

Security Audit Report

Hydration Peg Drift Stableswap

v1.0

May 2, 2025

1

Table of Contents
Table of Contents 2
License 4
Disclaimer 5
Introduction 6

Purpose of This Report 6
Codebase Submitted for the Audit 6
Methodology 8
Functionality Overview 8

How to Read This Report 9
Code Quality Criteria 10
Summary of Findings 11
Detailed Findings 11

1. Potential denial of service by storing non-whitelisted pairs from Bifrost oracle 12
2. Liquidity providers can be blocked from exit 12
3. Liquidity of any asset can be inflated or deflated by the registry owner 13
4. Unexpected behavior results from inability to remove oracle data set during genesis
13
5. Missing slippage protection in add_liquidity extrinsic 14
6. Missing protection for rapid amplification changes 14
7. Pool destructure procedure is not complete 15
8. Silent duplication error handling during liquidity removal 16
9. Insufficient pool fee validation 16
10. Missing staleness monitoring for oracle data 17
11. Potential for optimization in shares calculation 17
12. Possible optimization in create_pool function 17
13. Inconsistency in update_amplification specification 18
14. Misleading error messages 18
15. Missed invariant verification 19
16. Redundant balance validations 19
17. Unresolved TODO comments in the codebase 20

Appendix A: Suggestions 21
1. Optimized code for “Potential for optimization in shares calculation” 21

Security Model 22
Assets 22

Token assets 22
Protocol state data 23
Code & logic assets 23
Control mechanisms 23

Stakeholders/Potential Threat Actors 25

2

Privileged actors 25
External actors & market participants 25
Users & economic actors 25
Privileged roles & risky counterparties 26
Supply chain 26

Assumptions 27
Pool configuration invariants 27
Liquidity operation constraints 27
Oracle & data integrity requirements 27
Mathematical & operational safety 28
Network & integration assumptions 28

Threat Model 30
Process Applied 30
STRIDE Interpretation in the Blockchain Context 30
STRIDE Classification 31
Mitigation Matrix 36

Governance Operations 36
Privileged Role Exploits 37
Oracle Manipulation 39
Economic Attacks 41
Externally Owned Accounts 44
Deposit and withdrawal of funds from Parachain 47
Peg update and liquidity operations 48

3

License

THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION-NODERIVATIVES
4.0 INTERNATIONAL LICENSE.

4

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/

Disclaimer
THE CONTENT OF THIS AUDIT REPORT IS PROVIDED “AS IS”, WITHOUT REPRESENTATIONS
AND WARRANTIES OF ANY KIND.

THE AUTHOR AND HIS EMPLOYER DISCLAIM ANY LIABILITY FOR DAMAGE ARISING OUT
OF, OR IN CONNECTION WITH, THIS AUDIT REPORT.

THIS AUDIT REPORT WAS PREPARED EXCLUSIVELY FOR AND IN THE INTEREST OF THE
CLIENT AND SHALL NOT CONSTRUE ANY LEGAL RELATIONSHIP TOWARDS THIRD
PARTIES. IN PARTICULAR, THE AUTHOR AND HIS EMPLOYER UNDERTAKE NO LIABILITY OR
RESPONSIBILITY TOWARDS THIRD PARTIES AND PROVIDE NO WARRANTIES REGARDING
THE FACTUAL ACCURACY OR COMPLETENESS OF THE AUDIT REPORT.

FOR THE AVOIDANCE OF DOUBT, NOTHING CONTAINED IN THIS AUDIT REPORT SHALL BE
CONSTRUED TO IMPOSE ADDITIONAL OBLIGATIONS ON COMPANY, INCLUDING WITHOUT
LIMITATION WARRANTIES OR LIABILITIES.

COPYRIGHT OF THIS REPORT REMAINS WITH THE AUTHOR.

This audit has been performed by

Oak Security GmbH

https://oaksecurity.io/
info@oaksecurity.io

5

https://oaksecurity.io/
mailto:info@oaksecurity.io

Introduction

Purpose of This Report

Oak Security GmbH has been engaged by Intergalactic Limited to perform a security audit of
Hydration Peg Drift Stableswap Security Audit.

The objectives of the audit are as follows:

1. Determine the correct functioning of the protocol, in accordance with the project
specification.

2. Determine possible vulnerabilities, which could be exploited by an attacker.

3. Determine smart contract bugs, which might lead to unexpected behavior.

4. Analyze whether best practices have been applied during development.

5. Make recommendations to improve code safety and readability.

This report represents a summary of the findings.

As with any code audit, there is a limit to which vulnerabilities can be found, and unexpected
execution paths may still be possible. The author of this report does not guarantee complete
coverage (see disclaimer).

Codebase Submitted for the Audit
The audit has been performed on the following target:

Repository https://github.com/galacticcouncil/hydration-node

Commit 253132a7b089b79158463bbf43870e78a70d8860

Scope Scope of the tests was limited to components listed below:
● math/src/ratio.rs
● math/src/stableswap
● pallets/stableswap
● pallets/ema-oracle

Fixes verified
at commit

f671b1c51461842936684a40cf8d1685a45b8080

6

https://github.com/galacticcouncil/hydration-node

Note that only fixes to the issues described in this report have been
reviewed at this commit. Any further changes such as additional features
have not been reviewed.

7

Methodology
The audit has been performed in the following steps:

1. Gaining an understanding of the code base’s intended purpose by reading the
available documentation.

2. Automated source code and dependency analysis.
3. Manual line-by-line analysis of the source code for security vulnerabilities and use of

best practice guidelines, including but not limited to:
a. Race condition analysis
b. Under-/overflow issues
c. Key management vulnerabilities

4. Report preparation

Functionality Overview
Hydration is a DeFi protocol built on Substrate, offering advanced trading, liquidity provision,
and price discovery mechanisms for the Polkadot ecosystem. It integrates various financial
primitives including stableswap AMMs, omnipool liquidity aggregation, EMA oracles, and
cross-asset routing capabilities to create a robust foundation for efficient asset exchange and
yield generation.

The scope of audit was limited to swableswap and ema-oracle pallets, with mathematical
concepts supporting it.

The stableswap pallet is a Curve/stableswap-style Automated Market Maker (AMM)
designed for highly efficient and low-slippage trades between assets of similar value. The
pallet supports advanced features including multi-asset pools, dynamic fee adjustment,
weighted pegging mechanisms, and comprehensive liquidity operations.

The ema-oracle pallet provides exponential moving average (EMA) oracles of different time
periods for price, volume, and liquidity data across various asset pairs. The oracle data is
accessible through standardized interfaces and is designed to be integrated with other pallets
to support price discovery and financial operations.

8

How to Read This Report
This report classifies the issues found into the following severity categories:

Severity Description

Critical A serious and exploitable vulnerability that can lead to loss of funds,
unrecoverable locked funds, or catastrophic denial of service.

Major A vulnerability or bug that can affect the correct functioning of the
system, lead to incorrect states or denial of service.

Minor A violation of common best practices or incorrect usage of primitives,
which may not currently have a major impact on security, but may do so
in the future or introduce inefficiencies.

Informational Comments and recommendations of design decisions or potential
optimizations, that are not relevant to security. Their application may
improve aspects, such as user experience or readability, but is not strictly
necessary. This category may also include opinionated
recommendations that the project team might not share.

The status of an issue can be one of the following: Pending, Acknowledged, Partially Resolved,
or Resolved.

Note that audits are an important step to improving the security of smart contracts and can
find many issues. However, auditing complex codebases has its limits and a remaining risk is
present (see disclaimer).

Users of the system should exercise caution. In order to help with the evaluation of the
remaining risk, we provide a measure of the following key indicators: code complexity, code
readability, level of documentation, and test coverage. We include a table with these criteria
below.

Note that high complexity or low test coverage does not necessarily equate to a higher risk,
although certain bugs are more easily detected in unit testing than in a security audit and vice
versa.

