

- Confidential, 7 pages -

HydraDX Feature Security Assurance
Hacking assessment report

V1.0, 03 June 2024

Audited By: Bruno Produit bruno@srlabs.de

 Gabriel Arnautu gabriel@srlabs.de

 Marc Heuse marc@srlabs.de

Abstract. This work describes the result of the thorough and
independent security assurance audit performed by Security
Research Labs for the HydraDX custom’s EVM implementation layer
which allows Metamask users to pay for gas using any supported
asset on the HydraDX platform. Security Research Labs is a
consulting firm that has been providing specialized audit services
in the Polkadot ecosystem since 2019, including for the Substrate
and Polkadot projects.

During this audit, HydraDX team provided access to relevant code
and supported the research team effectively. The code in scope was
verified to assure that the business logic of the product is resilient
to hacking and abuse.

The research team identified several issues ranging from medium
to info-level severity.

In addition to mitigating the open issues, Security Research Labs
recommends further enhancing the existing documentation and
tests around the HydraDX system.

mailto:bruno@srlabs.de
mailto:gabriel@srlabs.de
mailto:marc@srlabs.de

SRL-HydraDX-feature_security_assurance-report.docx Confidential, Page 2 of 7

Content

1 Disclaimer ... 3

2 Motivation and scope .. 4

3 Findings summary.. 4

4 Detailed findings ... 4

4.1 Potential spamming attack via unsigned dispatch_permit extrinsic 4

4.2 The mapping between Ethereum and Substrate addresses could create
unwanted behavior ... 5

5 Evolution suggestions .. 6

6 Bibliography .. 7

SRL-HydraDX-feature_security_assurance-report.docx Confidential, Page 3 of 7

1 Disclaimer

This report describes the findings and core conclusions derived from the audit carried
out by Security Research Labs within the agreed-on timeframe and scope as detailed
in Table 1. Please note that this report does not guarantee that all existing security
vulnerabilities were discovered in the codebase exhaustively and that following all
evolution suggestions described in Chapter 5 may not ensure all future code to be
bug free.

SRL-HydraDX-feature_security_assurance-report.docx Confidential, Page 4 of 7

2 Motivation and scope

Blockchains evolve in a trustless and decentralized environment, which by its own
nature could lead to security issues. Ensuring availability and integrity is a priority for
HydraDX as it aims to provide liquidity pools for a significant number of assets.

The current audit was a spotlight review covering a very specific feature of HydraDX:
the custom implementation of their EVM layer which allows Metamask users to pay
for gas using any supported asset on HydraDX.

The in-scope components/files are reflected in Table 1. The audit covered six Rust
files which concern the above mentioned feature, using the e3821e0 commit from
the HydraDX-node GitHub repository [1].

Repository Component(s)

HydraDX-node precompiles-multicurrency [2]

evm-fee [3]

evm-permit [4]

dynamic-evm-fee [5]

evm-accounts [6]

transaction-multi-payment [7]

Table 1. In-scope HydraDX components

3 Findings summary

We identified two issues - summarized in Table 2 - during our analysis of the in- scope
files in the HydraDX codebase. In summary, one medium severity and one info
severity issues were found.

Issue Severity Status

Potential spamming attack via
unsigned `dispatch_permit` extrinsic

Medium Open

The mapping between Ethereum
and Substrate addresses could
create unwanted behavior

Info Open

Table 2 Issue summary

4 Detailed findings

4.1 Potential spamming attack via unsigned dispatch_permit extrinsic

Attack scenario An attacker spams the network with unsigned
transactions.

Location pallet-transaction-multi-payment

Attack impact Slowing down the chain.

Severity Medium

Status Open

SRL-HydraDX-feature_security_assurance-report.docx Confidential, Page 5 of 7

The dispatch_permit extrinsic in the HydraDX node allows for unsigned transactions
that perform heavy computational validation (e.g.: validate_permit,
decode_all_with_depth_limit). This extrinsic is part of the transaction-multi-
payment pallet and utilizes the validate_unsigned function to ensure the
transaction's validity. The computationally intensive nature of this validation process
can be exploited by submitting numerous unsigned extrinsics, potentially leading to
a denial-of-service (DoS) attack on the network.

Moreover, the validate_unsigned logic duplicates the same code as the actual
extrinsic, dispatch_permit, which adds even more computation time and resources
for the entire call.

As the dispatch_permit is an unsigned extrinsic, there are no fees to be paid,
increasing the attack surface.

