal

— Pos / Neg

3

Bibliography

[1] [Online]. Available: https://github.com/polytope-labs/hyperbridge/tree/main/modules/ismp.

[2] [Online]. Available: https://github.com/polytope-labs/hyperbridge/tree/main/parachain/runtimes/nexus.

[3] [Online]. Available: https://github.com/polytope-labs/ismp-solidity.

[4] [Online]. Available: https://github.com/Wizdave97/hyperbridge-audit.

[5] [Online]. Available: https://github.com/Wizdave97/hyperbridge-audit/issues/1.

[6] [Online]. Available: https://github.com/Wizdave97/hyperbridge-audit/issues/2.

[7] [Online]. Available: https://github.com/Wizdave97/hyperbridge-audit/issues/3.

[8] [Online]. Available: https://github.com/polytope-labs/hyperbridge/pull/234.

[9] [Online]. Available: https://github.com/Wizdave97/hyperbridge-audit/issues/4.

[10] [Online]. Available: https://github.com/Wizdave97/hyperbridge-audit/issues/5.

[11] [Online]. Available: https://github.com/Wizdave97/hyperbridge-audit/issues/7.

[12] [Online]. Available: https://github.com/Wizdave97/hyperbridge-audit/issues/6.

[13] [Online]. Available: https://github.com/Wizdave97/hyperbridge-audit/issues/11.

[14] [Online]. Available: https://github.com/Wizdave97/hyperbridge-audit/issues/13.

[15] [Online]. Available: https://github.com/polytope-labs/hyperbridge/pull/235.

[16] [Online]. Available: https://github.com/Wizdave97/hyperbridge-audit/issues/10.

[17] [Online]. Available: https://github.com/Wizdave97/hyperbridge-audit/issues/9.

[18] [Online]. Available: https://github.com/Wizdave97/hyperbridge-audit/issues/8.

[19] [Online]. Available: https://github.com/polytope-labs/hyperbridge/pull/234/files#diff-
6c9e74a4b6df83a3c561677fcafdfde2aebe38de281ccb57f2cfae85e7fa4c0aR113.

[20] [Online]. Available: https://github.com/Wizdave97/hyperbridge-audit/issues/12.

[21] [Online]. Available: https://github.com/Wizdave97/hyperbridge-audit/issues/22.

[22] [Online]. Available: https://github.com/polytope-labs/hyperbridge/pull/237.

[23] [Online]. Available: https://github.com/Wizdave97/hyperbridge-audit/issues/16.

[24] [Online]. Available: https://github.com/Wizdave97/hyperbridge-audit/issues/14.

SRL-Hyperbridge-ISMP-baseline_assurance-report Confidential, Page 25 of 26

Das Logo Horizontal

— Pos / Neg

3

[25] [Online]. Available: https://github.com/Wizdave97/hyperbridge-audit/issues/15.

[26] [Online]. Available: https://github.com/Wizdave97/hyperbridge-audit/issues/20.

[27] [Online]. Available: https://github.com/Wizdave97/hyperbridge-audit/issues/18.

[28] [Online]. Available: https://github.com/Wizdave97/hyperbridge-audit/issues/17.

[29] [Online]. Available: https://github.com/Wizdave97/hyperbridge-audit/issues/19.

[30] [Online]. Available: https://github.com/polkadot-fellows/runtimes/pull/87.

[31] [Online]. Available: https://github.com/polkadot-fellows/runtimes/blob/5bf21d73c0456eb7c5910

aafa78445f93a61bdc9/system-parachains/asset-hubs/asset-hub-kusama/src/lib.rs#L684-L684.

[32] [Online]. Available: https://github.com/paritytech/polkadot-
sdk/blob/b6231c79ca708d9c9280210f41ca38fd816c8ad9/cumulus/pallets/xcmp-queue/src/lib.rs#L955.

[33] https://github.com/polytope-labs/hyperbridge/pull/234/commits/d864430edb64f5ad17d32

a99778d0a4242071f8a.

[34] [Online]. Available: https://github.com/polkadot-fellows/runtimes/blob/2663a3a5f3b6a757efe102c3c

74c5422499dda39/system-parachains/asset-hubs/asset-hub-polkadot/src/lib.rs#L243.

[35] [Online]. Available: https://github.com/polytope-
labs/hyperbridge/blob/7738ba670214c7bbfb41e6417d6cfb3e88684b09/docs/pages/protocol/

timeouts.mdx#L57-L58.

[36] [Online]. Available: https://github.com/polytope-
labs/hyperbridge/blob/ddf7bf378735a8be94b44fa9dd24ad20a0d887bd/modules/ismp/pallets/

pallet/src/lib.rs#L436-L438.

[37] [Online]. Available: https://github.com/Wizdave97/hyperbridge-audit/issues/10#issuecomment-2196634090.

[38] [Online]. Available: https://github.com/OpenZeppelin/openzeppelin-
contracts/blob/master/contracts/token/ERC20/utils/SafeERC20.sol.

[39] [Online]. Available: https://github.com/polytope-
labs/hyperbridge/blob/b3fc8e47dffe47555c2421bc897ee02f1f13f0ce/docs/pages/developers

/explore/modules/fishermen.mdx#L18.

[40] [Online]. Available: https://github.com/polkadot-fellows/runtimes/blob/360581ffedd04826217

7ddc135d66cec455b959a/system-parachains/asset-hubs/asset-hub-kusama/src/lib.rs#L1005C1-L1035C2.

[41] [Online]. Available: https://github.com/polkadot-fellows/runtimes/blob/2663a3a5f3b6a757efe102c

SRL-Hyperbridge-ISMP-baseline_assurance-report Confidential, Page 26 of 26

Das Logo Horizontal

— Pos / Neg

3

3c74c5422499dda39/system-parachains/asset-hubs/asset-hub-polkadot/src/lib.rs#L243.

[42] [Online]. Available: https://github.com/polytope-
labs/hyperbridge/blob/d4fffd7e6672ca3bd1a927c9fc677e14c5066186/modules/ismp/

core/src/handlers/request.rs#L89.

[43] [Online]. Available: https://github.com/polytope-
labs/hyperbridge/blob/d4fffd7e6672ca3bd1a927c9fc677e14c5066186/modules/ismp/

core/src/router.rs#L136-L143.

[44] [Online]. Available: https://github.com/polytope-
labs/hyperbridge/blob/d4fffd7e6672ca3bd1a927c9fc677e14c5066186/modules/ismp/

pallets/hyperbridge/src/lib.rs#L151-L152.

[45] [Online]. Available: https://github.com/polytope-
labs/hyperbridge/blob/c9e23d530da5a9ee8517d71ac8242ac2bb54b57d/modules/ismp/

core/src/host.rs#L387.

[46] [Online]. Available: https://github.com/polytope-
labs/hyperbridge/blob/c9e23d530da5a9ee8517d71ac8242ac2bb54b57d/modules/ismp/

pallets/relayer/src/withdrawal.rs#L77.

[47] [Online]. Available: https://github.com/srlabs/substrate-runtime-fuzzer/tree/main.