9

Code Quality Criteria
The auditor team assesses the codebase’s code quality criteria as follows:

Criteria Status Comment

Code complexity Medium -

Code readability and clarity Medium-High -

Level of documentation Medium The code is self-explanatory,
extrinsics have extensive
specification in the form of
comments, but additional
documentation and functional
assumptions have not been
provided.

Test coverage Low Test coverage for pallets,
primitives, and runtime
reported by cargo tarpaulin is
5.67%.

10

Summary of Findings

No Description Severity Status

1 Potential denial of service by storing
non-whitelisted pairs from Bifrost oracle

Major Acknowledged

2 Liquidity providers can be blocked from exit Major Acknowledged

3 Liquidity of any asset can be inflated or deflated by
the registry owner

Major Acknowledged

4 Unexpected behavior results from inability to
remove oracle data set during genesis

Minor Acknowledged

5 Missing slippage protection in add_liquidity
extrinsic

Minor Resolved

6 Missing protection for rapid amplification changes Minor Acknowledged

7 Pool destructure procedure is not complete Informational Resolved

8 Silent duplication error handling during liquidity
removal

Informational Resolved

9 Insufficient pool fee validation Informational Acknowledged

10 Missing staleness monitoring for oracle data Informational Acknowledged

11 Potential for optimization in shares calculation Informational Acknowledged

12 Possible optimization in create_pool function Informational Resolved

13 Inconsistency in update_amplification
specification

Informational Resolved

14 Misleading error messages Informational Acknowledged

15 Missed invariant verification Informational Resolved

16 Redundant balance validations Informational Acknowledged

17 Unresolved TODO comments in the codebase Informational Acknowledged

Detailed Findings

11

1. Potential denial of service by storing non-whitelisted pairs from
Bifrost oracle

Severity: Major

At pallets/ema-oracle/src/lib.rs:363, data from the Bifrost source is accepted
and stored in the Accumulator even if the pair is not whitelisted. This can lead to a
potential Denial of Service scenario.

If Bifrost continuously pushes updates for non-whitelisted pairs, they consume the
MaxUniqueEntries capacity, preventing valid (whitelisted) entries from being recorded.
Since these unwanted entries are never removed (the pairs are not whitelisted), the pallet
effectively becomes cluttered with irrelevant data, locking out legitimate updates.

Recommendation

We recommend rejecting Bifrost updates for non-whitelisted pairs.

Status: Acknowledged

2. Liquidity providers can be blocked from exit

Severity: Major

In pallets/stableswap/src/lib.rs:614-620, the function
remove_liquidity_one_asset validates that either the liquidity provider attempts to
perform full exit from the pool by comparing total share_issuance and requested
share_amount, or that the amount of liquidity left in the pool after the withdrawal is greater
than MinPoolLiquidity.

However, this validation generates scenarios where liquidity providers cannot leave the pool.
For example:

1. A pool is created and MinPoolLiquidity is set to 100$.
2. Liquidity providers Alice and Bob enter the pool with shares 100$ each.
3. Alice removes 99$ of liquidity, rendering the pool to have 101$ of liquidity.
4. Now, Bob cannot withdraw the full amount of his 100$.
5. Bob can withdraw only 1$.

As it is implemented in the function remove_liquidity, pools are destroyed whenever full
liquidity is withdrawn by a single liquidity provider. However, the pool destruction is not
triggered when it falls below MinPoolLiquidity but is still above zero. This limit also can
prevent providers from full exit.

Recommendation

12

We recommend checking current_share_balance and allowing any user to liquidate
their share if they intend to exit completely.

Status: Acknowledged

3. Liquidity of any asset can be inflated or deflated by the registry
owner

Severity: Major

In math/src/stableswap/math.rs:752-767, the function normalize_value is
implemented which normalizes balances of assets having different decimals. For instance, if
the number of decimals is less than TARGET_PRECISION, the corresponding balance is
multiplied by 10K where K is the difference between the two decimals. The function
normalize_value is used in most core calculations related to the pool operations.

However, the function normalize_value is not utilized in the do_add_liquidity
function defined in pallets/stableswap/src/lib.rs:1347-1465. Specifically, on
line 1385 when new liquidity is summed up with the current amount stored in the variable
reserve.

It might look at first glance that decimals of assets stored in liquidity pools cannot change.
However, as it is seen in pallets/asset-registry/src/lib.rs:460-468 decimals
of already registered assets can be updated by the registry owner. In case of such an update,
all existing liquidity pools including the updated asset become corrupted — all the liquidity
already deposited in such pools will be implicitly multiplied or divided by 10K.

The most realistic scenario resulting in such a pool corruption is denomination performed by
on-chain governance when the consequence on the pools is not obvious. Furthermore, if the
registry owner is a centralized administration entity, there is a high systemic risk since such an
entity can inflate or deflate liquidity in the pools to any number, at will or by mistake.

Recommendation

We recommend tracking asset decimals uniformly across all pools and normalizing liquidity
levels after each decimals update.

Status: Acknowledged

4. Unexpected behavior results from inability to remove oracle data
set during genesis

Severity: Minor

In the ema-oracle pallet at pallets/ema-oracle/src/lib.rs:224, genesis oracle
entries are stored within the pallet's storage. However, the associated assets are not

13

automatically added to the WhitelistedAssets variable. This creates a scenario where an
oracle supporting a specific asset pair cannot be removed if support for that asset pair is later
discontinued. The remove_oracle extrinsic enforces a check that only oracles associated
with whitelisted assets can be removed.

This behavior prevents authorized users from removing outdated or unwanted oracles from
the pallet. This results in the accumulation of unnecessary data within the pallet and
introduces the risk of unintended oracle usage within the stableswap pallet.

Recommendation

We recommend that during genesis assets should be included in the WhitelistedAssets.
This will enable the removal of the oracle by authorized origin at a later time.

Status: Acknowledged

5. Missing slippage protection in add_liquidity extrinsic

Severity: Minor

Unlike other liquidity functions in the pallet, the add_liquidity function defined in
pallets/stableswap/src/lib.rs:516 does not implement slippage protection.

This is inconsistent with both other liquidity functions in the implementation (like
add_liquidity_shares and remove_liquidity_one_asset) and with Curve
Finance's implementation, which does include a min_mint_amount parameter.

Users adding liquidity may receive significantly fewer shares than expected due to
front-running attacks or market volatility between transaction creation and execution,
potentially resulting in financial losses.

Recommendation

We recommend adding a minimum shares parameter working as a slippage protection
mechanism.

Status: Resolved

6. Missing protection for rapid amplification changes

Severity: Minor

The update_amplification function in pallets/stableswap/src/lib.rs:448
lacks a minimum timeframe requirement that must elapse between consecutive amplification
parameter changes.

14

Unlike Curve Finance, which enforces a minimum timeframe (MIN_RAMP_TIME constant set
to 86400 seconds/1 day), this implementation allows rapid sequential amplification changes. A
malicious actor with AuthorityOrigin privileges could manipulate the amplification
parameter in rapid succession, causing pool instability and creating arbitrage opportunities to
extract value from the pool.

Recommendation

We recommend implementing a minimum timeframe constant similar to Curve's
implementation and enforce validation that sufficient time has elapsed since the previous
amplification change.

Status: Acknowledged

7. Pool destructure procedure is not complete

Severity: Minor

In pallets/stableswap/src/lib.rs:1089-1092, the remove_liquidity function
implements the pool destruction. However, corresponding peg data expressed as value of
type PegInfo is not removed from the storage. This leaves stale entries in PoolPegs even
though the pool is no longer active.

Recommendation

We recommend removing the pool’s peg information together with the pool itself.

Status: Resolved

15

8. Silent duplication error handling during liquidity removal

Severity: Informational

The remove_liquidity function does not explicitly validate that asset IDs in
min_amounts_out are unique. In pallets/stableswap/src/lib.rs:1044 there is a
validation checking, if min_amounts_out length is the same as pool.assets length,
however it does not clearly ensure that unique assets amount is equal.

When duplicate assets are provided, the function will fail later when attempting to access a
missing asset, but the error message (IncorrectAssets) doesn't clearly communicate the
specific issue.

