
Introducing Code4rena Pro League: The elite tier of professional security
researchers. Learn more →

HydraDX
Findings & Analysis Report
2024-04-10

Table of contents
• Overview

• About C4

• Wardens

• Summary

• Scope

• Severity Criteria

• High Risk Findings (1)

• [H-01] An attacker possesses the capability to exhaust the
entirety of liquidity within the stable swap pools by manipulating
the buy function, specifically by setting the asset_in parameter
equal to the asset_out parameter

• Medium Risk Findings (10)

• [M-01] Users can MAKE EMA-Oracle price outdated with direct
transfers to StableSwap

• [M-02] Malicious liquidity provider can put pool into highly

HydraDX https://code4rena.com/reports/2024-02-hydradx

1 of 148 09/06/2024, 14:43

https://code4rena.com/pro
https://code4rena.com/pro
https://code4rena.com/
https://code4rena.com/

manipulatable state

• [M-03] No slippage check in remove_liquidity function in
omnipool can lead to slippage losses during liquidity withdrawal.

• [M-04] Complete liquidity removals fail from stableswap pools

• [M-05] No safe_withdrawal option in
withdraw_protocol_liquidity function in omnipool can be

abused by frontrunners to cause losses to the admin when
removing liquidity

• [M-06] complete liquidity removal will result in permanent
disable of the liquidity addition and prevent minting shares for
the liquidity providers.

• [M-07] Re-adding assets to the omnipool can cause a problem
with the oracle

• [M-08] Storage can be bloated with low value liquidity positions

• [M-09] Missing hook call will lead to incorrect oracle results

• [M-10] A huge loss of funds for all the users who try to remove
liquidity after swapping got disabled at manipulated price.

• Low Risk and Non-Critical Issues

• Stapleswap

• Omnipool

• EMA Oracle

• Circuit Breaker

• Audit Analysis

• Overview of the HydraDX Audit

• System Overview

• Roles

• Invariants Generated

HydraDX https://code4rena.com/reports/2024-02-hydradx

2 of 148 09/06/2024, 14:43

• Approach taken in evaluating HydraDX Protocol

• Codebase Quality

• Architecture

• Systemic Risks, Centralization Risks, Technical Risks &
Integration Risks

• Suggestions

• Issues surfaced from Attack Ideas in README

• Disclosures

Code4rena (C4) is an open organization consisting of security researchers,
auditors, developers, and individuals with domain expertise in smart
contracts.

A C4 audit is an event in which community participants, referred to as
Wardens, review, audit, or analyze smart contract logic in exchange for a
bounty provided by sponsoring projects.

During the audit outlined in this document, C4 conducted an analysis of the
HydraDX smart contract system written in Rust. The audit took place
between February 2 — March 1, 2024.

27 Wardens contributed reports to HydraDX:

1. J4X

2. castle_chain

Overview

About C4

Wardens

HydraDX https://code4rena.com/reports/2024-02-hydradx

3 of 148 09/06/2024, 14:43

https://code4rena.com/@J4X
https://code4rena.com/@J4X
https://code4rena.com/@castle_chain
https://code4rena.com/@castle_chain

3. bin2chen

4. carrotsmuggler

5. TheSchnilch

6. QiuhaoLi

7. 3docSec

8. oakcobalt

9. tsvetanovv

10. hunter_w3b

11. popeye

12. zhaojie

13. Franfran

14. ZanyBonzy

15. Aymen0909

16. erebus

17. emerald7017

18. DadeKuma

19. alix40

20. alkrrrrp

21. Ocean_Sky

22. peachtea

23. yongskiws

24. fouzantanveer

25. kaveyjoe

26. 0xSmartContract

27. ihtishamsudo

HydraDX https://code4rena.com/reports/2024-02-hydradx

4 of 148 09/06/2024, 14:43

https://code4rena.com/@bin2chen
https://code4rena.com/@bin2chen
https://code4rena.com/@carrotsmuggler
https://code4rena.com/@carrotsmuggler
https://code4rena.com/@TheSchnilch
https://code4rena.com/@TheSchnilch
https://code4rena.com/@QiuhaoLi
https://code4rena.com/@QiuhaoLi
https://code4rena.com/@3docSec
https://code4rena.com/@3docSec
https://code4rena.com/@oakcobalt
https://code4rena.com/@oakcobalt
https://code4rena.com/@tsvetanovv
https://code4rena.com/@tsvetanovv
https://code4rena.com/@hunter_w3b
https://code4rena.com/@hunter_w3b
https://code4rena.com/@popeye
https://code4rena.com/@popeye
https://code4rena.com/@zhaojie
https://code4rena.com/@zhaojie
https://code4rena.com/@Franfran
https://code4rena.com/@Franfran
https://code4rena.com/@ZanyBonzy
https://code4rena.com/@ZanyBonzy
https://code4rena.com/@Aymen0909
https://code4rena.com/@Aymen0909
https://code4rena.com/@erebus
https://code4rena.com/@erebus
https://code4rena.com/@emerald7017
https://code4rena.com/@emerald7017
https://code4rena.com/@DadeKuma
https://code4rena.com/@DadeKuma
https://code4rena.com/@alix40
https://code4rena.com/@alix40
https://code4rena.com/@alkrrrrp
https://code4rena.com/@alkrrrrp
https://code4rena.com/@Ocean_Sky
https://code4rena.com/@Ocean_Sky
https://code4rena.com/@peachtea
https://code4rena.com/@peachtea
https://code4rena.com/@yongskiws
https://code4rena.com/@yongskiws
https://code4rena.com/@fouzantanveer
https://code4rena.com/@fouzantanveer
https://code4rena.com/@kaveyjoe
https://code4rena.com/@kaveyjoe
https://code4rena.com/@0xSmartContract
https://code4rena.com/@0xSmartContract
https://code4rena.com/@ihtishamsudo
https://code4rena.com/@ihtishamsudo

This audit was judged by Lambda.

Final report assembled by thebrittfactor.

The C4 analysis yielded an aggregated total of 11 unique vulnerabilities. Of
these vulnerabilities, 1 received a risk rating in the category of HIGH severity
and 10 received a risk rating in the category of MEDIUM severity.

Additionally, C4 analysis included 18 reports detailing issues with a risk
rating of LOW severity or non-critical.

All of the issues presented here are linked back to their original finding.

The code under review can be found within the C4 HydraDX repository,
and is composed of 13 smart contracts written in the Rust programming
language and includes 5273 lines of Rust code.

C4 assesses the severity of disclosed vulnerabilities based on three primary
risk categories: high, medium, and low/non-critical.

High-level considerations for vulnerabilities span the following key areas
when conducting assessments:

• Malicious Input Handling

• Escalation of privileges

• Arithmetic

Summary

Scope

Severity Criteria

HydraDX https://code4rena.com/reports/2024-02-hydradx

5 of 148 09/06/2024, 14:43

https://code4rena.com/@Lambda
https://code4rena.com/@Lambda
https://twitter.com/brittfactorC4
https://twitter.com/brittfactorC4
https://github.com/code-423n4/2024-02-hydradx
https://github.com/code-423n4/2024-02-hydradx

• Gas use

For more information regarding the severity criteria referenced throughout
the submission review process, please refer to the documentation provided
on the C4 website, specifically our section on Severity Categorization.

Submitted by castle_chain, also found by bin2chen

https://github.com/code-423n4/2024-02-hydradx/
blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/
pallets/stableswap/src/lib.rs#L787-L842
https://github.com/code-423n4/2024-02-hydradx/
blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/
math/src/stableswap/math.rs#L40-L41

This vulnerability has been identified in the Stableswap pallet that could
potentially drain all liquidity from all pools without any permissions. This
vulnerability can be exploited by malicious actors, resulting in significant
financial losses for both the protocol and liquidity providers.

The vulnerability lies in the buy() function, which can be exploited by

High Risk Findings (1)

[H-01] An attacker possesses the capability to exhaust
the entirety of liquidity within the stable swap pools by
manipulating the buy function, specifically by setting
the asset_in parameter equal to the asset_out
parameter

Impact

Proof of Concept

HydraDX https://code4rena.com/reports/2024-02-hydradx

6 of 148 09/06/2024, 14:43

https://code4rena.com/
https://code4rena.com/
https://docs.code4rena.com/awarding/judging-criteria/severity-categorization
https://docs.code4rena.com/awarding/judging-criteria/severity-categorization
https://github.com/code-423n4/2024-02-hydradx-findings/issues/58
https://github.com/code-423n4/2024-02-hydradx-findings/issues/58
https://github.com/code-423n4/2024-02-hydradx-findings/issues/133
https://github.com/code-423n4/2024-02-hydradx-findings/issues/133
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/stableswap/src/lib.rs#L787-L842
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/stableswap/src/lib.rs#L787-L842
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/stableswap/src/lib.rs#L787-L842
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/stableswap/src/lib.rs#L787-L842
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/stableswap/src/lib.rs#L787-L842
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/stableswap/src/lib.rs#L787-L842
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/math/src/stableswap/math.rs#L40-L41
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/math/src/stableswap/math.rs#L40-L41
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/math/src/stableswap/math.rs#L40-L41
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/math/src/stableswap/math.rs#L40-L41
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/math/src/stableswap/math.rs#L40-L41
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/math/src/stableswap/math.rs#L40-L41
https://github.com/code-423n4/2024-02-hydradx-findings/issues/58
https://github.com/code-423n4/2024-02-hydradx-findings/issues/58
https://github.com/code-423n4/2024-02-hydradx-findings/issues/58
https://github.com/code-423n4/2024-02-hydradx-findings/issues/58
https://github.com/code-423n4/2024-02-hydradx-findings/issues/58
https://github.com/code-423n4/2024-02-hydradx-findings/issues/58
https://github.com/code-423n4/2024-02-hydradx-findings/issues/58
https://github.com/code-423n4/2024-02-hydradx-findings/issues/58
https://github.com/code-423n4/2024-02-hydradx-findings/issues/58
https://github.com/code-423n4/2024-02-hydradx-findings/issues/58
https://github.com/code-423n4/2024-02-hydradx-findings/issues/58
https://github.com/code-423n4/2024-02-hydradx-findings/issues/58
https://github.com/code-423n4/2024-02-hydradx-findings/issues/58
https://github.com/code-423n4/2024-02-hydradx-findings/issues/58
https://github.com/code-423n4/2024-02-hydradx-findings/issues/58

setting asset_in to an asset already present in the pool and subsequently
setting asset_out to the same asset. The function does not validate or
prevent this input, allowing an attacker to receive the entire a mount_out

without providing any corresponding amount_in .