The following risks can be attributed to this vulnerability:

1. Spam vector: An attacker can use a node to submit a large number of unsigned
extrinsics, which will be gossiped across the network. This can lead to:

• High computational load on collators/validators

• Potential denial-of-service (DoS) attack, delaying or dropping legitimate
transactions

• Network congestion and performance degradation

2. Resource consumption: The heavy computation required for validating unsigned
extrinsics can consume significant node resources, impacting overall network
stability and performance.

Changing this extrinsic to be an ensure_signed extrinsic will remove the spamming
vector by ensuring the payment of the computation from the caller's account.

4.2 The mapping between Ethereum and Substrate addresses could create unwanted
behavior

Attack scenario Legitimate user transfers tokens to an EVM address
without a bound Substrate account.

Location pallet-evm-accounts

Attack impact The user could lose their funds as the destination
address cannot be claimed by a Substrate account.

Severity Info

Status Open

HydraDX defines three types of addresses:

1. Truncated address: A substrate address created from an EVM address by
prefixing it with "ETH\0" and appending with eight 0 bytes

2. Full Substrate address: Original 32 bytes long native address (not a
truncated address)

3. EVM address: First 20 bytes of a Substrate address

https://github.com/galacticcouncil/HydraDX-node/blob/e3821e078bdb72a0416f8aebca21ba4a7a599f64/pallets/transaction-multi-payment/src/lib.rs#L380
https://github.com/galacticcouncil/HydraDX-node/blob/e3821e078bdb72a0416f8aebca21ba4a7a599f64/pallets/transaction-multi-payment/src/lib.rs#L440

SRL-HydraDX-feature_security_assurance-report.docx Confidential, Page 6 of 7

This method of mapping EVM addresses to Substrate addresses raises a number of
concerns:

• taking the raw bytes of an address is against best practices (i.e.: the first 20
bytes of a Substrate address are being used to represent an EVM address)

• the entropy of truncated addresses is reduced by 12 bytes as the address
always begins with "ETH\0" and ends with eight zero bytes

• transferring funds to an EVM address which was not bound to a Substrate
address, results in the funds being transferred to a truncated address, which
cannot be claimed by any user

Legitimate users might lose funds by submitting a transfer to an EVM address that is
not bound to a Substrate address. This could decrease the trust of the users in the
HydraDX network. By reducing the addresses entropy, the chances of collision
attacks increase significantly.

Our mitigation suggestion is to deprecate the usage of truncated addresses and
make sure that every EVM address is bound to a Substrate address.

5 Evolution suggestions

Improve unit and integration tests: Various components of the HydraDX code are
not covered by any tests. Extensive unit and integration tests should be developed,
covering the largest number of use cases.

Engage in an economic audit. Although SRLabs has some knowledge of economic
attacks, our primary goal during engagements is to find logic vulnerabilities through
code assurance. Therefore, an economic audit for the HydraDX node is
recommended to ensure the safety of the platform and its users.

Regular code review and continuous fuzz testing. Regular code reviews are
recommended to avoid introducing new logic or arithmetic bugs, while continuous
fuzz testing can identify potential vulnerabilities early in the development process.
Ideally, HydraDX should continuously fuzz their code on each release.

SRL-HydraDX-feature_security_assurance-report.docx Confidential, Page 7 of 7

6 Bibliography

[1] [Online]. Available: https://github.com/galacticcouncil/HydraDX-
node/tree/e3821e078bdb72a0416f8aebca21ba4a7a599f64.

[2] [Online]. Available: https://github.com/galacticcouncil/HydraDX-
node/blob/e3821e078bdb72a0416f8aebca21ba4a7a599f64/runtime/hydradx
/src/evm/precompiles/multicurrency.rs.

[3] [Online]. Available: https://github.com/galacticcouncil/HydraDX-
node/blob/e3821e078bdb72a0416f8aebca21ba4a7a599f64/runtime/hydradx
/src/evm/evm_fee.rs.

[4] [Online]. Available: https://github.com/galacticcouncil/HydraDX-
node/blob/e3821e078bdb72a0416f8aebca21ba4a7a599f64/runtime/hydradx
/src/evm/permit.rs.

[5] [Online]. Available: https://github.com/galacticcouncil/HydraDX-
node/blob/e3821e078bdb72a0416f8aebca21ba4a7a599f64/pallets/dynamic-
evm-fee/src/lib.rs.

[6] [Online]. Available: https://github.com/galacticcouncil/HydraDX-
node/blob/e3821e078bdb72a0416f8aebca21ba4a7a599f64/pallets/evm-
accounts/src/lib.rs.

[7] [Online]. Available: https://github.com/galacticcouncil/HydraDX-
node/blob/e3821e078bdb72a0416f8aebca21ba4a7a599f64/pallets/transacti
on-multi-payment/src/lib.rs#L372-L529.

