
Hydration Security Review
Pashov Audit Group

Conducted by: Koolex, FrankCastle, ubermensch
October 17th - October 22th

Contents
1. About Pashov Audit Group
2. Disclaimer
3. Introduction
4. About Hydration
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings

8.1. High Findings
[H-01] TransferFrom is incorrectly treated as a view
function

8.2. Medium Findings
[M-01] Unbounded storage iteration in EVM address
registration migration
[M-02] Failure to verify ERC20 function return values in
handle_result()
[M-03] Unbounded memory growth via EVM Error
message allocations

8.3. Low Findings
[L-01] EIP-2 signature malleability in Permit validation
[L-02] Missing logging in runtime upgrade
implementation
[L-03] EVM exit status misclassification in
handle_result()
[L-04] Oversized EVM error messages due to full value
encoding
[L-05] Unchecked message size in call()

1

2

2

2

2

3

3
3
4

4

5

7

7

7

9

9

10

11

13

13

13

14

16

16

1. About Pashov Audit Group
Pashov Audit Group consists of multiple teams of some of the best smart contract
security researchers in the space. Having a combined reported security
vulnerabilities count of over 1000, the group strives to create the absolute very best
audit journey possible - although 100% security can never be guaranteed, we do
guarantee the best efforts of our experienced researchers for your blockchain
protocol. Check our previous work here or reach out on Twitter @pashovkrum.

2. Disclaimer
A smart contract security review can never verify the complete absence of
vulnerabilities. This is a time, resource and expertise bound effort where we try to
find as many vulnerabilities as possible. We can not guarantee 100% security after
the review or even if the review will find any problems with your smart contracts.
Subsequent security reviews, bug bounty programs and on-chain monitoring are
strongly recommended.

3. Introduction
A time-boxed security review of the galacticcouncil/hydration-node repository
was done by Pashov Audit Group, with a focus on the security aspects of the
application's smart contracts implementation.

4. About Hydration
Hydration is a DeFi protocol on Polkadot, offering an 'Omnipool' that combines all
assets into a single, highly efficient trading pool, reducing slippage and increasing
capital efficiency. Through features like single-sided liquidity provisioning,
incentivized rewards, and advanced security, Hydration minimizes impermanent
loss and ensures safer, more streamlined trading for liquidity providers and DAOs
alike.

2

https://github.com/pashov/audits
https://twitter.com/pashovkrum

5. Risk Classification

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

5.1. Impact

High - leads to a significant material loss of assets in the protocol or significantly
harms a group of users.
Medium - only a small amount of funds can be lost (such as leakage of value) or a
core functionality of the protocol is affected.
Low - can lead to any kind of unexpected behavior with some of the protocol's
functionalities that's not so critical.

5.2. Likelihood

High - attack path is possible with reasonable assumptions that mimic on-chain
conditions, and the cost of the attack is relatively low compared to the amount of
funds that can be stolen or lost.
Medium - only a conditionally incentivized attack vector, but still relatively
likely.
Low - has too many or too unlikely assumptions or requires a significant stake by
the attacker with little or no incentive.

3

5.3. Action required for severity levels

Critical - Must fix as soon as possible (if already deployed)
High - Must fix (before deployment if not already deployed)
Medium - Should fix
Low - Could fix

6. Security Assessment Summary
review commit hash - 90eb2543cbe037626ed2c5f263f876bc5db6825a

fixes review commit hash - 5d4121cbe3fd852b8e8341d2358c19cf118946bc

Scope

The following smart contracts were in scope of the audit:

lib.rs

erc20_currency.rs

executor.rs

evm.rs

erc20_mapping.rs

multicurrency.rs

permit.rs

4

https://github.com/galacticcouncil/hydration-node/tree/90eb2543cbe037626ed2c5f263f876bc5db6825a
https://github.com/galacticcouncil/hydration-node/tree/5d4121cbe3fd852b8e8341d2358c19cf118946bc

7. Executive Summary
Over the course of the security review, Koolex, FrankCastle, ubermensch engaged
with Hydration to review Hydration. In this period of time a total of 9 issues were
uncovered.