Attack Flow:

1. The attacker calls the function buy and specifies the asset_in equal
to asset_out , the function has no check that prevents this input to be
passed.

2. The function will calculate the amount_in that should be taken out
from the user, so the function will use calculate_in_amount function
as shown here this function will call
calculate_in_given_out_with_fee() function.

3. The function calculate_in_given_out_with_fee here will call the
function calculate_in_given_out to calculate amount_in , and the
final amount_in will be the amount calculated plus the fees, and the
fees are calculated as the ratio of the amount_in .

4. In the function calculate_in_given_out , since the asset_in is
equal to asset_out then the new_reserve_in will be equal to the
old reserve reserves[idx_in] . Therefore, the amount_in , which is
the difference between the new and the old reserves, will be equal to
zero as shown here, and then the function will add 1 to the
amount_in .

let (amount_in, fee_amount) = Self

let new_reserve_in = calculate_y_given_out::<D, Y>(amount_out, idx

HydraDX https://code4rena.com/reports/2024-02-hydradx

7 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/stableswap/src/lib.rs#L814
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/stableswap/src/lib.rs#L814
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/math/src/stableswap/math.rs#L98
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/math/src/stableswap/math.rs#L98
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/math/src/stableswap/math.rs#L71-L79
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/math/src/stableswap/math.rs#L71-L79

This will result in amount_in = 1 and with the fee, it will be equal to
amount_in = 1.001 .

If the attacker set amount_out = 100_000_000_000_000 he will take
them and only pay amount_in = 1.001 .

Consider add this test into the test file trade.rs here, and see the logs
resulted from this test:

let amount_in = new_reserve_in.checked_sub(reserves[idx_in])?;
let amount_in = normalize_value(

 amount_in,
 TARGET_PRECISION,
 initial_reserves[idx_in].decimals,
 Rounding::Up,
);
 Some(amount_in.saturating_add(1u128))

Coded POC to demonstrate the vulnerability

#[test]
fn test_set_asset_in_equal_asset_out_will_be_profitable() {

let asset_a: AssetId = 1;
let asset_b: AssetId = 2;
let dec_a: u8 = 18;
let dec_b: u8 = 6;
ExtBuilder::default()

.with_endowed_accounts(vec![
(BOB, asset_a, to_precision!(200, dec_a)),
(ALICE, asset_a, to_precision!(200
(ALICE, asset_b, to_precision!(200

])
.with_registered_asset("one".as_bytes().to_vec
.with_registered_asset("two".as_bytes().to_vec
.with_pool(

HydraDX https://code4rena.com/reports/2024-02-hydradx

8 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx/blob/main/HydraDX-node/pallets/stableswap/src/tests/trades.rs
https://github.com/code-423n4/2024-02-hydradx/blob/main/HydraDX-node/pallets/stableswap/src/tests/trades.rs

ALICE,
PoolInfo::<AssetId, u64> {

assets: vec![asset_a, asset_b].
initial_amplification: NonZeroU16::
final_amplification: NonZeroU16::
initial_block: 0,
final_block: 0,
fee: Permill::from_float(

},
InitialLiquidity {

account: ALICE,
assets: vec![

AssetAmount::new(asset_a,
AssetAmount::new(asset_b,

],
},

)
.build()
.execute_with(|| {

let pool_id = get_pool_id_at(0);
let pool_account = pool_account(pool_id);
let asset_a_state_before = Tokens::

let balance_before = Tokens::free_balance
for _ in 0..5 {

assert_ok!(Stableswap::buy
RuntimeOrigin::signed
pool_id,
asset_a,
asset_a,
to_precision!(20, dec_a),
to_precision!(31, dec_a),

));
}
let asset_a_state_after = Tokens::

// the user here received the fees
// 229_999_999_999_999_999_994
let balance_after = Tokens::free_balance

HydraDX https://code4rena.com/reports/2024-02-hydradx

9 of 148 09/06/2024, 14:43

The logs will be:

As shown here, Bob can drain almost all the liquidity of asset_a in the
pool, and he can repeat this attack to drain all the assets exists in all the
pools.

To mitigate this vulnerability, it is crucial to prevent the setting of asset_in
equal to asset_out . This can be achieved by adding the following line to
the buy() function:

println!(
"pool balance of asset a before the attack
asset_a_state_before

);
println!("pool balance of asset a after the attack

println!("balance of bob before the attack = {:?}"
println!(" balance of asset a owned by bob after t
println!(" the amount of profit for BOB: {:?}"

});
}

running 1 test
pool balance of asset a before the attack = 100000000000000000000
pool balance of asset a after the attack = 28
balance of bob before the attack = 200000000000000000000
 balance of asset a owned by bob after the attack = 299999999999999999972
 the amount of profit for BOB: 99999999999999999972

Recommended Mitigation Steps

 pub fn buy(
 origin: OriginFor<T>,

HydraDX https://code4rena.com/reports/2024-02-hydradx

10 of 148 09/06/2024, 14:43

Integrating this check into the buy() function will effectively prevent
attackers from draining liquidity from the pool.

Invalid Validation

enthusiastmartin (HydraDX) confirmed and commented:

Nice one!

Submitted by J4X

The EMA oracle, designed to utilize HydraDX’s Omnipools and StableSwap
for exchange rate information, operates by monitoring activities within these

 pool_id: T::AssetId,
 asset_out: T::AssetId,
 asset_in: T::AssetId,
 amount_out: Balance,
 max_sell_amount: Balance,
) -> DispatchResult {
 let who = ensure_signed(origin)?;

+ ensure!(
+ asset_out != asset_in, Error::<T>::Invalid
+);

Assessed type

Medium Risk Findings (10)

[M-01] Users can MAKE EMA-Oracle price outdated
with direct transfers to StableSwap

HydraDX https://code4rena.com/reports/2024-02-hydradx

11 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx-findings/issues/58#issuecomment-1979165008
https://github.com/code-423n4/2024-02-hydradx-findings/issues/58#issuecomment-1979165008
https://github.com/code-423n4/2024-02-hydradx-findings/issues/176
https://github.com/code-423n4/2024-02-hydradx-findings/issues/176
https://github.com/code-423n4/2024-02-hydradx-findings/issues/176
https://github.com/code-423n4/2024-02-hydradx-findings/issues/176
https://github.com/code-423n4/2024-02-hydradx-findings/issues/176
https://github.com/code-423n4/2024-02-hydradx-findings/issues/176

liquidity pools. It looks for specific operations like exchanges, deposits, and
withdrawals to adjust the assets’ exchange rates accordingly. This updating
process is not continuous but occurs when the responsible hooks are called
by the StableSwap/Omnipool.

The system, although thorough, does not account for price update triggers
in the event of direct asset transfers to Stableswap, as these do not set off
any hooks within the oracle. This lapse means that such direct transfers can
alter asset prices within the liquidity pools without the oracle’s knowledge,
potentially leading to misleading exchange rates.

Moreover, there’s a risk of manipulation by bad actors who might use direct
transfers to StableSwap in an effort to sway the arbitrage process, especially
during periods of network congestion. Such interference could unjustly
prevent necessary liquidations within lending protocols.

The issue allows a malicious user to change the price of the AMM without
updating the oracle.

The issue can be validated when looking at the runtime configuration. The
configuration only restricts transfers to the Omnipool address, but not to the
StableSwap address:

Impact

Proof of Concept

// filter transfers of LRNA and omnipool assets to the omnipool account
if let RuntimeCall::Tokens(orml_tokens::Call::transfer { dest, currency_id
| RuntimeCall::Tokens(orml_tokens::Call::transfer_keep_alive { dest, curre
| RuntimeCall::Tokens(orml_tokens::Call::transfer_all { dest, currency_id,
| RuntimeCall::Currencies(pallet_currencies::Call::transfer { dest, curren
{

// Lookup::lookup() is not necessary thanks to IdentityLookup

HydraDX https://code4rena.com/reports/2024-02-hydradx

12 of 148 09/06/2024, 14:43

The issue can be mitigated by disabling transfers to the StableSwap pools,
similar to how it is implemented for the Omnipool.

Oracle

enthusiastmartin (HydraDX) disputed and commented:

We believe this is not an issue, impact is not obvious. Oracle is not
guaranteed to be always correct.

Lambda (judge) decreased severity to Low and commented:

The finding itself is valid, but only speculates about potential impacts
(“potentially leading to misleading exchange rates.”). Because of that, it is

if dest == &Omnipool::protocol_account() && (*currency_id == hub_a
{

return false;
}

}
// filter transfers of HDX to the omnipool account
if let RuntimeCall::Balances(pallet_balances::Call::transfer { dest, .. })
| RuntimeCall::Balances(pallet_balances::Call::transfer_keep_alive { dest,
| RuntimeCall::Balances(pallet_balances::Call::transfer_all { dest, .. })
| RuntimeCall::Currencies(pallet_currencies::Call::transfer_native_currenc
{

// Lookup::lookup() is not necessary thanks to IdentityLookup
if dest == &Omnipool::protocol_account() {

return false;
}

}

Recommended Mitigation Steps

Assessed type

HydraDX https://code4rena.com/reports/2024-02-hydradx

13 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx-findings/issues/176#issuecomment-1980977396
https://github.com/code-423n4/2024-02-hydradx-findings/issues/176#issuecomment-1980977396
https://github.com/code-423n4/2024-02-hydradx-findings/issues/176#issuecomment-1985409907
https://github.com/code-423n4/2024-02-hydradx-findings/issues/176#issuecomment-1985409907

a design recommendation. Downgrading to Low.