Recommendation

We recommend adding explicit validation for duplicate assets before conversion to
BTreeMap, providing a more specific error message.

Status: Resolved

9. Insufficient pool fee validation

Severity: Informational

In pallets/stableswap/src/lib.rs, the update_pool_fee function is defined that
allows updating pool fees to new values. However, several important validations are missing:

● The pool.fee variable of type Permill is assigned to the new fee value without
any validation of its range. This means the fee could be set up to 100% preventing
liquidity providers from any profits. Such an extreme fee could break normal pool
operations.

● The new fee value is not compared against the current value. This allows redundant
updates.

Recommendation

We recommend introducing a maximum allowed fee to avoid excessively high fees and also
validate that the update is not redundant.

Status: Acknowledged

16

10. Missing staleness monitoring for oracle data

Severity: Informational

Within pallets/stableswap/src/lib.rs:1782, when the code fetches oracle data via
get_raw_entry, it does not verify whether the oracle feed is updating regularly. Nor does it
log any warnings if updates stop for an extended period. As a result, the pallet may
unknowingly rely on an outdated price—especially if, for instance, the Bifrost oracle feed
ceases to provide fresh data.

Recommendation

We recommend adding a staleness check and log messages (or alerts) if oracle data is older
than a configured threshold.

Status: Acknowledged

11. Potential for optimization in shares calculation

Severity: Informational

In math/src/stableswap/math.rs:174, within the calculate_shares function, the
function call to calculate_d can be optimized for the case when share_issuance is 0.

In such a case, Some((updated_d, fees)) value can be returned even before
computing the value of the adjusted_reserves variable.

Recommendation

We recommend streamlining implementation of the function calculate_shares. See the
Appendix.

Status: Acknowledged

12. Possible optimization in create_pool function

Severity: Informational

It was observed that the create_pool function defined in
pallets/stableswap/src/lib.rs takes an assets parameter of type
Vec<T::AssetId>. Although the actual length of that vector is validated to not exceed a
defined threshold and MaxAssetsExceeded error is returned otherwise at line 1301, such
validation is not executed right away.

There is no security impact associated with doing it later, however, executing it at the
beginning of the function can reduce the unnecessary execution time in cases when it’s
known to fail.

17

An even better approach could be changing the type of the assets parameter to
BoundedVec which by default cannot be longer than a specified length. This approach is
already applied in other functions, e.g. add_liquidity.

Recommendation

We recommend changing the assets parameter type to BoundedVec if possible.
Alternatively, asserting the length of assets vector early should be implemented.

Status: Resolved

13. Inconsistency in update_amplification specification

Severity: Informational

The function comments for update_amplification in
pallets/stableswap/src/lib.rs:448 do not match the actual implementation
parameters. The comments reference different parameter names and structures.

This inconsistency may cause confusion during code maintenance and for developers
integrating with the pallet.

Recommendation

We recommend updating the function documentation to accurately reflect the parameter
names used in the implementation.

Status: Resolved

14. Misleading error messages

Severity: Informational

Throughout the codebase, the ArithmeticError::Overflow error is used incorrectly to
report general validation issues. For example, in
pallets/stableswap/src/lib.rs:1414, it is used when the calculate_shares
function returns None.

Other locations where ArithmeticError::Overflow is used:

● pallets/stableswap/src/lib.rs:633, 726, 1233, 1276, 1414,
1503, 1610

● pallets/stableswap/src/trade_execution.rs:54, 128, 174, 205,
325

18

Additionally, in pallets/stableswap/src/lib.rs:1369, the IncorrectAssets
error is returned after detecting a duplicate in the input vector of assets. A more precise
message would be DuplicatedAssets.

Recommendation

We recommend correcting error messages for better clarity and maintainability.

Status: Acknowledged

15. Missed invariant verification

Severity: Informational

There are several invariants verified during test runs and enabled by the try-runtime flag.
One of such invariants is ensure_remove_liquidity_invariant, used in
pallets/stableswap/src/lib.rs:1103. This invariant is verified in both
remove_liquidity and remove_liquidity_one_asset, but not in
withdraw_asset_amount which is a liquidity removal, too.

Recommendation

We recommend verifying the ensure_remove_liquidity_invariant invariant in the
withdraw_asset_amount function.

Status: Resolved

16. Redundant balance validations

Severity: Informational

There are several redundant assertions have been discovered, both involving user balances:

● During liquidity withdrawals, e.g. in pallets/stableswap/src/lib.rs:1032, it
is validated that current_share_balance is greater than share_amount and
error InsufficientShares is returned otherwise. However, if the user does not
have enough shares, later the attempt to burn them using
T::Currency::withdraw(pool_id, &who, share_amount) will fail anyway.
This validation is implemented in both remove_liquidity and
remove_liquidity_one_asset, but is missing in withdraw_asset_amount.

● During liquidity deposits, in pallets/stableswap/src/lib.rs:1364, it is
validated that the user has more than asset.amount tokens. Similarly, to the
previous point, if it is not the case, the deposit will fail during
T::Currency::transfer(asset.asset_id, who, &pool_account,
asset.amount).

19

Redundant assertions reduce code readability and maintainability.

Recommendation

We recommend removing the above mentioned assertions.

Status: Acknowledged

17. Unresolved TODO comments in the codebase

Severity: Informational

The codebase demonstrates good in-line documenting practices and does not use TODO
comments in general. However, two such comments have still been identified within the given
scope of this audit (excluding tests):

● pallets/stableswap/src/lib.rs:235
● pallets/stableswap/src/lib.rs:742

In general, TODO and FIXME comments tend to accumulate without resolution and often
become outdated, hence reducing codebase maintainability and readability.

Recommendation

We recommend resolving the listed TODO comments, or moving them to the proper task
tracker system.

Status: Acknowledged

20

Appendix A: Suggestions
1. Optimized code for “Potential for optimization in shares

calculation”

if share_issuance == 0 {
 return Some((updated_d, fees))
};

let adjusted_reserves = updated_reserves
 .iter()
 .enumerate()
 .map(|(idx, asset_reserve)| -> Option<AssetReserve> {
 let (initial_reserve, updated_reserve) =

to_u256!(initial_reserves[idx].amount, asset_reserve.amount);
 let ideal_balance = d1.checked_mul(initial_reserve)?.checked_div(d0)?;
 let diff =

Balance::try_from(updated_reserve.abs_diff(ideal_balance)).ok()?;
 let fee_amount = fee.checked_mul_int(diff)?;
 fees.push(fee_amount);
 Some(AssetReserve::new(
 asset_reserve.amount.saturating_sub(fee_amount),
 asset_reserve.decimals,
))
 })
 .collect::<Option<Vec<AssetReserve>>>()?;

let adjusted_d = calculate_d::<D>(&adjusted_reserves, amplification, pegs)?;
let (issuance_hp, d_diff, d0) = to_u256!(share_issuance,

adjusted_d.checked_sub(initial_d)?, initial_d);
let share_amount = issuance_hp.checked_mul(d_diff)?.checked_div(d0)?;
let shares_amount = Balance::try_from(share_amount).ok()?;

Some((shares_amount, fees))

21

Security Model
The security model has been carefully crafted to delineate the various assets, actors, and
underlying assumptions of Hydration Peg Drift Stableswap. They will then be analyzed in a
threat model to outline high-level security risks and proposed mitigations.

The purpose of this security model is to recognize and assess potential threats, as well as the
derivation of recommendations for mitigations and counter-measures.

There is a limit to which security risks can be identified by constructing a security/threat
model. Some risks may remain undetected and may not be covered in the model described
below (see disclaimer).

Assets

The following outlines assets that hold significant value to potential attackers or other
stakeholders of the system.

Token assets

Pool reserves - The actual token balances controlled by pool accounts that users trade
against. These represent the primary value held within the protocol and are a critical target for
protection.

Share tokens - Unique tokens minted for each pool representing liquidity provider ownership.
These tokens establish claims to portions of the pool reserves and carry significant value.