Protocol Summary
Protocol Name Hydration

Repository https://github.com/galacticcouncil/hydration-node

Date October 17th - October 22th

Protocol Type Liquidity provision protocol

Findings Count
Severity Amount

High 1

Medium 3

Low 5

Total Findings 9

5

Summary of Findings
ID Title Severity Status

[H-01] TransferFrom is incorrectly treated as
a view function High Resolved

[M-01] Unbounded storage iteration in EVM
address registration migration Medium Acknowledged

[M-02] Failure to verify ERC20 function
return values in handle_result() Medium Resolved

[M-03] Unbounded memory growth via EVM
Error message allocations Medium Acknowledged

[L-01] EIP-2 signature malleability in Permit
validation Low Acknowledged

[L-02] Missing logging in runtime upgrade
implementation Low Acknowledged

[L-03] EVM exit status misclassification in
handle_result() Low Acknowledged

[L-04] Oversized EVM error messages due
to full value encoding Low Acknowledged

[L-05] Unchecked message size in call() Low Acknowledged

6

8. Findings

8.1. High Findings

[H-01] TransferFrom is incorrectly treated as
a view function

Severity
Impact: High

Likelihood: Medium

Description
In the execute function of the MultiCurrencyPrecompile module, the
check_function_modifier is intended to ensure that function calls are
compatible with the execution context, particularly regarding whether they are
payable or non-payable functions. However, the Function::TransferFrom case
is missing from the match statement:

handle.check_function_modifier(match selector {
 Function::Transfer => FunctionModifier::NonPayable,
 // Function::TransferFrom is not included here
 _ => FunctionModifier::View,
})?;

As a result, TransferFrom defaults to FunctionModifier::View , which is
incorrect because TransferFrom is a state-changing function that should be
marked as non-payable. Treating it as a view function can lead to unexpected
errors or failures when it's invoked, as the execution environment might
restrict state changes in contexts meant for view-only operations.

Recommendations
Include Function::TransferFrom in the check_function_modifier match
statement and assign it FunctionModifier::NonPayable , similar to the

7

Transfer function:

handle.check_function_modifier(match selector {
 Function::Transfer => FunctionModifier::NonPayable,
 Function::TransferFrom => FunctionModifier::NonPayable, // Add this line
 _ => FunctionModifier::View,
})?;

This adjustment ensures that TransferFrom is correctly recognized as a state-
changing function, preventing it from being erroneously treated as a view
function and maintaining the integrity of execution contexts.

8

8.2. Medium Findings

[M-01] Unbounded storage iteration in
EVM address registration migration

Severity
Impact: Medium

Likelihood: Medium

Description
SetCodeForErc20Precompile::on_runtime_upgrade() performs an unbounded
iteration over all assets in the registry to register their EVM addresses. This
approach poses several risks:

Block Space Exhaustion: with a large number of assets (>1000), the
migration could exceed block weight limits, causing the upgrade to fail.

Network Disruption: A failed upgrade due to exceeded block limits
would require network coordination to resolve, potentially leading to
downtime.

fn on_runtime_upgrade() -> frame_support::weights::Weight {
 pallet_asset_registry::Assets::<Runtime>::iter().for_each(|(asset_id, _)| {
 // ... processing each asset in a single block
 });
}

References: link

Recommendations
Implement a scheduled multi-block migration using the Scheduler pallet:

- Define migration state storage
- Process assets in configurable batches (e.g., 100 per block)
- Use the Scheduler pallet to ensure consistent execution
- Track progress for migration resumption

9

https://docs.substrate.io/reference/how-to-guides/parachains/upgrade-a-parachain/

[M-02] Failure to verify ERC20 function
return values in handle_result()

Severity
Impact: High

Likelihood: Low

Description
The handle_result function in the Erc20Currency implementation is
responsible for processing the results of ERC20 contract calls such as
transfer and approve . Currently, this function only checks the exit_reason
to determine if the EVM call succeeded:

fn handle_result(result: CallResult) -> DispatchResult {
 let (exit_reason, value) = result;
 match exit_reason {
 ExitReason::Succeed(ExitSucceed::Returned) => Ok(()),
 ExitReason::Succeed(ExitSucceed::Stopped) => Ok(()),
 _ => Err(DispatchError::Other(&*Box::leak(
 format!("evm:0x{}", hex::encode(value)).into_boxed_str(),
))),
 }
}

However, some ERC20 tokens return a boolean value indicating the success
(true) or failure (false) of the operation. By not checking the returned data
(value), the function may incorrectly assume that the operation was
successful when, in fact, it was not. This oversight can lead to situations where
transfers or approvals are considered successful by the system, even though the
ERC20 contract has signaled a failure through its return value.

Recommendations
Modify the handle_result function to check the returned data when its length
is non-zero. If the data represents a boolean value, decode it and verify that it
is true . If the decoded boolean is false , the function should revert the
transaction to prevent misinterpretation of the operation's outcome.