J4X (warden) commented:

@Lambda - Thank you very much for reviewing this audit. I am sorry that
my issue was a bit inconclusive about the severity/results of this. The
same impact (but for omnipool) has already been found in one of the
earlier audits at Finding A1, this is why I kept my issue intentionally rather
short, which was suboptimal in hindsight.

The oracle should always return the current price of the assets at
stableswap/omnipool. As identified in the other audit this could be broken
for the Omnipool by transferring assets directly to the Omnipool, making
the price outdated. This was confirmed as a medium severity finding by
the sponsor and fixed by implementing guards that blocked any transfers
of tokens directly to the Omnipool. Unfortunately, the team has forgotten
to implement the same safety measures when the StableSwap AMM was
added to the protocol. As a result of this, the attack path is once again
possible for all assets listed on StableSwap.

While I have not described an attack path that leads to an attacker
profiting from this (which might be possible), the “attack” path of
donating to make the oracle outdated, that I have described shows a way
how the oracle becomes outdated which should never be the case. To
keep it simple, this leads to one of the components of the protocol not
functioning as intended (the oracle returning a wrong price) leading to
the damage scenario of “Assets not at direct risk, but the function of the
protocol impacted”.

Additionally, finding #73 leads to the exact same damage scenario, the
oracle returning an incorrect price for an asset and has been confirmed
as medium severity.

HydraDX https://code4rena.com/reports/2024-02-hydradx

14 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx-findings/issues/176#issuecomment-1993104191
https://github.com/code-423n4/2024-02-hydradx-findings/issues/176#issuecomment-1993104191
https://github.com/galacticcouncil/HydraDX-security/blob/main/audit-reports/230619-Runtime-Verification-EMA-Oracle-Security-Audit.pdf
https://github.com/galacticcouncil/HydraDX-security/blob/main/audit-reports/230619-Runtime-Verification-EMA-Oracle-Security-Audit.pdf
https://github.com/code-423n4/2024-02-hydradx-findings/issues/73
https://github.com/code-423n4/2024-02-hydradx-findings/issues/73

Lambda (judge) commented:

Keeping at QA because of missing impact/attack path. This might lead to
problems in the protocol and be a valid medium or high then, but the
issue does not demonstrate that.

Issue #73 mentions a potential impact (third-party protocols) that has
external requirements, but is still valid nevertheless.

J4X (warden) commented:

@Lambda - I disagree with you differentiating between this issue and
#73. They both result in the exact same state of the oracle returning an
incorrect price for an asset.

Additionally, you mention that #73 offers an impact while this one does
not. The impact that #73 describes is “So any protocol that uses this
oracle as a price source would receive an incorrect price for the re-added
asset for a short period of time” which can be shortened down to
“external protocols relying on this oracle might break”. My issue describes
“Such interference could unjustly prevent necessary liquidations within
lending protocols” which can also be shortened to “external protocols
relying on this oracle might break too”. It is just more focused on lending
protocols, as this is the first thing that came to mind for me.

Lambda (judge) increased severity to Medium and commented:

That’s a good point, I previously missed the mention of integration with
other protocols. Because a potential realistic impact with external
requirements is mentioned and the finding itself is valid, I am upgrading it
back to Medium.

HydraDX https://code4rena.com/reports/2024-02-hydradx

15 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx-findings/issues/176#issuecomment-1999293971
https://github.com/code-423n4/2024-02-hydradx-findings/issues/176#issuecomment-1999293971
https://github.com/code-423n4/2024-02-hydradx-findings/issues/176#issuecomment-1999311659
https://github.com/code-423n4/2024-02-hydradx-findings/issues/176#issuecomment-1999311659
https://github.com/code-423n4/2024-02-hydradx-findings/issues/176#issuecomment-1999881440
https://github.com/code-423n4/2024-02-hydradx-findings/issues/176#issuecomment-1999881440

Submitted by J4X, also found by carrotsmuggler and 3docSec

The StableSwap AMM of the HydraDx protocol implements safeguards
against low liquidity so that too high price fluctuations are prevented, and
manipulating the price becomes harder. These safeguards are enforced
based on the MinPoolLiquidity which is a constant that describes the
minimum liquidity that should be in a pool. Additionally, a pool is allowed to
have a liquidity of 0, which would occur in the case of the creation of the
pool, or by users withdrawing all their liquidity. This could also be defined as
an invariant.

totalPoolIssuance(poolId) >= MinPoolLiquidity ||

totalPoolIssuance(poolId) == 0 .

When a user wants to withdraw his liquidity, he can use either the
remove_liquidity_one_asset() function or the
withdraw_asset_amount() function.

remove_liquidity_one_asset() :

To ensure holding the invariant 2 checks are implemented in the
remove_liquidity_one_asset() function. The first checks if the user
either leaves more than MinPoolLiquidity shares in the pool or
withdraws all his shares:

[M-02] Malicious liquidity provider can put pool into
highly manipulatable state

let current_share_balance = T::Currency::free_balance(pool_id, &who);

ensure!(
current_share_balance == share_amount

HydraDX https://code4rena.com/reports/2024-02-hydradx

16 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx-findings/issues/154
https://github.com/code-423n4/2024-02-hydradx-findings/issues/154
https://github.com/code-423n4/2024-02-hydradx-findings/issues/83
https://github.com/code-423n4/2024-02-hydradx-findings/issues/83
https://github.com/code-423n4/2024-02-hydradx-findings/issues/42
https://github.com/code-423n4/2024-02-hydradx-findings/issues/42
https://github.com/code-423n4/2024-02-hydradx-findings/issues/154
https://github.com/code-423n4/2024-02-hydradx-findings/issues/154
https://github.com/code-423n4/2024-02-hydradx-findings/issues/154
https://github.com/code-423n4/2024-02-hydradx-findings/issues/154

The second checks if the total liquidity in the pool would fall below the
intended amount of shares:

These two checks work perfectly at holding the invariant at all times.

withdraw_asset_amount() :

Unfortunately, the second function for withdrawing liquidity
withdraw_asset_amount() omits one of the checks. The function only
checks if the user either withdraws all his shares or leaves more than the
MinPoolLiquidity shares.

|| current_share_balance.saturating_sub(share_amount) >= T
Error::<T>::InsufficientShareBalance

);

let share_issuance = T::Currency::total_issuance(pool_id);

ensure!(
share_issuance == share_amount

|| share_issuance.saturating_sub(share_amount) >= T::MinPo
Error::<T>::InsufficientLiquidityRemaining

);

let current_share_balance = T::Currency::free_balance(pool_id, &who);

ensure!(
current_share_balance == shares

|| current_share_balance.saturating_sub(shares) >= T::MinP
Error::<T>::InsufficientShareBalance

);

HydraDX https://code4rena.com/reports/2024-02-hydradx

17 of 148 09/06/2024, 14:43

One might state now that this could never break the invariant, as if every
user’s shares are either more than MinPoolLiquidity or zero, the total
liquidity can never fall below MinPoolLiquidity without being 0.
Unfortunately, this approach forgets that users can transfer their shares to
other addresses. This allows a user to transfer an amount as low as 1 share
to another address, and then withdraw all his shares. As the check would
only ensure that he is withdrawing all his shares it would pass. If he was the
only liquidity provider, there now would only be 1 share of liquidity left in the
pool breaking the invariant of: totalPoolIssuance(poolId) >=
MinPoolLiquidity .

The issue allows a user to break the invariant about the MinPoolLiquidity
and either push the pool into a state where it can easily be manipulated, or
prevent other users from withdrawing their shares.

There are 2 ways how this could be exploited:

1. Breaking the invariant and letting the pool Liquidity fall below
MinPoolLiquidity

A malicious LP could abuse this functionality to push the pool into a state
where its total liquidity is below MinPoolLiquidity , and could be as low
as 1 share, allowing for easy price manipulation. To achieve this the attacker
would do the following:

1. User deposits MinPoolLiquidty using one of the functions.

2. User transfers 1 share to another address controlled by him (so he does
not lose any value).

Impact

Proof of Concept

HydraDX https://code4rena.com/reports/2024-02-hydradx

18 of 148 09/06/2024, 14:43

3. User withdraws all his shares using withdraw_asset_amount() .

4. The function will pass as it does not check the whole pool liquidity.

5. The pool now only has 1 share of liquidity inside and can easily be
manipulated.

2. DOSing withdrawing through remove_liquidity_one_asset for
others

Let’s consider a case where there are only 2 liquidity providers and one of
them is malicious and wants to prevent the other from withdrawing through
remove_liquidity_one_asset() . This could for example be the case if
the other is a smart contract, that can only withdraw through this function.

1. Both deposit MinPoolLiquidty .

2. Malicious user transfers 1 share to another address controlled by him
(so he does not lose any value).

3. Malicious user withdraws all his liquidity using
withdraw_asset_amount() .

4. Normal user now tries to withdraw all of his liquidity using
remove_liquidity_one_asset() .

5. The call fails as the total pool liquidity (which is checked in this one)
would fall below MinPoolLiquidty .

6. The user is forced to keep his liquidity in the pool until someone else
adds liquidity.

The issue can be mitigated by also adding a check for the total pool liquidity
to withdraw_asset_amount() :

Recommended Mitigation Steps

HydraDX https://code4rena.com/reports/2024-02-hydradx

19 of 148 09/06/2024, 14:43

enthusiastmartin (HydraDX) confirmed, but disagreed with severity and
commented:

Although the check is missing,the issue is not high risk. Any limit that we
have in our AMM are soft limits, meaning it is designed to protect mainly
users, they don’t have to be always respected.

There is no evidence that the state of pool would be exploitable.