Rebasing tokens - Tokens whose balances can change proportionally across all accounts that
hold them. The stableswap pools in Hydration will include rebasing tokens similar to AAVE's
"A" tokens. These tokens create unique security considerations because:

● When a token in an AMM rebases, its quantity changes in a way not governed by
AMM rules,

● Assuming the AMM references account balances as reserves, rebases will change
AMM reserves,

● For stableswap, rebasing changes both the invariant and the spot price,
● Assumptions about invariant stability, share-to-reserves ratios, or price stability

between user interactions may no longer hold,
● Design considerations or safety assurances based on these assumptions may be

invalidated.

22

Bridged assets - Wrapped tokens from other chains that may exist within pools. These
cross-chain assets require special security considerations due to their interactions with
external properties.

Protocol state data

Stableswap pool state - Configuration data structures maintaining asset details and pool
parameters. This state data determines how pools operate and must be protected from
unauthorized modifications.

Pool peg information - Pegged values stored in pallet_stableswap::PoolPegs. These
values are crucial for maintaining price equilibrium and directly impact trading behavior.

Oracle data - Time-weighted price data from pallet_ema_oracle::Oracles. This data
influences trading decisions and must remain accurate and tamper-resistant.

Oracle accumulator - Temporary storage for data before block finalization. This component
ensures consistent processing of price data across block boundaries.

Code & logic assets

Stableswap implementation - The code implementing the invariant model in
hydra_dx_math::stableswap. This mathematical foundation must be implemented
correctly to ensure fair and expected trading behavior.

EMA implementation - Code handling time-weighted average calculations in
hydra_dx_math::ema. This logic ensures accurate price averaging over time.

Fee calculation code - Implementation for determining and distributing trading fees in
pallet_stableswap::calculate_target_fee. This code directly impacts protocol
economics and must function correctly.

Rebasing handler code - Implementation for detecting and handling token supply changes
pallet_stableswap. This logic ensures accurate accounting during supply adjustments.

Control mechanisms

Parameter setting authority - The capability to modify protocol parameters like fees and
amplification via update_pool_fee and update_amplification functions. This
capability must be carefully controlled and monitored.

Emergency controls - The mechanisms allowing trading to be halted in emergencies through
set_asset_tradable_state and other emergency functions. These safeguards must be
accessible when needed but protected from abuse.

Upgrade mechanisms - The infrastructure allowing protocol code to be modified. These
mechanisms directly impact protocol evolution and security.

23

Access controls - The systems controlling who can perform privileged operations,
implemented through Origin checks and permission validation in functions like
create_pool. These controls define the security perimeter for sensitive protocol functions.

24

Stakeholders/Potential Threat Actors

The following outlines the various stakeholders or potential threat actors that interact with the
system.

Privileged actors

AuthorityOrigin (stableswap) - Can call create_pool, update_pool_fee, and
update_amplification. This role has significant control over pool creation and
parameters.

UpdateTradabilityOrigin - Can modify asset tradability via set_asset_tradable_state.
This role controls which assets can be traded.

AuthorityOrigin (ema-oracle) - Can add or remove asset pairs from the oracle. This role
influences price discovery mechanisms.

Rebalance authority - If manual intervention is needed, the protocol may need an on-chain
role to execute emergency rebalancing. This addresses extreme market conditions.

Rebase-oriented oracle operators - Ensuring accurate price data for rebasing tokens. These
specialized operators handle dynamic token supplies.

External actors & market participants

BifrostOrigin - Special origin authorized to update Bifrost oracle data. This provides external
price information.

TargetPegOracle - External price oracle providing asset data. This influences pool pricing.

Arbitrage bots - Exploiting price differences between Hydration pools and external markets.
These help maintain price efficiency. Bots profiting from price discrepancies across
parachains via XCM. These operate in the cross-chain environment.

MEV bots - While Polkadot lacks traditional MEV, front-running can occur via collators
modifying transaction ordering. These extract value from transaction ordering.

Bridge operators - Entities managing cross-chain stablecoin transfers for non-native Polkadot
assets. These facilitate cross-chain asset movement.

Users & economic actors

Users may be at risk of attacks such as social engineering, phishing, unauthorized access to
wallets, or receiving fraudulent information. Users may fall into various categories:

Traders - Users swapping assets via the stableswap pool. These participants execute sell and
buy extrinsics to exchange tokens, potentially exploiting price inefficiencies and driving the

25

pool toward equilibrium. Their trading activities directly impact price discovery and generate
fees for the protocol and LPs.

Liquidity providers (LPs) - Users adding/removing liquidity via add_liquidity and related
extrinsics. These are the core participants providing trading depth. LPs may provide various
types of assets, including:

● Standard tokens received directly from external sources
● Rebasing tokens (similar to AAVE's "A" tokens) which they received by providing

liquidity to lending protocols
● Wrapped or bridged assets from other chains

Many LPs participate in yield farming strategies, where they actively manage their liquidity
positions across multiple protocols to maximize returns through:

● Trading fees from the stableswap pools
● Protocol incentive rewards (token emissions)
● Secondary yield from deposited assets (such as rebasing tokens that accrue interest)
● Strategic liquidity reallocation based on changing APYs across the DeFi ecosystem

This creates a multi-layered liquidity provision ecosystem where the same user may be an LP
across multiple protocols (lending, swapping, etc.), compounding their exposure and risk
profiles. The interaction between these different LP positions (especially with rebasing tokens
that change in quantity over time) introduces complex security considerations for pool
accounting and share token valuation.

Protocol DAOs & governance participants - Stakeholders voting on fee structures, incentives,
and security upgrades. These influence protocol evolution.

Privileged roles & risky counterparties

Pool curators/managers - Entities managing parameters like amplification factors. These have
direct influence over pool behavior.

Whitelist & KYC gatekeepers - If pools enforce whitelisting, someone must approve
addresses. These control access to the protocol.

Supply chain

The technical supply chain includes libraries, dependencies, and compiler infrastructure. If
compromised, these components could introduce vulnerabilities even if the protocol's core
code is secure. Historical precedents like the Vyper compiler vulnerability that affected Curve
Finance demonstrate the impact of supply chain compromises.

26

Assumptions

The following outlines various assumptions upon which the system's functioning is predicated.

Pool configuration invariants

Pool composition limit - Maximum of 5 assets (MAX_ASSETS_IN_POOL) must be enforced
per pool. Violation could lead to excessive computational complexity or gas costs.

Amplification constraints - All amplification values must remain within defined
AmplificationRange (NonZeroU16). Values outside this range could destabilize pools or
enable exploitation.

Token standardization - All assets in a pegged pool must maintain identical decimal places
for accurate price calculation. Inconsistent decimals could create precision errors exploitable
by attackers.

LP token representation - Share tokens must always accurately reflect proportional
ownership of the pool, accounting for rebasing events. Inaccurate representation would lead
to unfair value distribution and manipulable states which could be exploited by attackers.

Liquidity operation constraints

Initial liquidity provision - First LP must establish minimum viable liquidity across all pool
assets simultaneously. Imbalanced bootstrapping could create exploitable initial conditions.

Liquidity addition mechanism - Subsequent liquidity additions are restricted to maintain pool
balance. Unrestricted additions could manipulate pool ratios.

Withdrawal flexibility - LPs should maintain ability to withdraw either proportionally across all
assets or selectively from specific assets. Restricted withdrawals would harm user experience.

Withdrawal impact limitations - Large withdrawals must not destabilize pool equilibrium
beyond acceptable thresholds. Unlimited withdrawals could trigger liquidity crises.

Oracle & data integrity requirements

Oracle price boundaries - All price updates via update_bifrost_oracle must remain
within MaxAllowedPriceDifference. Updates could indicate manipulation or extreme
market conditions.

External data validation - TargetPegOracle must provide consistently accurate data
within max_peg_update constraints. Inaccurate external data would compromise pricing.

27

Temporal consistency - BlockNumberProvider must ensure correct timestamps for EMA
decay calculations. Inconsistent timing would disrupt time-weighted averaging.