10

[M-03] Unbounded memory growth via
EVM Error message allocations

Severity
Impact: High

Likelihood: Low

Description
In executor.rs , the EVM error handling code creates permanent memory
allocations for each unique error value through the use of Box::leak . While
these are not traditional memory leaks from dropping references, they
represent a security risk through unbounded memory growth:

fn handle_result(result: CallResult) -> DispatchResult {
 let (exit_reason, value) = result;
 match exit_reason {
 ExitReason::Succeed(ExitSucceed::Returned) => Ok(()),
 ExitReason::Succeed(ExitSucceed::Stopped) => Ok(()),
 _ => Err(DispatchError::Other(&*Box::leak(
 format!("evm:0x{}", hex::encode(value)).into_boxed_str(),
))),
 }
}

Each unique error value creates a new permanent memory allocation because:

The error value is hex encoded (hex::encode(value))
This creates a new string for each unique value
Box::leak makes this allocation permanent
The memory cannot be freed during runtime

An attacker could exploit this by:

Generating transactions that cause EVM errors
Ensuring each error has unique data (e.g. ERC20 impl that returned
counter++ error everytime transfer is called)
Each unique error consumes additional memory
Memory usage grows linearly with unique errors

Example attack pattern:

11

// Each creates a permanent allocation
tx1 -> error [1,2,3] -> "evm:0x010203"
tx2 -> error [1,2,4] -> "evm:0x010204"
tx3 -> error [1,2,5] -> "evm:0x010205"
// Memory grows with each unique error

The severity is critical because:

Memory growth is unbounded
Allocations are permanent for the node's lifetime
Affects all network nodes
Could be used as DoS vector
Memory cannot be reclaimed without node restart

Recommendations
Use static error messages without dynamic data (recommended):

const EVM_ERROR: &'static str = "EVM execution error";

fn handle_result(result: CallResult) -> DispatchResult {
 let (exit_reason, value) = result;
 match exit_reason {
 ExitReason::Succeed(ExitSucceed::Returned) => Ok(()),
 ExitReason::Succeed(ExitSucceed::Stopped) => Ok(()),
 _ => {
 // Log error details separately if needed
 log::error!("EVM error: 0x{}", hex::encode(&value));
 Err(DispatchError::Other(EVM_ERROR))
 }
 }
}

Implement a bounded error cache (e.g. BTreeMap).

The recommended approach is option 1, as it:

Completely eliminates the memory growth vector
Maintains error logging capability
Is simple to implement and maintain
Has no performance overhead

12

8.3. Low Findings

[L-01] EIP-2 signature malleability in
Permit validation

Description
The validate_permit function in permit.rs does not validate that the s value
of the ECDSA signature is in the lower half of the curve order, which fails to
enforce EIP-2 requirements. This allows signature malleability where multiple
valid signatures can exist for the same message. While this doesn't create an
immediate security risk, it deviates from Ethereum standards and best
practices.

References: https://eips.ethereum.org/EIPS/eip-2

Recommendations
Add validation for the s value to ensure it's in the lower half of the curve
order.

[L-02] Missing logging in runtime upgrade
implementation

SetCodeForErc20Precompile::on_runtime_upgrade lacks logging mechanisms
to track the progress and results of the upgrade process. This makes it difficult
to:

Monitor the upgrade progress in production
Debug issues if the upgrade fails or behaves unexpectedly
Audit the changes after the upgrade is completed
Verify that all assets were processed correctly

Consider adding structured logging throughout the upgrade process.

13

impl frame_support::traits::OnRuntimeUpgrade for SetCodeForErc20Precompile {
 fn on_runtime_upgrade() -> frame_support::weights::Weight {
 log::info!("Starting ERC20 precompile code setup");

 // Track statistics
 let mut assets_processed = 0;
 let mut assets_updated = 0;

 // Log individual updates
 pallet_asset_registry::Assets::<Runtime>::iter().for_each(|
 (asset_id, _)| {
 assets_processed += 1;
 // Log progress...
 });

 // Log final results
 log::info!(
 "Completed setup. Processed: {}, Updated: {}",
 assets_processed,
 assets_updated
);

 // Return weight...
 }
}

And consider adding pre/post upgrade logging (and validation if necessary),
for example:

#[cfg(feature = "try-runtime")]
fn pre_upgrade() -> Result<Vec<u8>, &'static str> {
 log::info!("Starting pre_upgrade checks");
 Ok(Vec::new())
}

[L-03] EVM exit status misclassification in
handle_result()

The handle_result function only considers ExitSucceed::Returned and
ExitSucceed::Stopped as successful outcomes while treating all other exit
reasons as errors:

fn handle_result(result: CallResult) -> DispatchResult {
 let (exit_reason, value) = result;
 match exit_reason {
 ExitReason::Succeed(ExitSucceed::Returned) => Ok(()),
 ExitReason::Succeed(ExitSucceed::Stopped) => Ok(()),
 _ => Err(DispatchError::Other(&*Box::leak(
 format!("evm:0x{}", hex::encode(value)).into_boxed_str(),
))),
 }
}

14

This implementation incorrectly treats ExitSucceed::Suicided as an error
condition, despite it being a valid and intentional outcome in EVM operations.
When a smart contract executes a self-destruct operation (SELFDESTRUCT
opcode), it returns ExitSucceed::Suicided to indicate successful contract
destruction.