Lambda (judge) commented:

The warden identified how a security limit can be circumvented in some
rare edge cases and how this could lead to a temporary DoS, Medium is
appropriate here.

castle_chain (warden) commented:

@Lambda - I believe the severity of this issue should be reconsidered due
to the impact it has:

This issue will not lead to a DoS or a lock of funds, as the liquidity
provider can withdraw all their liquidity by calling the function
withdraw_asset_amount() instead of remove_liquidity_one_asset ,
which encounters an issue with the limit of minimum liquidity. Thus, the
user can simply withdraw all their liquidity in the same manner the

let share_issuance = T::Currency::total_issuance(pool_id);

ensure!(
share_issuance == share_amount

|| share_issuance.saturating_sub(share_amount
Error::<T>::InsufficientLiquidityRemaining

);

HydraDX https://code4rena.com/reports/2024-02-hydradx

20 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx-findings/issues/154#issuecomment-1982952767
https://github.com/code-423n4/2024-02-hydradx-findings/issues/154#issuecomment-1982952767
https://github.com/code-423n4/2024-02-hydradx-findings/issues/154#issuecomment-1982952767
https://github.com/code-423n4/2024-02-hydradx-findings/issues/154#issuecomment-1982952767
https://github.com/code-423n4/2024-02-hydradx-findings/issues/154#issuecomment-1984552092
https://github.com/code-423n4/2024-02-hydradx-findings/issues/154#issuecomment-1984552092
https://github.com/code-423n4/2024-02-hydradx-findings/issues/154#issuecomment-1996082458
https://github.com/code-423n4/2024-02-hydradx-findings/issues/154#issuecomment-1996082458

attacker has, since the function withdraw_asset_amount() does not
check for a minimum limit of shares remaining in the pool. Therefore,
there is no risk of funds being locked or DoS for the liquidity providers.

The report mentioned that:

3. A malicious user withdraws all their liquidity using
withdraw_asset_amount() .

4. A normal user then tries to withdraw all of their liquidity using
remove_liquidity_one_asset() .

Here, the normal user can use the function withdraw_asset_amount()
instead of remove_liquidity_one_asset() , and the entire liquidity
removal will be completed.

Therefore, the only impact of this issue is allowing dust accounts to exist
in the pool without any other impact, which should not be considered a
medium severity issue.

J4X (warden) commented:

@castlechain - you are correct that the user could use
`removeliquidityoneasset()` to withdraw his shares, but this would require
him to abuse the same issue as the malicious user.

Regarding the DOS, this issue still leads to a DOS on one of the functions
of the protocol, which suffices medium, as per the severity guidelines
Med requires “Assets not at direct risk, but the function of the protocol or
its availability could be impacted”. In this case, the function of
remove_liquidity_one_asset() is clearly impacted and not usable. I
mentioned in my issue that the user could be a contract, which is

1. DOS

HydraDX https://code4rena.com/reports/2024-02-hydradx

21 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx-findings/issues/154#issuecomment-1996279074
https://github.com/code-423n4/2024-02-hydradx-findings/issues/154#issuecomment-1996279074

programmed to interact through the remove_liquidity_one_asset()
function. As a lot of the interactions with an AMM are actually contracts
and not EOA, this is a very usual case. The contract can’t be changed
later on so it would never be able to withdraw its shares again, although
being 100% correctly programmed.

From the code, one can see that the intended invariant for the liquidity in
a pool is sharesInPool == 0 || sharesInPool >= MinPoolLiquidty .
This is done so that pools with very low liquidity can’t exist as they can
easily be manipulated, which a lot of other AMMs do too. The sponsor
described this as “to protect mainly the users” in the comment above.
This issue shows in “1. Breaking the invariant and letting the pool Liquidity
fall below MinPoolLiquidity” how this invariant can be broken so that the
pool is easily manipulatable. How this should be graded can be seen in
the Supreme Court decisions:

So in total, the issue leads to 2 impacts, which both would be (at least) of
medium severity:

1. DOS of the remove_liquidity_one_asset() function.

2. Breaking of the Pool liquidity invariant.

2. Broken Invariant

High - A core invariant of the protocol can be broken for an extended dura

Medium - A non-core invariant of the protocol can be broken for an extende

3. Conclusion

[M-03] No slippage check in remove_liquidity

HydraDX https://code4rena.com/reports/2024-02-hydradx

22 of 148 09/06/2024, 14:43

https://docs.code4rena.com/awarding/judging-criteria/supreme-court-decisions-fall-2023
https://docs.code4rena.com/awarding/judging-criteria/supreme-court-decisions-fall-2023
https://github.com/code-423n4/2024-02-hydradx-findings/issues/93
https://github.com/code-423n4/2024-02-hydradx-findings/issues/93
https://github.com/code-423n4/2024-02-hydradx-findings/issues/93
https://github.com/code-423n4/2024-02-hydradx-findings/issues/93

Submitted by carrotsmuggler, also found by carrotsmuggler (1, 2), erebus,
QiuhaoLi, Aymen0909, zhaojie, oakcobalt (1, 2), emerald7017, DadeKuma,
Franfran, J4X (1, 2, 3), 3docSec, and ZanyBonzy

The liquidity removal function in the omnipool pallet lacks slippage
control. There is no minimum_amount_out parameter to ensure that the
user gets out at least a certain amount of tokens. This can lead to slippage
losses for liquidity providers if malicious users frontrun the liquidity
withdrawer.

During liquidity removal, since there are lots of different fees involved, the
scenario gets complicated and a POC is used to study the effect further. A
POC is presented in the next section, which has ALICE depositing LP of
token_1000 to the pool, the actor LP3 carrying out a swap, and then
ALICE removing liquidity immediately after. In case ALICE receives any
LRNA tokens, she swaps them out to token_1000 . We compare the
amount of token_1000 ALICE would end up with in different scenarios.

In all scenarios, ALICE is assumed to remove liquidity at the same price she
put in. However the bad actor LP3 frontruns her removal, and we want to
study the effect of her losses. In scenario 1, there is no action by LP3, and
ALICE deposits and withdraws, to get a baseline measurement.

Scenario 1 - Liq Add - Liq remove :

Here, there is no frontrunner in order to get a baseline measurement:

function in omnipool can lead to slippage losses during
liquidity withdrawal.

running 1 test
lrna_init: 2000000000000000
token_init: 5000000000000000

HydraDX https://code4rena.com/reports/2024-02-hydradx

23 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx-findings/issues/93
https://github.com/code-423n4/2024-02-hydradx-findings/issues/93
https://github.com/code-423n4/2024-02-hydradx-findings/issues/92
https://github.com/code-423n4/2024-02-hydradx-findings/issues/92
https://github.com/code-423n4/2024-02-hydradx-findings/issues/85
https://github.com/code-423n4/2024-02-hydradx-findings/issues/85
https://github.com/code-423n4/2024-02-hydradx-findings/issues/190
https://github.com/code-423n4/2024-02-hydradx-findings/issues/190
https://github.com/code-423n4/2024-02-hydradx-findings/issues/189
https://github.com/code-423n4/2024-02-hydradx-findings/issues/189
https://github.com/code-423n4/2024-02-hydradx-findings/issues/173
https://github.com/code-423n4/2024-02-hydradx-findings/issues/173
https://github.com/code-423n4/2024-02-hydradx-findings/issues/158
https://github.com/code-423n4/2024-02-hydradx-findings/issues/158
https://github.com/code-423n4/2024-02-hydradx-findings/issues/152
https://github.com/code-423n4/2024-02-hydradx-findings/issues/152
https://github.com/code-423n4/2024-02-hydradx-findings/issues/125
https://github.com/code-423n4/2024-02-hydradx-findings/issues/125
https://github.com/code-423n4/2024-02-hydradx-findings/issues/102
https://github.com/code-423n4/2024-02-hydradx-findings/issues/102
https://github.com/code-423n4/2024-02-hydradx-findings/issues/97
https://github.com/code-423n4/2024-02-hydradx-findings/issues/97
https://github.com/code-423n4/2024-02-hydradx-findings/issues/79
https://github.com/code-423n4/2024-02-hydradx-findings/issues/79
https://github.com/code-423n4/2024-02-hydradx-findings/issues/55
https://github.com/code-423n4/2024-02-hydradx-findings/issues/55
https://github.com/code-423n4/2024-02-hydradx-findings/issues/40
https://github.com/code-423n4/2024-02-hydradx-findings/issues/40
https://github.com/code-423n4/2024-02-hydradx-findings/issues/15
https://github.com/code-423n4/2024-02-hydradx-findings/issues/15
https://github.com/code-423n4/2024-02-hydradx-findings/issues/41
https://github.com/code-423n4/2024-02-hydradx-findings/issues/41
https://github.com/code-423n4/2024-02-hydradx-findings/issues/27
https://github.com/code-423n4/2024-02-hydradx-findings/issues/27
https://github.com/code-423n4/2024-02-hydradx-findings/issues/93
https://github.com/code-423n4/2024-02-hydradx-findings/issues/93
https://github.com/code-423n4/2024-02-hydradx-findings/issues/93
https://github.com/code-423n4/2024-02-hydradx-findings/issues/93

We can see ALICE started with 5000*ONE token_1000 s, and ends up with
4990*ONE token_1000 s. This is due to withdrawal fees, and is the
acceptable baseline. Any lower amounts due to frontrunning would be
unacceptable. This is a 0.1% loss.

Scenario 2 - Liq Add - token->DAI swap - Liq remove :

Here, the frontrunner devalues token_1000 by selling a bunch of it for DAI.
Since the price is now lower, some of Alice’s shares will be burnt:

In this scenario, ALICE ends up with 4961.89*ONE token_1000 s. This is
nearly a 1% loss. Since some of her share tokens are burnt, the other
liquidity providers profit from this, since their liquidity positions are now
worth more.

Scenario 3 - Liq Add - DAI->token swap - Liq remove :

lrna_add: 2000000000000000
token_add: 4000000000000000

lrna_remove: 2000000000000000
token_remove: 4990000000000000

running 1 test
lrna_init: 2000000000000000
token_init: 5000000000000000

lrna_add: 2000000000000000
token_add: 4000000000000000

lrna_remove: 2000000000000000
token_remove: 4961892744479493

HydraDX https://code4rena.com/reports/2024-02-hydradx

24 of 148 09/06/2024, 14:43

Here, the frontrunner buys up token_1000 increasing its price. Alice gets
minted LRNA tokens to compensate the increase in price, but she swaps
them out to token_1000 immediately. We then check her token_1000
balance and compare it to the beginning:

Here ALICE ends up with 4958.57*ONE token_1000 s. This is again a 1%
loss. The frontrunner can even sandwich the LRNA->token_1000 swap and
even profit in this scenario.