Rebase detection - The protocol must detect and account for all rebasing events before trade
execution. Missed rebase events would create exploitable accounting discrepancies.

Mathematical & operational safety

Minimum viable operations - MinTradingLimit and MinPoolLiquidity must be
enforced to prevent dust attacks. Subminimal operations would enable attacks or burden the
system.

Account protection - Pool accounts must maintain whitelisted status to prevent unintended
asset removal. Compromised accounts would threaten user funds.

Value constraints - All calculations involving shares and tokens must prevent negative or
implausible values. Mathematical edge cases could be exploited if not properly bound.

Rebase boundaries - Upper and lower limits on recognized rebase percentages must be
enforced to mitigate volatility risks. Extreme rebases without limits could destabilize pools.

Emergency controls - Circuit breakers must activate during extreme market conditions
affecting rebasing tokens. Without these safeguards, market disruptions could cause
permanent damage.

Numerical safety - Calculations must not overflow, underflow, or divide by zero under any
input conditions. Mathematical failures would corrupt the state or enable exploits.

Invariant preservation - The stableswap invariant must be maintained throughout all
operations. Breaking this fundamental property would compromise pricing and enable value
extraction.

Liquidity incentivization - While by design, the stable swap strives to reduce certain
economic attack vectors, such as liquidity removal fee, liquidity incentives may render these
attack vectors profitable again.

Network & integration assumptions

Blockchain reliability - The underlying blockchain must provide reliable transaction finality.
Network issues would create inconsistent protocol state.

Parachain stability - The protocol depends on reliable parachain operations and cross-chain
communication. Network disruptions would affect critical protocol functions.

Resource estimation - Extrinsic weights must accurately reflect computational costs.
Inaccurate estimates would enable DoS attacks or economic losses.

28

Integration boundaries - As the protocol connects with other DeFi components or protocols,
these integrations must respect security boundaries. Improper integration would introduce
vulnerabilities.

Protocol composability - Interactions with external protocols must be secure and predictable.
Unexpected behavior in connected protocols would affect system stability.

29

Threat Model

Process Applied
The process performed to analyze the system for potential threats and build a comprehensive
model is based on the approach first pioneered by Microsoft in 1999 that has developed into
the STRIDE model
(https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20).

Whilst STRIDE is aimed at traditional software systems, it is generic enough to provide a
threat classification suitable for blockchain applications with little adaptation (see below).

The result of the STRIDE classification has then been applied to a risk management matrix
with simple countermeasures and mitigations suitable for blockchain applications.

STRIDE Interpretation in the Blockchain Context
STRIDE was first designed for closed software applications in permissioned environments
with limited network capabilities. However, the classification provided can be adapted to
blockchain systems with small adaptations. The below table highlights a blockchain-centric
interpretation of the STRIDE classification:

Spoofing In a blockchain context, the authenticity of
communications is built into the underlying cryptographic
public key infrastructure. However, spoofing attack
vectors can occur at the off-chain level and within a
social engineering paradigm. An example of the former is
a Sybil attack where an actor uses multiple cryptographic
entities to manipulate a system (wash-trading, auction
smart contract manipulation, etc.).
The latter usually consists of attackers imitating
well-known actors, for instance, the creation of an
impersonation token smart contract with a malicious
implementation.

Tampering Similarly to spoofing, tampering of data is usually not
directly relevant to blockchain data itself due to
cryptographic integrity. It can still occur though, for
example through compromised developers of the
protocol that have access to deployment keys or through
supply chain attacks that manages to inject malicious
code or substitutes trusted software that interacts with
the blockchain (node software, wallets, libraries).

Repudiation Repudiation, i.e. the ability of an actor to deny that they
have taken action is usually not relevant at the
transaction level of blockchains. However, it makes

30

https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)

sense to maintain this category, since it may apply to
additional software used in blockchain applications, such
as user-facing web services. An example is the claim of a
loss of a private key and hence assets.

Information Disclosure Information disclosure has to be treated differently at the
blockchain layer and the off-chain layer. Since the
blockchain state is inherently public in most systems,
information leakage here relates to data that is
discoverable on the blockchain, even if it should be
protected. Predictable random number generation could
be classified as such, in addition to simply storing private
data on the blockchain. In some cases, information in the
mempool (pending/unconfirmed transactions) can be
exploited in front-running or sandwich attacks.
At the off-chain layer, the leakage of private keys is a
good example of operational threat vectors.

Denial of Service Denial of service threat vectors translates directly to
blockchain systems at the infrastructure level.
At the smart contract or protocol layer, there are more
subtle DoS threats, such as unbounded iterations over
data structures that could be exploited to make certain
transactions not executable.

Elevated Privileges Elevated privilege attack vectors directly translate to
blockchain services. Faulty authorization at the smart
contract level is an example where users might obtain
access to functionality that should not be accessible.

STRIDE Classification
The following threat vectors have been identified using the STRIDE classification, grouped by
components of the system.

 Spoofing Tampering Repudiatio
n

Informatio
n
Disclosure

Denial of
Service

Elevated
Privileges

Governanc
e
operations

Proposals
manipulati
on through
the social
engineerin
g

Tampering
with
governanc
e
processes
to push
malicious
proposals

Denial of
malicious
governanc
e actions
by using
multisigs or
anonymou
s actors

- Blocking
governanc
e
operations
via
excessive
proposals
or sybil
governanc
e attacks

Amplificati
on
parameter
manipulati
on for
rebasing
pools

31

 Spoofing Tampering Repudiatio
n

Informatio
n
Disclosure

Denial of
Service

Elevated
Privileges

Privileged
role
exploits

Impersonat
ion of
privileged
roles (e.g.,
Authorit
yOrigin)
to alter
amplificatio
n
parameters

Creating
malicious
smart
contracts
that mimic
legitimate
ones

Creating
malicious
tokens for
registration
in pool

Tampering
with
compliance
data to
allow
restricted
asset

Upgrade of
Substrate
pallets
with
malicious
or
malfunctio
ning code

Altering
mathemati
cal models
(e.g.,
amplificatio
n values) to
distort
execution

- Public
exposure
of
governanc
e
participant
s leading
to targeted
attacks

Disabling
or pausing
the
protocol

Unauthoriz
ed
regulatory
rule
changes
enforced
via
privileged
access

Unauthoriz
ed access
to
restricted
actions

Unauthoriz
ed
changes in
fee
structures
impacting
economic
stability

Elevating
fee
structures
or
governanc
e
parameters
for
personal
gain

Gaining
unauthoriz
ed access
to
system-wid
e
emergency
controls

Oracle
manipulati

Manipulate
d oracles

Malicious
updates to

- Oracle-inte
rnal price

Spamming
oracles

Unauthoriz
ed oracle

32

 Spoofing Tampering Repudiatio
n

Informatio
n
Disclosure

Denial of
Service

Elevated
Privileges

on feeding
incorrect
data into
EMA-based
systems

Impersonat
ing
legitimate
oracles to
feed
manipulate
d price
data

on-chain
oracle
values
altering
price
calculation
s

inconsisten
cy attack

with
excessive
updates to
block
genuine
transaction
s

price
updates
manipulati
ng trade
execution

Economic
attacks

Spoofed
AMM
calculation
s causing
incorrect
trade
pricing

Market
manipulati
on,
especialy
with
respect to
incentive
tokens

Tampering
with
liquidity
incentives
or
misreprese
nting pool
rewards

Tampering
the
rebasing
token
supply to
manipulate
pool

Exploiting
the liquidity
mining
reward
mechanism
by
manipulati
ng reward
parameters
to extract
disproporti
onate
benefits

Manipulati

Claiming
inability to
remove
liquidity
due to
technical
errors
through
liquidity
withdrawal
Fear,
Uncertainty
, Doubt
(FUD)
attack

Cross-chai
n rebasing
token
arbitrage

Collator
transaction
ordering
manipulati
on

Cross-para
chain
transaction
timing
attack

Exploiting
publicly
available
pricing
discrepanci
es to
execute
risk-free
profit
trades by
taking
advantage
of
information
asymmetry