As a result:

Valid contract self-destruct operations will be marked as failed transactions
This diverges from standard EVM behavior where self-destruct is a valid
operation

Suicide code from SputnikVM:

machine: &mut Machine<S>,
handler: &mut H,

) -> Control<Tr> {
.
match machine.stack.perform_pop1_push0(|target| {
.
.

Ok(((), ()))
}) {

Ok(()) => Control::Exit(ExitSucceed::Suicided.into()),
Err(e) => Control::Exit(Err(e)),

}
}

interpreter/src/eval/system.rs#L370

SputnikVM is an EVM engine used in frontier by moonbeam-foundation
(which is a fork from polkadot-evm/frontier), which is utilized in Hydration.

[[package]]
name = "pallet-evm"
version = "6.0.0-dev"
source =
// "git+https://github.com/moonbeam-foundation/frontier?branch=moonbeam-polkadot-v1.11

hydration-node/blob/evm-binding/Cargo.lock#L8237

Note: given that the use of handle_result is currently limited to ERC20
operations, the likelihood of self-destruct opcode is low. However, it still does
not follow the standard EVM behavior.

The handle_result function should be modified to properly handle all
ExitSucceed variants as successful operations:

15

https://github.com/rust-ethereum/evm/blob/master/interpreter/src/eval/system.rs#L370
https://github.com/galacticcouncil/hydration-node/blob/evm-binding/Cargo.lock#L8237

fn handle_result(result: CallResult) -> DispatchResult {
 let (exit_reason, value) = result;
 match exit_reason {
 ExitReason::Succeed(_) => Ok(()), // Accept all ExitSucceed variants
 _ => Err(DispatchError::Other(&*Box::leak(
 format!("evm:0x{}", hex::encode(value)).into_boxed_str(),
))),
 }
}

[L-04] Oversized EVM error messages due
to full value encoding

The handle_result function in erc20_currency.rs implements error
handling for EVM calls by encoding the entire return value into error messages
using hex encoding.

fn handle_result(result: CallResult) -> DispatchResult {
 let (exit_reason, value) = result;
 match exit_reason {
 ExitReason::Succeed(ExitSucceed::Returned) => Ok(()),
 ExitReason::Succeed(ExitSucceed::Stopped) => Ok(()),
 _ => Err(DispatchError::Other(&*Box::leak(
 format!("evm:0x{}", hex::encode(value)).into_boxed_str(),
))),
 }
}

The function blindly encodes the entire value parameter into the error
message for all failed EVM operations. This design becomes problematic
when dealing with EVM operations that can produce large return values.

Given Polkadot's EVM compatibility layer, this poses some risks:

Large error messages require significant memory allocation for string
formatting and hex encoding.
If these errors are logged on-chain or stored in network history, they create
unnecessary storage bloat.

Limit the error information, for example, truncate it to a reasonable size or
return a hash of it, if it exceeds a certain size limit.

[L-05] Unchecked message size in call()

16

In the executor's call function, the input data is accepted without size
validation, as demonstrated in the snippet below:

fn call
 (context: CallContext, data: Vec<u8>, value: U256, gas: u64) -> CallResult {
 Self::execute(context.origin, gas, |executor| {
 executor.transact_call
 (context.sender, context.contract, value, data, gas, vec![])
 })
}

This function processes the data vector, which represents the message being
passed to the contract. However, there is no size validation for the input data,
meaning a very large message could be sent without restriction.

Allowing large, unchecked messages to be processed can result in excessive
gas consumption, potentially depleting gas resources and disrupting execution.
This vulnerability could lead to Denial of Service (DoS) attacks where the
system is forced to process large messages, resulting in unintended behavior or
crashing due to running out of gas.

Before executing the message, validate the size of the input data against a
maximum allowable limit to prevent overly large messages from being
processed. For example, add a check to reject any message whose size exceeds
the predefined maximum, ensuring gas resources are not needlessly consumed.
Example:

fn call
 (context: CallContext, data: Vec<u8>, value: U256, gas: u64) -> CallResult {
 let max_size: usize = 1024; // Set an appropriate maximum size limit
 if data.len() > max_size {
 return Err("Data size exceeds maximum allowed limit");
 }

 Self::execute(context.origin, gas, |executor| {
 executor.transact_call
 (context.sender, context.contract, value, data, gas, vec![])
 })
}

This will prevent large messages from causing gas exhaustion and protect the
system from potential DoS attacks.

17