Thus in all frontrunning scenarios, ALICE realizes a slippage loss due to
insufficient parameters. The losses will be capped to 2%, since the
ensure_price check in the remove_liquidity function checks if the
price of the asset has not changed by more than 1% from the oracle price.
Thus, the maximum price deviation that can happen is 2% (if the spot price
was changed from +1% to -1%). 2% slippage is already unacceptable for a
number of cases, since the industry standard for swaps has been 0.5%, and
even lower for liquidity removals.

running 1 test
lrna_init: 2000000000000000
token_init: 5000000000000000

lrna_add: 2000000000000000
token_add: 4000000000000000

lrna_remove: 2187637667548876
token_remove: 4841500000000000

lrna_end: 2000000000000000
token_end: 4958579804661321

Proof of Concept

HydraDX https://code4rena.com/reports/2024-02-hydradx

25 of 148 09/06/2024, 14:43

The following test was run to generate the figures above. For the different
scenarios, the buy was commented (scenario 1), used to swap token-
>DAI (scenario 2), and used to swap DAI->token (scenario 3).

▸ Details

Substrate

Add a slippage limit for liquidity removal. The in-built limit of 2% is too large
for most use cases.

MEV

enthusiastmartin (HydraDX) confirmed, but disagreed with severity via
duplicate issue #158

Lambda (judge) commented via duplicate issue #158:

Valid medium because there is a hypothetical path to leak values and in-
line with other audits where missing slippage checks were medium.

Submitted by carrotsmuggler, also found by QiuhaoLi and J4X

https://github.com/code-423n4/2024-02-hydradx/

Tools Used

Recommended Mitigation Steps

Assessed type

[M-04] Complete liquidity removals fail from
stableswap pools

HydraDX https://code4rena.com/reports/2024-02-hydradx

26 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx-findings/issues/158#issuecomment-1980950657
https://github.com/code-423n4/2024-02-hydradx-findings/issues/158#issuecomment-1980950657
https://github.com/code-423n4/2024-02-hydradx-findings/issues/158#issuecomment-1980950657
https://github.com/code-423n4/2024-02-hydradx-findings/issues/158#issuecomment-1980950657
https://github.com/code-423n4/2024-02-hydradx-findings/issues/158#issuecomment-1984490217
https://github.com/code-423n4/2024-02-hydradx-findings/issues/158#issuecomment-1984490217
https://github.com/code-423n4/2024-02-hydradx-findings/issues/86
https://github.com/code-423n4/2024-02-hydradx-findings/issues/86
https://github.com/code-423n4/2024-02-hydradx-findings/issues/198
https://github.com/code-423n4/2024-02-hydradx-findings/issues/198
https://github.com/code-423n4/2024-02-hydradx-findings/issues/64
https://github.com/code-423n4/2024-02-hydradx-findings/issues/64
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/stableswap/src/lib.rs#L638
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/stableswap/src/lib.rs#L638
https://github.com/code-423n4/2024-02-hydradx-findings/issues/86
https://github.com/code-423n4/2024-02-hydradx-findings/issues/86
https://github.com/code-423n4/2024-02-hydradx-findings/issues/86
https://github.com/code-423n4/2024-02-hydradx-findings/issues/86

blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/
pallets/stableswap/src/lib.rs#L638
https://github.com/code-423n4/2024-02-hydradx/
blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/
pallets/stableswap/src/lib.rs#L551

The contracts for stableswap has 2 functions dealing with removal of
liquidity: remove_liquidity_one_asset and withdraw_asset_amount .
However, both these functions allow redeeming LP tokens and payout in
only one token. Critically, this contract is missing Curve protocol’s
remove_liquidity function, which allows redeeming LP tokens for all the
different tokens in the pool.

The result of this decision is that when the complete liquidity of a pool is to
be removed, the contract reverts with an arithmetic overflow. In curve
protocol, when removing the complete liquidity, the composing tokens are
removed from the pool. However, they also need to be converted to a single
token, using a liquidity that won’t exist anymore. This leads to an issue
somewhere in the mathematics of the curve liquidity calculation, and thus
reverts.

A simple POC to remove the complete liquidity is coded up below. This
POC reverts when the entire amount of shares is being redeemed.

Impact

Proof of Concept

#[test]
fn test_Attack_min_shares() {

let asset_a: AssetId = 1;
let asset_b: AssetId = 2;
let asset_c: AssetId = 3;

HydraDX https://code4rena.com/reports/2024-02-hydradx

27 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/stableswap/src/lib.rs#L638
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/stableswap/src/lib.rs#L638
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/stableswap/src/lib.rs#L638
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/stableswap/src/lib.rs#L638
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/stableswap/src/lib.rs#L551
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/stableswap/src/lib.rs#L551
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/stableswap/src/lib.rs#L551
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/stableswap/src/lib.rs#L551
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/stableswap/src/lib.rs#L551
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/stableswap/src/lib.rs#L551

ExtBuilder::default()
.with_endowed_accounts(vec![

(BOB, asset_a, 2*ONE),
(ALICE, asset_a, 1*ONE),
(ALICE, asset_b, 1*ONE),
(ALICE, asset_c, 1*ONE),

])
.with_registered_asset("one".as_bytes().to_vec
.with_registered_asset("two".as_bytes().to_vec
.with_registered_asset("three".as_bytes().
.with_pool(

ALICE,
PoolInfo::<AssetId, u64> {

assets: vec![asset_a, asset_b, asset_c].
initial_amplification: NonZeroU16::
final_amplification: NonZeroU16::
initial_block: 0,
final_block: 0,
fee: Permill::zero(),

},
InitialLiquidity {

account: ALICE,
assets: vec![

AssetAmount::new(asset_a,
AssetAmount::new(asset_b,
AssetAmount::new(asset_c,

],
},

)
.build()
.execute_with(|| {

let pool_id = get_pool_id_at(0);

let received = Tokens::free_balance
println!("LP tokens received: {}", received);

assert_ok!(Stableswap::remove_liquidity_one_asset
 RuntimeOrigin::signed(ALICE),

HydraDX https://code4rena.com/reports/2024-02-hydradx

28 of 148 09/06/2024, 14:43

Here ALICE adds liquidity, and is trying to redeem all her LP tokens. This
reverts with the following:

This is because the internal math of the stableswap algorithm fails when
there is no more liquidity.

Substrate

Allow multi-token liquidity withdrawal, which would allow complete
redeeming of all LP tokens.

 pool_id,
 asset_a,
 received,

0
));

let asset_a_remliq_bal = Tokens::free_balance
println!("asset a rem: {}", asset_a_remliq_bal);

});
}

running 1 test
LP tokens received: 23786876415280195891619
thread 'tests::add_liquidity::test_Attack_min_shares' panicked at 'Expecte
 Arithmetic(
 Overflow,
),
)', pallets/stableswap/src/tests/add_liquidity.rs:889:13
note: run with `RUST_BACKTRACE=1` environment variable to display a backtr
test tests::add_liquidity::test_Attack_min_shares ... FAILED

Tools Used

Recommended Mitigation Steps

HydraDX https://code4rena.com/reports/2024-02-hydradx

29 of 148 09/06/2024, 14:43

Under/Overflow

enthusiastmartin (HydraDX) disputed and commented:

It is not issue and it is by design, as we don’t need the multi-token
withdrawal functionality.

Lambda (judge) commented:

The warden demonstrated that the initial liquidity cannot be removed
from the system because of an overflow. This can lead to (temporary)
locked funds in edge cases, so Medium is appropriate here.

Submitted by carrotsmuggler, also found by QiuhaoLi

The sacrifice_position function can be used by any liquidity provider to
hand over their liquidity position to the protocol. The protocol can then
choose to remove this liquidity via the withdraw_protocol_liquidity
function. This is similar to the remove_liquidity function, but with one
key difference. The remove_liquidity function has a safe_withdrawal
option, where if trading is ongoing, the price difference is limited to 1% via
the ensure_price function. This is not present in the
withdraw_protocol_liquidity function.

Assessed type

[M-05] No safe_withdrawal option in
withdraw_protocol_liquidity function in omnipool

can be abused by frontrunners to cause losses to the
admin when removing liquidity

HydraDX https://code4rena.com/reports/2024-02-hydradx

30 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx-findings/issues/86#issuecomment-1979220996
https://github.com/code-423n4/2024-02-hydradx-findings/issues/86#issuecomment-1979220996
https://github.com/code-423n4/2024-02-hydradx-findings/issues/86#issuecomment-1985427184
https://github.com/code-423n4/2024-02-hydradx-findings/issues/86#issuecomment-1985427184
https://github.com/code-423n4/2024-02-hydradx-findings/issues/84
https://github.com/code-423n4/2024-02-hydradx-findings/issues/84
https://github.com/code-423n4/2024-02-hydradx-findings/issues/177
https://github.com/code-423n4/2024-02-hydradx-findings/issues/177
https://github.com/code-423n4/2024-02-hydradx-findings/issues/84
https://github.com/code-423n4/2024-02-hydradx-findings/issues/84
https://github.com/code-423n4/2024-02-hydradx-findings/issues/84
https://github.com/code-423n4/2024-02-hydradx-findings/issues/84
https://github.com/code-423n4/2024-02-hydradx-findings/issues/84
https://github.com/code-423n4/2024-02-hydradx-findings/issues/84
https://github.com/code-423n4/2024-02-hydradx-findings/issues/84
https://github.com/code-423n4/2024-02-hydradx-findings/issues/84
https://github.com/code-423n4/2024-02-hydradx-findings/issues/84
https://github.com/code-423n4/2024-02-hydradx-findings/issues/84
https://github.com/code-423n4/2024-02-hydradx-findings/issues/84
https://github.com/code-423n4/2024-02-hydradx-findings/issues/84
https://github.com/code-423n4/2024-02-hydradx-findings/issues/84

Thus when the admin decides to call withdraw_protocol_liquidity to
remove the liquidity, they can be frontrun to eat slippage loss. The admin
has to pass in a price parameter, and if the frontrunner manipulates the
spot price to be different from the price passed in, the admin will eat losses.
A deeper dive and simulation of losses has been done in another issue titled
No slippage check in remove_liquidity function in omnipool can

lead to slippage losses during liquidity withdrawal where the
losses are limited to 2% due to the ensure_price check. However, the
losses here can be much higher due to the lack of this check altogether.