Draining
liquidity
pools by
forcing
slippage
through
rapid
trades

Intentionall
y draining
a protocol
of liquidity
to crash
token
prices

Coordinati
ng the
movement
of liquidity
out of
targeted
pools to
deliberatel
y
destabilize
the pool’s
operational
state

Bypassing
liquidity
restrictions
to
withdraw
excessive
amounts

33

 Spoofing Tampering Repudiatio
n

Informatio
n
Disclosure

Denial of
Service

Elevated
Privileges

ng the
timing of
rebase
events to
alter token
supply
adjustment
s in a way
that favors
the
attacker

Leveraging
the
interaction
between
amplificatio
n
parameters
and rebase
events to
induce a
compound
ed
destabilizat
ion of pool
balances

Forcing an
unintended
acceleratio
n of the
rebase rate
to trigger
rapid and
destabilizin
g changes
in token
supply

Disrupting
the
synchroniz
ation
between
rebase
events and
oracle
updates to
create
erroneous
pricing
signals

Externally
owned
accounts

Lost
account

Pharming/
phishing/
social
engineerin
g

Compromis
ed account

Private key
leakage

Doxxing/id
entity
disclosure

DOS of
infrastructu
re

Blacklisted
account
evasion:

Compromis
ed private
key

34

 Spoofing Tampering Repudiatio
n

Informatio
n
Disclosure

Denial of
Service

Elevated
Privileges

ensure no
blacklisted
accounts
can
operate
within
pools (such
as
providing
liquidity,
e.g., assets
might be
frozen)

Deposit
and
withdrawal
of funds
from
Parachain

Fake
identities
submitting
deposit/wit
hdrawal
transaction
s

Modificatio
n of
transaction
data to
redirect
funds

Absence of
an audit
trail
allowing
users to
deny
submitted
transaction
s

- Sequencer
s censoring
or delaying
transaction
s

Unauthoriz
ed access
to modify
transaction
parameters
or bypass
validations

Peg
update
and
liquidity
operations

Fake pool
creation
requests or
injection of
bogus
liquidity
events

Unauthoriz
ed
modificatio
n of pool
parameters
(fees,
amplificatio
n, peg
values)

Lack of
traceability
of changes
in pool
parameters
and
liquidity
operations

- Overloadin
g the pool
with rapid
liquidity
operations
to disrupt
invariants

Unauthoriz
ed
modificatio
ns due to
bypassing
permission
checks

35

Mitigation Matrix
The following mitigation matrix describes each of the threat vectors identified in the STRIDE
classification above, assigning an impact and likelihood and suggesting countermeasures and
mitigation strategies. Countermeasures can be taken to identify and react to a threat, while
mitigation strategies prevent a threat or reduce its impact or likelihood.

Governance Operations

Threat Vector Impact Likelihood Mitigation Countermeas
ures

Governance proposal
manipulation

Attackers submit
malicious proposals via
social engineering,
influencing voting
outcomes unfairly.

Medium Medium Require minimum
stake for governance
proposals.

Audit
governance
activity and
track proposal
history.

Governance process
tampering

Attackers interfere with
the governance process,
bypassing checks to
introduce harmful
proposals.

High Medium Enforce time delays
on governance
actions.

Use
decentralized
review
committees for
proposals.

Governance action
repudiation

Attackers use multisig
setups or anonymity to
deny accountability for
malicious governance
actions.

Medium Low Log and publish all
governance actions
publicly.

Enforce KYC
for privileged
governance
roles.

Governance denial of
service (DoS)

Flooding the governance
system with spam
proposals or Sybil
attacks to prevent
legitimate
decision-making.

High High Implement proposal
fee or minimum
stake to submit
proposals.

Monitor for
spam activity
and rate-limit
proposals.

Amplification parameter High Low Enhanced security Implement

36

https://docs.google.com/document/d/1_x7jhoDJq82QgcaCuMj9nwAQIKN_Itx6pqkI4dCBaBw/edit?pli=1#heading=h.9j3sb4w8qcm2
https://docs.google.com/document/d/1_x7jhoDJq82QgcaCuMj9nwAQIKN_Itx6pqkI4dCBaBw/edit?pli=1#heading=h.9j3sb4w8qcm2

Threat Vector Impact Likelihood Mitigation Countermeas
ures

Manipulation for
rebasing pools

Attackers influence
governance to set
inappropriate
amplification parameters
for pools containing
rebasing tokens, creating
pricing curves that can
be exploited due to their
misalignment with actual
token behavior.

reviews for
amplification
parameter changes
involving rebasing
token pools.

parameter
boundaries
specifically
designed for
rebasing token
pools that limit
potential
manipulation.

Privileged Role Exploits

Threat Vector Impact Likelihood Mitigation Countermeas
ures

Privileged role spoofing

Attackers impersonate
privileged accounts (e.g.,
AuthorityOrigin) to
manipulate governance
or AMM parameters.

High Medium Enforce multi-sig
authentication,
role-based access
control.

Monitor
privileged
accounts for
anomalies,
require
transaction
approvals.

Malicious smart contract
deployment

Attackers deploy smart
contracts that mimic
legitimate protocol
functions to deceive
users.

High Low Require multi-party
approval for
governance
upgrades.

Enforce
security audits
before
upgrades.

Fake token registration

Attackers register
counterfeit tokens in the
pool to trick users or
distort price calculations.

High Medium Require token
verification before
registration.

Whitelist
known trusted
assets, block
unverified
token
additions.

Bypassing compliance High Medium Use decentralized Regular

37

Threat Vector Impact Likelihood Mitigation Countermeas
ures

Controls

Attackers alter
compliance mechanisms
to allow restricted or
blacklisted assets.

identity verification
for compliance
enforcement.

compliance
audits, enforce
compliance at
the protocol
level.

Malicious code injection
in governance upgrades

Attackers introduce
malicious pallet updates
to alter protocol
execution or governance
parameters.

High Low Require multi-party
approval for
governance
upgrades.

Enforce
security audits
before
upgrades.

Mathematical model
manipulation

Attackers tamper with
key economic variables
(e.g., amplification
factors) to exploit AMM
mechanics.

High Medium Set parameter
modification limits,
enforce multi-sig
approval.

Use
automated
validation
checks before
applying
changes.

Doxxing of governance
participants

Governance participants’
identities are leaked,
leading to potential
coercion or external
attacks.

Medium Low Allow pseudonymous
governance with
encrypted
verification.

Limit access to
personally
identifiable
information
(PII).

Protocol freeze attack

Attackers gain access to
privileged controls to
pause trading or liquidity
withdrawals, disrupting
the protocol.

High Medium Limit emergency
controls, require
multi-party approval
for pauses.

Monitor for
abnormal
administrative
actions.

Regulatory bypass via
privileged access

Attackers change
governance rules (e.g.,
modifying KYC or

High Medium Enforce role-based
access control for
policy changes.

Regularly audit
regulatory
actions.

38

Threat Vector Impact Likelihood Mitigation Countermeas
ures

tradability policies) for
personal benefit.

Unauthorized access to
protocol controls

Attackers escalate
privileges to access
restricted protocol
functions, such as
minting tokens or
modifying fees.

High Medium Implement strict
privilege separation.

Monitor and
log all
administrative
actions.

Fee structure
manipulation

Attackers modify
transaction or liquidity
fees, affecting the
protocol’s economic
balance.

High Medium Require governance
approval for fee
changes.

Monitor fee
adjustments
for unusual
changes.

Governance parameter
exploitation

Attackers adjust
governance settings
(e.g., voting power,
tradability rules, fees) to
gain an unfair economic
advantage.

High Medium Use time-locked
parameter changes.

Enforce voting
cooldown
periods.

Compromising
emergency controls

Attackers exploit
emergency control
mechanisms to trigger
forced liquidations,
pauses, or shutdowns.

High Medium Restrict emergency
controls to
multi-party
governance.

Log all
emergency
actions with
real-time
alerts.

Oracle Manipulation

Threat Vector Impact Likelihood Mitigation Countermeas
ures

Oracle price distortion High High Use multiple Implement

39

Threat Vector Impact Likelihood Mitigation Countermeas
ures

Attack

Attackers manipulate
oracles to inject fake
price data, affecting
AMM execution.

independent oracles. circuit
breakers on
extreme price
changes.

Oracle spoofing attack

Attackers create fake
oracles to inject incorrect
pricing information into
the system.

High Medium Whitelist trusted
oracle providers.

Use
cryptographic
signatures for
oracle data
validation.

Malicious oracle data
injection

Attackers submit false
updates to on-chain
oracles, distorting trade
execution and market
behavior.

High Medium Use cross-validation
across multiple data
sources.

Limit update
frequency for
sensitive
oracle inputs.

Oracle-internal price
inconsistency attack

Attackers exploit
inconsistencies between
external oracle prices
and internal pool
calculations for rebasing
tokens, especially after
liquidity changes, to
extract value through
arbitrage.

High Medium Implement
synchronized price
update mechanisms
that ensure internal
calculations and
oracle data remain
aligned, especially
after liquidity
operations.

Deploy
monitoring
systems that
temporarily
increase fees
or restrict
trades when
price
inconsistencie
s are detected.

Oracle denial of service
(DoS)

Attackers flood the
oracle system with
frequent updates to
disrupt real price
discovery.

High Medium Rate-limit oracle
updates.

Monitor for
excessive
update activity.

Privileged oracle price
manipulation

High Medium Use decentralized
oracle governance.

Audit oracle
price updates

40

Threat Vector Impact Likelihood Mitigation Countermeas
ures

Attackers gain
unauthorized control
over oracle feeds,
adjusting price updates
to favor specific trades.

regularly.

Economic Attacks

Threat Vector Impact Likelihood Mitigation Countermeas
ures

AMM calculation
manipulation

Attackers modify AMM
formulas or spoof trades
to create artificial price
shifts.

High Medium Use circuit breakers
for extreme trade
deviations.

Validate price
calculations
with multiple
sources,
monitor trade
patterns for
manipulation.

Liquidity incentive fraud

Attackers misrepresent
reward structures to lure
liquidity providers under
false terms.

Medium Medium Publish transparent
reward distribution
rules.

Audit reward
calculations
periodically.

Rebasing attack on pool
liquidity

Attackers exploit
rebasing mechanics to
burn, inflate, or misprice
specific assets in the
pool to profit from
liquidity incentive
distribution distortions.

High Medium Implement
safeguards for
rebasing token
handling, especially
in conjunction with
liquidity incentive
token distributions.

Monitor
rebasing
changes and
ensure
liquidity
incentive
program aligns
with pool
liquidity
management.

Liquidity withdrawal
Fear, Uncertainty, Doubt
(FUD) attack

Attackers spread false
claims about liquidity

Medium Medium Provide clear liquidity
status updates.

Use
fact-checking
mechanisms to
counter
misinformation

41

Threat Vector Impact Likelihood Mitigation Countermeas
ures

issues to induce panic
selling or freezing of
funds.

.

Cross-chain rebasing
token arbitrage

Attackers exploit timing
differences in how
rebasing tokens are
valued across different
parachains, using
cross-chain transactions
to profit from temporary
price discrepancies.

Medium Medium Implement
cross-chain price
verification for
rebasing tokens
before executing
trades.

Apply
increased fees
for cross-chain
trades
involving
rebasing
tokens when
significant
price
movement has
recently
occurred.

Collator transaction
ordering manipulation

Collators manipulate
transaction ordering
within blocks to create
favorable conditions for
specific trades,
particularly around
rebasing token
operations.

Medium Low Implement fair
ordering
mechanisms and
transaction batching
protocols.

Monitor
collator
behavior
patterns and
implement
protocol-level
safeguards
against
transaction
reordering.

Cross-parachain
transaction timing
attack

Attackers observe
cross-chain transactions
via XCM and position
trades to benefit from
temporary price impacts,
particularly with rebasing
tokens.

Medium Low Implement price
impact limits for
cross-chain
operations.

Monitor for
correlated
trading
patterns
around XCM
messages.

Slippage exploit attack

Attackers execute rapid
trades to force high
slippage and drain
liquidity.

High Medium Set slippage
tolerance limits and
implement circuit
breakers.

Monitor trade
patterns for
excessive
slippage
activity.

42

Threat Vector Impact Likelihood Mitigation Countermeas
ures

Liquidity crash attack

Attackers remove large
amounts of liquidity,
causing token price
collapses.

High Medium Require phased
liquidity withdrawals
for large
transactions.

Monitor
liquidity
withdrawals in
real-time.

Liquidity drain via
bypass exploit

Attackers circumvent
withdrawal limits to
extract excessive
liquidity.

High Medium Restrict maximum
withdrawal amounts
within a timeframe.

Use smart
contract
monitoring for
unauthorized
bypass
attempts.

Liquidity mining
extraction attack

Attackers deposit
liquidity to earn token
incentives, then
strategically remove
liquidity when the value
of earned incentives
exceeds the removal fee,
even if it negatively
impacts the pool.

High High Implement
time-locked
incentives that vest
gradually and design
removal fees that
scale with the
volatility impact on
the pool.

Monitor for
patterns of
cyclic liquidity
provision and
withdrawal
that correlate
with incentive
distributions.

Rebasing incentive
arbitrage

Attackers exploit
misalignment between
rebasing token growth
and incentive distribution
mechanisms, capturing
both yield from rebasing
tokens and protocol
incentives before
removal fees can
balance the equation.

Medium High Design incentive
structures that
account for the
underlying yield of
rebasing tokens and
reduce incentives for
pools containing
tokens with high
natural yield.

Implement
withdrawal
fees that
dynamically
adjust based
on recent
rebasing
events and
incentive
distributions.

Strategic liquidity
migration

Attackers monitor
multiple pools and

Medium Medium Implement
protocol-wide
cooldown periods
that apply across all
pools and design

Track
addresses that
frequently
migrate
liquidity and

43

Threat Vector Impact Likelihood Mitigation Countermeas
ures

migrate liquidity to
capture short-term
incentives across
different pools, creating
liquidity instability
without paying
appropriate fees.

cross-pool incentive
mechanisms that
discourage rapid
migration.

apply higher
fees to these
addresses.

Rebasing timing
exploitation

Attackers strategically
time trades around
rebasing events to profit
from temporary value
discrepancies before
pool calculations update.

High Medium Implement
synchronous
rebasing updates
across all pool
operations.

Monitor for
trading
patterns
correlated with
rebasing
schedules.

Amplification-rebase
compound effect

Attackers exploit the
combined effect of
amplification parameter
changes and rebasing
events, which create
compounded pricing
distortions.

High Medium Implement cooling
periods when both
amplification and
significant rebasing
occur simultaneously.

Automatically
adjust fee
parameters
during
combined
events.

Rebase rate
acceleration attack

Attackers manipulate
market conditions to
accelerate rebase rates
in Aave v3 (e.g., by
influencing utilization
rates), then exploit your
protocol's rebasing
update mechanism.

Medium Low Implement upper
bounds on
recognized rebase
rates within a time
period.

Monitor for
unusual
rebase
acceleration
patterns and
temporarily
increase fees.

Externally Owned Accounts

Threat Vector Impact Likelihood Mitigation Countermeas
ures

Lost account Low Low Have a clear policy Enforce policy

44

Threat Vector Impact Likelihood Mitigation Countermeas
ures

The attacker claims that
they own an account and
the access to the private
key has been lost.

not to refund lost
assets or restore
privileges.

and strictness.

Pharming/ phishing/
social engineering

The attacker may
manipulate users’ or
development teams’
wallets, lure them to
malicious front-ends,
manipulate DNS records,
or use social engineering
to trick users/teams into
signing manipulated
transactions transferring
funds/permissions.