Since higher losses can be possible, this is a high severity issue.

The ensure_price check is missing from the
withdraw_protocol_liquidity function.

Substrate

// remove_liquidity
if !safe_withdrawal {
 T::PriceBarrier::ensure_price(
 &who,
 T::HubAssetId::get(),
 asset_id,
 EmaPrice::new(asset_state.hub_reserve, asset_state.reserve),
)
 .map_err(|_| Error::<T>::PriceDifferenceTooHigh)?;
 }

Proof of Concept

Tools Used

Recommended Mitigation Steps

HydraDX https://code4rena.com/reports/2024-02-hydradx

31 of 148 09/06/2024, 14:43

Add a safe_withdrawal parameter, or add a minimum_out parameter to
limit slippage losses.

MEV

enthusiastmartin (HydraDX) confirmed, but disagreed with severity and
commented:

This action is usually performed when trading is paused, it is not
permissionless call.

Definitely not high risk, not even medium.

Lambda (judge) decreased severity to Medium and commented:

Medium is more appropriate for missing slippage protection, even if the
potential slippage can be larger here. According to the sponsor, the
function will usually not be used when trading is enabled. However, this is
not enforced, so the issue itself is still valid.

Submitted by castle_chain

https://github.com/code-423n4/2024-02-hydradx/
blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/
pallets/omnipool/src/lib.rs#L612-L621

Assessed type

[M-06] complete liquidity removal will result in
permanent disable of the liquidity addition and prevent
minting shares for the liquidity providers.

HydraDX https://code4rena.com/reports/2024-02-hydradx

32 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx-findings/issues/84#issuecomment-1979215510
https://github.com/code-423n4/2024-02-hydradx-findings/issues/84#issuecomment-1979215510
https://github.com/code-423n4/2024-02-hydradx-findings/issues/84#issuecomment-1979215510
https://github.com/code-423n4/2024-02-hydradx-findings/issues/84#issuecomment-1979215510
https://github.com/code-423n4/2024-02-hydradx-findings/issues/84#issuecomment-1984542261
https://github.com/code-423n4/2024-02-hydradx-findings/issues/84#issuecomment-1984542261
https://github.com/code-423n4/2024-02-hydradx-findings/issues/75
https://github.com/code-423n4/2024-02-hydradx-findings/issues/75
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L612-L621
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L612-L621
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L612-L621
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L612-L621
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L612-L621
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L612-L621
https://github.com/code-423n4/2024-02-hydradx-findings/issues/75
https://github.com/code-423n4/2024-02-hydradx-findings/issues/75
https://github.com/code-423n4/2024-02-hydradx-findings/issues/75
https://github.com/code-423n4/2024-02-hydradx-findings/issues/75
https://github.com/code-423n4/2024-02-hydradx-findings/issues/75
https://github.com/code-423n4/2024-02-hydradx-findings/issues/75

This vulnerability will lead to prevent any liquidity provider from adding
liquidity and prevent them from minting new shares; so this is considered a
huge loss of funds for the users and the protocol.

1. No New Liquidity - Users can no longer add liquidity to the pool,
hindering its growth and potential.

2. Complete liquidity removal shuts down the pool, preventing any future
activity.

3. Financial losses for the protocol - It loses the benefits of increased
liquidity and potential fees from user activity.

Adding a new token to the omnipool requires an initial liquidity deposit. This
initial deposit mints the first batch of shares. Subsequent liquidity additions
mint new shares proportionally to the existing total shares, ensuring a fair
distribution based on the pool’s current size.

In the function remove_liquidity it is allowed to remove all amount of
liquidity from the pool, which means burning all amount of the shares from
the pool, as shown here.

Impact

Proof of Concept

let state_changes = hydra_dx_math::omnipool::
 &(&asset_state).into(),
 amount,
 &(&position).into(),
 I129 {
 value: current_imbalance.value,
 negative: current_imbalance.negati
 },
 current_hub_asset_liquidity,
 withdrawal_fee,

HydraDX https://code4rena.com/reports/2024-02-hydradx

33 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L773-L790
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L773-L790

The function calculate_remove_liquidity_state_changes calculates
the shares to be burnt and the delta_update function removes them.

If all liquidity shares have been removed from any pool, protocol shares and
user shares are removed, making the asset_reserve equal to zero and
shares equal to zero, which will prevent any liquidity from been added
because the function add_liquidity does not handle the situation where
there is no liquidity in the pool. As shown in the add_liquidity function, it
calls calculate_add_liquidity_state_changes which calculates the
shares to be minted to the LP as shown here.

The state of the pool after all liquidity have been removed asset_reserve
= 0, shares = 0 . Since there is no liquidity in the pool so the
reserve_hp will be equal to zero, so this part will always return error, so
this function will always revert.

Even if any user donates some assets to prevent this function from
reverting, the liquidity provider will always receive zero shares, since the
delta_shares_hp will always equal to zero, which is considered loss of

)
 .ok_or(ArithmeticError::Overflow)?;

let new_asset_state = asset_state
 .clone()
 .delta_update(&state_changes.asset)
 .ok_or(ArithmeticError::Overflow)?;

let delta_shares_hp = shares_hp
 .checked_mul(amount_hp)
 .and_then(|v| v.checked_div(reserve_hp))?;

HydraDX https://code4rena.com/reports/2024-02-hydradx

34 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/math/src/omnipool/math.rs#L267-L269
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/math/src/omnipool/math.rs#L267-L269

funds for the user and the protocol.

The bad state that will cause this vulnerability:
Token has been added to the pool but all liquidity has been removed from
it.

Consider adding this test in remove_liquidity.rs test file, and then run it
to see the logs:

Coded Poc

#[test]
fn full_liquidity_removal_then_add_liquidity() {

ExtBuilder::default()
.with_endowed_accounts(vec![

(Omnipool::protocol_account(), DAI,
(Omnipool::protocol_account(), HDX, NATIVE_AMOUNT)
(LP2, 1_000, 2000 * ONE),
(LP1, 1_000, 5000 * ONE),

])
.with_initial_pool(FixedU128::from_float(
.with_token(1_000, FixedU128::from_float(
.build()
.execute_with(|| {

// let token_amount = 2000 * ONE;

let liq_added = 400 * ONE;
let lp1_position_id = <NextPositionId<Test>>::
assert_ok!(Omnipool::add_liquidity

let liq_removed = 400 * ONE;
println!(

"asset state before liquidity removal {:?}
Omnipool::load_asset_state

);

assert_ok!(Omnipool::remove_liquidity

HydraDX https://code4rena.com/reports/2024-02-hydradx

35 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx/blob/main/HydraDX-node/pallets/omnipool/src/tests/remove_liquidity.rs
https://github.com/code-423n4/2024-02-hydradx/blob/main/HydraDX-node/pallets/omnipool/src/tests/remove_liquidity.rs

RuntimeOrigin::signed(LP1),
lp1_position_id,
liq_removed

));

assert!(
Positions::<Test>::get(lp1_position_id).
"Position still found"

);
assert!(

get_mock_minted_position(lp1_position_id).
"Position instance was not burned"

);
let pos = Positions::<Test>::get(
println!(" the lp2_position before all liquidity r
// lp2 remove his all initial liquidity
assert_ok!(Omnipool::remove_liquidity
let lp2_position = lp1_position_id -

assert!(Positions::<Test>::get(lp2_position).

println!(
"the final state after all liquidity has b
Omnipool::load_asset_state

);
let liq_added = 400 * ONE;
assert_noop!(

Omnipool::add_liquidity(RuntimeOrigin::
ArithmeticError::Overflow

);
// this makes sure that there is no position creat
assert!(Positions::<Test>::get(lp2_position).

println!(
"the new state after liquidity provision r
Omnipool::load_asset_state

);
});

}

HydraDX https://code4rena.com/reports/2024-02-hydradx

36 of 148 09/06/2024, 14:43

The logs will be:

This illustrates that the add_liquidity function failed after lp2 and lp1
removed their entire liquidity from the pool.

VS Code

Add a special behaviour to the function add_liquidity to handle the
situation of no initial liquidity. The mitigation can be done by:

• When the pool initially has no shares (total shares equal zero), newly
added assets from a liquidity provider trigger the minting of shares in
an amount equal to the added asset value

As happening in the function add_token() here.

Context

running 1 test
asset state before liquidity removal AssetReserveState { reserve:
 the lp2_position before all liquidity removal: Position { asset_id:
the final state after all liquidity has been removed: AssetReserveState {
the new state after liquidity provision reverted: AssetReserveState { rese

Tools Used

Recommended Mitigation Steps

 delta_shares: BalanceUpdate::

Assessed type

HydraDX https://code4rena.com/reports/2024-02-hydradx

37 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L532
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L532

Lambda (judge) decreased severity to Medium and commented:

The warden identified that the complete removal of liquidity can be
problematic, although from a different angle and without mentioning the
full impact. Giving partial credit for this.

castle_chain (warden) commented:

@Lambda - I am requesting that this issue be considered as a solo
medium for the following reasons:

Firstly, this was marked as a duplicate of Issue #86. However, Issue #86
has nothing to do with this finding for these reasons:

• Issue #86 refers to an issue in the stableswap pallet, not the omnipool.
This finding, on the other hand, refers to an issue in the omnipool
pallet.

• While removing all liquidity from a pool in the stableswap will always
fail according to Issue #86, removing all liquidity from a pool in the
omnipool pallet will succeed, but it will cause a permanent DoS
(Denial-of-Service) attack on the pool by permanently disabling
liquidity addition due to the division by zero which will throw overflow
error mentioned in the submitted report and the PoC.