Medium Medium Educate users and
team, protect DNS
records, create
awareness, offer
blacklists with
malicious sites,
create activity on
social channels to
build reputable
channels, deploy
front-ends on IPFS or
other decentralized
infrastructure.

Monitor all
systems,
monitor
communities
and
impersonation
s/malicious
copies of
official
channels,
communicate
attempted
pharming/phis
hing/social
engineering,
have
processes in
place to
recover from
DNS
manipulation,
attacks on
front-ends
quickly.

Compromised account

The attacker claims they
are a victim of
scapegoating, denying
responsibility for their
attack.

Low Low Have a clear policy
not to refund lost
assets or restore
privileges.

Enforce policy
and strictness.

Private key leakage

Private keys are
accidentally shared or
logged.

Medium Medium Educate users and
team, ensure private
keys are properly
handled in wallet

Monitor all
systems, have
a policy in
place to rotate

45

Threat Vector Impact Likelihood Mitigation Countermeas
ures

software, use
hardware
wallets/air-gapped
devices, security
keys,
multi-signatures.

keys.

Doxxing/identity
disclosure

Private data such as the
off-chain identity of users
disclosed.

Low Medium Educate users and
team, no storage of
identity/sensible data
in databases that link
identity to account
addresses, follow
privacy regulations
and guidelines.

-

DOS of infrastructure

DOS attack on a
validator, relayer, an end
user's device/network or
on the blockchain node
they interact with.

Low Low Educate users and
team, use firewalls,
sentry architecture,
load balancers,
VPNs.

Monitor
infrastructure,
and have
processes in
place to
elastically
provision and
deploy
additional
resources.

Blacklisted account
evasion

Attackers attempt to
bypass blacklisting
mechanisms to operate
within pools, such as
providing liquidity,
withdrawing funds, or
executing trades using
restricted assets. This
can include
circumventing
compliance rules or
using proxies to disguise
blacklisted accounts.

Medium Medium Enforce blacklist
checks before
transactions.

Use
monitoring
systems to flag
blacklisted
accounts.

Compromised private
key

Medium Medium Educate users and
team.

Monitor all
systems, have
a policy in

46

Threat Vector Impact Likelihood Mitigation Countermeas
ures

Private keys may be
compromised.

place to rotate
keys.

Deposit and withdrawal of funds from Parachain

Threat Vector Impact Likelihood Mitigation Countermeas
ures

Fake identities

Impersonation of
legitimate users to
submit unauthorized
deposit/withdrawal
transactions.

High Medium Enforce robust
authentication by
validating digital
signatures on
transaction
submissions and
verifying the origin
via runtime
primitives.

Require
cryptographic
signature
validation and
ensure origin
verification
through the
runtime’s
built‑in
verification
mechanisms.

Modification of
transaction data

Altering transaction
parameters during
execution to redirect
funds.

High Medium Apply cryptographic
checks (signatures,
checksums) on
transaction payloads
and use atomic,
transactional
extrinsics to ensure
complete state
updates.

Utilize the
#[transact
ional]
attribute on
sensitive
functions and
verify
transaction
integrity
before state
mutation.

Lack of auditability

Absence of an auditable
trail, allowing parties to
deny submitted
transactions.

Medium Low Emit comprehensive
events for all
state‑changing
operations to provide
an immutable audit
trail.

Maintain
on‑chain logs
mapping each
transaction to
an
authenticated
account and
use event logs
for

47

Threat Vector Impact Likelihood Mitigation Countermeas
ures

post‑incident
audits.

Transaction censorship

Flooding the governance
system with spam
proposals or Sybil
attacks to prevent
legitimate
decision-making.

High Medium Implement
decentralized
consensus
mechanisms and
monitor block
inclusion and apply
weight limits to
throttle excessive
transaction
submissions.

Use fallback
mechanisms to
detect and
recover from
censored/dela
yed
transactions
and enforce
weight limits
via runtime
configuration.

Unauthorized access
escalation

Unauthorized access
enabling modification or
bypass of transaction
validations.

High Low Strictly enforce
role‑based access
controls using
predefined origins
(e.g.
T::AuthorityOri
gin) for all critical
operations.

Maintain
on‑chain logs
mapping each
transaction to
an
authenticated
account and
use event logs
for
post‑incident
audits.

Peg update and liquidity operations

Threat Vector Impact Likelihood Mitigation Countermeas
ures

Fake pool creation

Creating pools using not
legitimate assets or by
an unauthorized entity.

High Medium Validate pool
creation and liquidity
events by checking
asset registration
and enforcing pool
creation via
AuthorityOrigin
.

Ensure that
pool creation
extrinsics
require valid
authorization
and proper
initial liquidity
deposits.

Unauthorized parameter Medium Medium Apply atomic, Enforce the

48

Threat Vector Impact Likelihood Mitigation Countermeas
ures

modification

Attackers modify the
protocol’s parameters
influencing its behaviour.

transactional updates
for liquidity
operations and
parameter changes.

use of
#[transact
ional]
macro on
state-modifyin
g extrinsics.

Repudiation

Lack of auditable
information leading to
disputes challenging the
protocol.

Medium Low Emit comprehensive
events for every
critical change
enabling traceability
of modifications.

Maintain an
audit log with
event data
linked to
authenticated
origins and
use those logs
for any
relevant
dispute
resolutions.

Denial of service

Rapid liquidity changes
influencing the health of
the pool, including the
invariants.

High Medium Enforce minimum
liquidity thresholds
and use robust
invariant checks to
prevent state
disruption.

Implement
weight limits
on rapid
liquidity
operations.
Throttling
excessive
extrinsics to
protect state
consistency.

Elevated privileges

Unauthorized access to
critical and privileged
operations.

High Low Enforce strict
role-based access for
operations that
modify critical pool
parameters using
appropriate Origins.

Conduct
regular
security
reviews and
audits. Require
multi-signature
or additional
authentication
for elevated
operations.

49

50

	Hydration Peg Drift Stableswap
	Table of Contents
	
	License
	
	Disclaimer
	Introduction
	Purpose of This Report
	Codebase Submitted for the Audit
	Methodology
	Functionality Overview

	How to Read This Report
	
	Code Quality Criteria
	
	Summary of Findings
	Detailed Findings
	1.​Potential denial of service by storing non-whitelisted pairs from Bifrost oracle
	2.​Liquidity providers can be blocked from exit
	3.​Liquidity of any asset can be inflated or deflated by the registry owner
	4.​Unexpected behavior results from inability to remove oracle data set during genesis
	5.​Missing slippage protection in add_liquidity extrinsic
	6.​Missing protection for rapid amplification changes
	7.​ Pool destructure procedure is not complete
	8.​ Silent duplication error handling during liquidity removal
	9.​ Insufficient pool fee validation
	10.​Missing staleness monitoring for oracle data
	11.​ Potential for optimization in shares calculation
	12.​ Possible optimization in create_pool function
	13.​ Inconsistency in update_amplification specification
	14.​ Misleading error messages
	15.​Missed invariant verification
	16.​Redundant balance validations
	17.​Unresolved TODO comments in the codebase

	Appendix A: Suggestions
	1.​Optimized code for “Potential for optimization in shares calculation”

	Security Model
	Assets
	Token assets
	Protocol state data
	Code & logic assets
	Control mechanisms

	
	
	Stakeholders/Potential Threat Actors
	Privileged actors
	External actors & market participants
	Users & economic actors
	Privileged roles & risky counterparties
	Supply chain

	
	Assumptions
	Pool configuration invariants
	Liquidity operation constraints
	Oracle & data integrity requirements
	Mathematical & operational safety
	Network & integration assumptions

	Threat Model
	Process Applied
	STRIDE Interpretation in the Blockchain Context
	STRIDE Classification
	
	Mitigation Matrix
	Governance Operations
	Privileged Role Exploits
	Oracle Manipulation
	Economic Attacks
	Externally Owned Accounts
	Deposit and withdrawal of funds from Parachain
	Peg update and liquidity operations