As demonstrated, these are two distinct issues. Issue #86 has an impact
of (temporary) locked funds, according to the judge’s comment:

This can lead to (temporary) locked funds in edge cases, so Medium is
appropriate here.

In contrast, my report highlights a permanent DoS impact to the
function add_liquidity , sell ,and buy . So the two findings have two
completely different locations, two different impacts, and two different

HydraDX https://code4rena.com/reports/2024-02-hydradx

38 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx-findings/issues/75#issuecomment-1985613497
https://github.com/code-423n4/2024-02-hydradx-findings/issues/75#issuecomment-1985613497
https://github.com/code-423n4/2024-02-hydradx-findings/issues/75#issuecomment-1993046598
https://github.com/code-423n4/2024-02-hydradx-findings/issues/75#issuecomment-1993046598
https://github.com/code-423n4/2024-02-hydradx-findings/issues/86
https://github.com/code-423n4/2024-02-hydradx-findings/issues/86

affected functions:

Category Issue 86 Issue 75 (current)

Location (pallet) stableswap omnipool

Impact temporary DoS permanent DoS

Can complete
liquidity removal be
done ?

no (this is the problem) yes (this is the cause of
the problem)

Affected function
(disabled function)

removeliquidityone_asset
(liquidity removal always
failed)

add_liquidity (liquidity
addition always failed)

Root cause overflow overflow

Mitigation allow multi-asset withdrawal
in the staple swap pallet

handle the situation of no
liquidity exists in the pool

The judge mentioned that the report did not mention the full impact.
While I described it in the impact section, let me clarify:

Since this is an edge case, which can simply happen, that causes a
permanent DoS forever, it does not require an attacker or an attack to be
triggered and cause damage to the protocol. However, an attacker could
trigger this edge case as the PoC test got performed, you can consider
the LP2 as the attacker, who can withdraw all the liquidity that he
possessed leaving the pool in DoS state. The DoS can also happen
without an attacker, simply by users removing all liquidity from the pool.

I mentioned complete liquidity removal to encompass all scenarios where
this issue can cause a DoS and disable liquidity addition and trading.
Therefore, I stated:

The full impact mentioned in the report: permanent disable of
liquidity addition == permanent DoS of the function
add_liquidity .

HydraDX https://code4rena.com/reports/2024-02-hydradx

39 of 148 09/06/2024, 14:43

If all liquidity shares have been removed from any pool.

This includes:

• A single malicious user possessing all the liquidity shares of the pool
and removing them (attack or normal action), the user LP2 mentioned
in the PoC can be the attacker.

• All liquidity providers removing their liquidity (normal action).

Please consider running my submitted PoC to check that the attack flow
got executed successfully, you can also consider LP2 as the
position_owner .

The attacker also can be the position_owner which is untrusted
entity, or another malicious user, or as normal action done by the
liquidity providers; the position_owner , who is the initial liquidity
provider, can perform this attack and DoS the entire pool after adding
the token by the authority_origin immediately.

The attack flow:

1. The asset_a got added by calling the add_token function this
function mint the shares of the initial liquidity to the
position_owner as shown here.

2. The position_owner removed all his liquidity from the pool and burnt
his all shares by calling the function remove_liquidity here, passing
the amount of shares minted to him as the amount to this function
and removed all the liquidity from the pool.

3. After the entire liquidity removal, all liquidity providers will be prevented
from adding liquidity to the asset_a pool, due to the fact that the

POC for the attack done by a malicious user

HydraDX https://code4rena.com/reports/2024-02-hydradx

40 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L487-L496
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L487-L496
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L716-L720
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L716-L720

reserve of the asset_a of the pool now is equal to zero as I tested in
my coded POC. The function add_liquidity will always revert due to
division by zero error, because the division performed, as shown here:

As mentioned, there is also another DoS and lock of funds of the liquidity
providers, if the entire liquidity removal of asset_a happens and then
any user send some amount of asset_a to the pool, this will allow the
execution of the function add_liquidity , but it will returns zero amount
of shares to the LP, so it will cause lock of funds for the liquidity
provider forever.

The impact I mentioned in the report clearly demonstrates the impact on
both the protocol and the users. The first two impacts clearly emphasize
the DoS that will occur and the third describes the financial losses of the
protocol.

Therefore, this finding suffices medium, as per the severity guidelines
Med requires “Assets not at direct risk, but the function of the protocol
or its availability could be impacted”.

When writing the proof-of-concept which submitted during the audit, I
focused on demonstrating how this edge case can occur. This provides
the sponsor with a clear explanation of how to mitigate this issue and
pinpoint the location of the error. Therefore, the PoC includes an
assert_noop statement to ensure that calling the add_liquidity()

let delta_shares_hp = shares_hp
 .checked_mul(amount_hp)
 .and_then(|v| v.checked_div(reserve_hp))?;

Lock of funds risk if someone sends some amount of asset to the
pool after the entire liquidity has been removed.

HydraDX https://code4rena.com/reports/2024-02-hydradx

41 of 148 09/06/2024, 14:43

function after the entire liquidity has been removed from the pool, it will
revert with the error ArithmeticError::Overflow , which indicates an
error in the function calculate_add_liquidity_state_changes .

Due to this, the function add_liquidity will always revert, meaning the
pool will always be empty, so the trading will also got disabled forever,
which is considered a DoS attack.

castle_chain (warden) commented:

I am providing this additional PoC to prove that sending any non-zero
amount of any asset after the entire liquidity removal from the omnipool
will cause lock of all funds forever to all liquidity providers.

This DoS attack will happen when the entire liquidity got removed from
the pool of asset_a , and the*attacker sends minimum non-zero amount
of asset_a to the omnipool pallet account.

Consider adding this test in remove_liquidity.rs test file, and then
run it to see the logs.

The PoC is commented with all the details of the attack:

1. LP2 provided 2000 units of asset_a by the function with_token of
the test. the pool state and the LP2 position are now:

PoC to test add_liquidity after all the liquidity had been removed
and the asset_reserve is not empty

asset state before liquidity removal AssetReserveState {
reserve: 2000000000000000, hub_reserve: 1300000000000000
shares: 2000000000000000, protocol_shares: 0

HydraDX https://code4rena.com/reports/2024-02-hydradx

42 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx-findings/issues/75#issuecomment-1993060305
https://github.com/code-423n4/2024-02-hydradx-findings/issues/75#issuecomment-1993060305
https://github.com/code-423n4/2024-02-hydradx/blob/main/HydraDX-node/pallets/omnipool/src/tests/remove_liquidity.rs
https://github.com/code-423n4/2024-02-hydradx/blob/main/HydraDX-node/pallets/omnipool/src/tests/remove_liquidity.rs

2. The LP2 removed his entire liquidity from the pool, so the pool state
now is:

3. The attacker LP1 sends one unit of asset_a to the pool, and the LP2
adds liquidity of 400 units of asset_a . This will result in asset state of
asset_a in the omnipool to be 400 + 1 = 401 , and the shares
allocated and minted to LP2 position will be zero.

As shown, the total shares in the pool is equal to zero, and the position
shares of the LP2 is equal to zero, which is consider a permanent lock of
funds.

the lp2_position before all liquidity removal:
Position { asset_id: 1000, amount: 2000000000000000

shares: 2000000000000000

the final state after all liquidity has been removed:
AssetReserveState { reserve: 0, hub_reserve: 0

, shares: 0, protocol_shares: 0

 the lp2_position after adding liquidity of 400 units of asset_a:
Position { asset_id: 1000, amount: 400000000000000

,shares: 0

the new state after liquidity provision had done but NO shares got
AssetReserveState { reserve: 401000000000000,

hub_reserve: 0, shares: 0, protocol_shares:

PoC

HydraDX https://code4rena.com/reports/2024-02-hydradx

43 of 148 09/06/2024, 14:43

#[test]
fn full_liquidity_removal_then_add_liquidity() {

ExtBuilder::default()
.with_endowed_accounts(vec![

(Omnipool::protocol_account(), DAI,
(Omnipool::protocol_account(), HDX, NATIVE_AMOUNT)
(LP2, 1_000, 2000 * ONE),
(LP1, 1_000, 5000 * ONE),

])
.with_initial_pool(FixedU128::from_float(
.with_token(1_000, FixedU128::from_float(
.build()
.execute_with(|| {

let asset_a = 1_000;
// how to perform this DoS attack.
// lp2 provides 2000 units of asset_a, and remove
// lp1 send some assets to the pool
// this will prevent the function add_liquidity fr
// lp2 will add liquidity of 400 units of asset_a

// the lp2 position is the last position which is
let lp2_position_id = <NextPositionId<Test>>::
// get asset_a state.
println!(

"asset state before the entire liquidity r
Omnipool::load_asset_state

);
let pos = Positions::<Test>::get(lp2_position_id);
println!(" the lp2_position before all liquidity r
// lp2 remove his all liquidity from the pool
assert_ok!(Omnipool::remove_liquidity
// this makes sure that all liquidity were removed
assert!(

Positions::<Test>::get(lp2_position_id).
"Position still found"

);
// state of asset_a after the entire liquidity rem
println!(

"the final state after all liquidity has b

HydraDX https://code4rena.com/reports/2024-02-hydradx

44 of 148 09/06/2024, 14:43

You can run the test and see the Logs that I used to explain the attack
flow:

The two issues can be mitigated by the same mitigation steps, as I
mentioned in the submitted report.

Omnipool::load_asset_state
);
// the attacker LP1 send 1 unit of asset_a to the
Tokens::transfer(RuntimeOrigin::signed
let liq_added = 400 * ONE;
// the LP2 added liquidity to the pool
assert_ok!(Omnipool::add_liquidity
// get the new position of the LP2
let new_lp2_position_id = <NextPositionId<Test>>::

let pos = Positions::<Test>::get(new_lp2_position_
println!(

" the lp2_position after adding liquidity
pos.unwrap()

);
println!(

"the new state after liquidity provision h
Omnipool::load_asset_state

);
});

}

running 1 test
asset state before the entire liquidity removal AssetReserveState { reserv
 the lp2_position before all liquidity removal: Position { asset_id:
the final state after all liquidity has been removed: AssetReserveState {
 the lp2_position after adding liquidity of 400 units of asset_a: Positio
the new state after liquidity provision had done but NO shares got minted

HydraDX https://code4rena.com/reports/2024-02-hydradx

45 of 148 09/06/2024, 14:43

Lambda (judge) commented:

This was indeed wrongly duplicated. The warden displayed an edge case
that impacts the correct functioning of the protocol. Although it is rare
and might or might not occur in practice (because the owner of the initial
liquidity needs to remove their position), it is possible in the current code
base.

enthusiastmartin (HydraDX) disputed and commented:

This is desired behavior. If all liquidity has been removed from a pool,
then there is no spot price, so we cannot allow anyone to add liquidity in
that token. We must go through the process of adding the token to
Omnipool all over again, as if it was new token entirely.

Note: For full discussion, see here.

Submitted by TheSchnilch

https://github.com/code-423n4/2024-02-hydradx/
blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/
pallets/omnipool/src/lib.rs#L1541-L1574
https://github.com/code-423n4/2024-02-hydradx/
blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/
pallets/omnipool/src/traits.rs#L164-L190
https://github.com/code-423n4/2024-02-hydradx/
blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/
pallets/ema-oracle/src/lib.rs#L558-L566

[M-07] Re-adding assets to the omnipool can cause a
problem with the oracle

HydraDX https://code4rena.com/reports/2024-02-hydradx

46 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx-findings/issues/75#issuecomment-1998358003
https://github.com/code-423n4/2024-02-hydradx-findings/issues/75#issuecomment-1998358003
https://github.com/code-423n4/2024-02-hydradx-findings/issues/75#issuecomment-2034437741
https://github.com/code-423n4/2024-02-hydradx-findings/issues/75#issuecomment-2034437741
https://github.com/code-423n4/2024-02-hydradx-findings/issues/75
https://github.com/code-423n4/2024-02-hydradx-findings/issues/75
https://github.com/code-423n4/2024-02-hydradx-findings/issues/73
https://github.com/code-423n4/2024-02-hydradx-findings/issues/73
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L1541-L1574
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L1541-L1574
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L1541-L1574
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L1541-L1574
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L1541-L1574
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L1541-L1574
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/traits.rs#L164-L190
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/traits.rs#L164-L190
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/traits.rs#L164-L190
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/traits.rs#L164-L190
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/traits.rs#L164-L190
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/traits.rs#L164-L190
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/ema-oracle/src/lib.rs#L558-L566
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/ema-oracle/src/lib.rs#L558-L566
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/ema-oracle/src/lib.rs#L558-L566
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/ema-oracle/src/lib.rs#L558-L566
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/ema-oracle/src/lib.rs#L558-L566
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/ema-oracle/src/lib.rs#L558-L566
https://github.com/code-423n4/2024-02-hydradx-findings/issues/73
https://github.com/code-423n4/2024-02-hydradx-findings/issues/73
https://github.com/code-423n4/2024-02-hydradx-findings/issues/73
https://github.com/code-423n4/2024-02-hydradx-findings/issues/73

If an asset is removed from the omnipool, it is ensured that all data records
in the omnipool are deleted and also all positions from liquidity providers.
However, the data records in the Oracle are not reset. This means that if the
asset is to be added again after some time and it then has a different price,
the price in the Oracle is falsified.

Here is a PoC which can be inserted into the file integration-tests/
src/omnipool_init.rs , which can be started with the following
command: SKIP_WASM_BUILD=1 cargo test -p runtime-integration-
tests poc -- --nocapture

Impact

POC

#[test]
pub fn poc() {

TestNet::reset();

Hydra::execute_with(|| {
let omnipool_account = hydradx_runtime::Omnipool::

init_omnipool();

let position_id_init = hydradx_runtime::Omnipool::
assert_ok!(hydradx_runtime::Omnipool::add_token

hydradx_runtime::RuntimeOrigin::root
DOT,
FixedU128::from_float(1.0),
Permill::from_percent(100),
AccountId::from(ALICE)

));
hydradx_run_to_next_block();

assert_ok!(hydradx_runtime::Omnipool::sacrifice_position
hydradx_runtime::RuntimeOrigin::signed

HydraDX https://code4rena.com/reports/2024-02-hydradx

47 of 148 09/06/2024, 14:43

position_id_init
));
hydradx_run_to_next_block();

assert_ok!(hydradx_runtime::Omnipool::set_asset_tradable_s
hydradx_runtime::RuntimeOrigin::root
DOT,
Tradability::FROZEN

));

assert_ok!(hydradx_runtime::Omnipool::remove_token
hydradx_runtime::RuntimeOrigin::root
DOT,
AccountId::from(ALICE)

));

//This is simply to skip a few blocks to show that some ti
hydradx_run_to_next_block();
hydradx_run_to_next_block();
hydradx_run_to_next_block();
hydradx_run_to_next_block();
hydradx_run_to_next_block();
hydradx_run_to_next_block();
hydradx_run_to_next_block();

assert_ok!(hydradx_runtime::Tokens::transfer
hydradx_runtime::RuntimeOrigin::signed
omnipool_account,
DOT,
500 * UNITS

));

assert_ok!(hydradx_runtime::Omnipool::add_token
hydradx_runtime::RuntimeOrigin::root
DOT,
FixedU128::from_float(10.0), //The price has incre
Permill::from_percent(100),
AccountId::from(ALICE)

));

HydraDX https://code4rena.com/reports/2024-02-hydradx

48 of 148 09/06/2024, 14:43

If an asset is removed from the Omnipool, all of its data will be deleted from
the Omnipool. However, the data from the asset remains in the Oracle and
is not deleted there. The Oracle then continues to store the data of the
removed asset in this StorageMap:

See ema-oracle/src/lib.rs#L153-L162 .

hydradx_run_to_next_block();

let return_value = hydradx_runtime::Omnipool::
hydradx_runtime::RuntimeOrigin::signed
DOT,
1 * UNITS

);
println!("return_value: {:?}", return_value);
hydradx_run_to_next_block();

let (price_short, _) = hydradx_runtime::EmaOracle::
println!("price_short: {:?}", price_short);

});
}

Description

pub type Oracles<T: Config> = StorageNMap<
 _,
 (
 NMapKey<Twox64Concat, Source>,
 NMapKey<Twox64Concat, (AssetId, AssetId)>,
 NMapKey<Twox64Concat, OraclePeriod>,
),
 (OracleEntry<BlockNumberFor<T>>, BlockNumberFor<T>),
 OptionQuery,
 >;

HydraDX https://code4rena.com/reports/2024-02-hydradx

49 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/ema-oracle/src/lib.rs#L153C1-L162C4
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/ema-oracle/src/lib.rs#L153C1-L162C4
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/ema-oracle/src/lib.rs#L153C1-L162C4
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/ema-oracle/src/lib.rs#L153C1-L162C4

The price is stored here once for the last block and once with the
exponential moving average logic for a few blocks in the past. (This is the
short period)

The problem now is when an asset is added again and its price has
changed. As a result, the new price is calculated using the exponential
moving average logic with the entries of the blocks before the asset was
removed and the new entries that have been added since the asset was re-
added, which leads to an incorrect price. The wrong price can also cause
ensureprice in addliquidity to fail and therefore no liquidity can be added:

See omnipool/src/lib.rs#L597-L603 .

Any protocol that uses this oracle as a price source would receive an
incorrect price for the re-added asset for a short period of time.

Even if the price balances out again after some time (the length of the short
period), an incorrect price is initially calculated after re-adding an asset for
which the price has changed. I would recommend deleting the Oracle
entries when removing an asset. This means that the price of the asset can
be calculated correctly from the start when it is added again.

T::PriceBarrier::ensure_price(
&who,

 T::HubAssetId::get(),
 asset,

 EmaPrice::new(asset_state.hub_reserve, asset_state.reserve),
)
.map_err(|_| Error::<T>::PriceDifferenceTooHigh)?;

Recommendation

HydraDX https://code4rena.com/reports/2024-02-hydradx

50 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L597C1-L603C54
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L597C1-L603C54
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L597C1-L603C54
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L597C1-L603C54

Oracle

enthusiastmartin (HydraDX) acknowledged, but disagreed with severity
and commented:

It has no impact, and it is currently intended to keep it in oracle.

It might be an issue when we decided to add a token back; although, the
price would correct itself anyway.

Lambda (judge) commented:

The warden identified an edge case (reading a token that was previously
removed) where keeping the old values can lead to problems (short DoS
or wrong prices used if deviation is not too large). Medium is appropriate
here because a value leak with some external requirements is possible.

Submitted by J4X

When using the substrate framework, it is one of the main goals of
developers to prevent storage bloat. If storage can easily be bloated by
users, this can lead to high costs for the maintainers of the chain and a
potential DOS. A more in detail explanation can be found here.

The Omnipool allows users to deposit liquidity to earn fees on swaps.
Whenever a user deposits liquidity through add_liquidity() , he gets an
NFT minted and the details of his deposit are stored in the Positions
map:

Assessed type

[M-08] Storage can be bloated with low value liquidity
positions

HydraDX https://code4rena.com/reports/2024-02-hydradx

51 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx-findings/issues/73#issuecomment-1979192955
https://github.com/code-423n4/2024-02-hydradx-findings/issues/73#issuecomment-1979192955
https://github.com/code-423n4/2024-02-hydradx-findings/issues/73#issuecomment-1979192955
https://github.com/code-423n4/2024-02-hydradx-findings/issues/73#issuecomment-1979192955
https://github.com/code-423n4/2024-02-hydradx-findings/issues/73#issuecomment-1984568006
https://github.com/code-423n4/2024-02-hydradx-findings/issues/73#issuecomment-1984568006
https://github.com/code-423n4/2024-02-hydradx-findings/issues/54
https://github.com/code-423n4/2024-02-hydradx-findings/issues/54
https://docs.substrate.io/build/troubleshoot-your-code/#common-substrate-issues
https://docs.substrate.io/build/troubleshoot-your-code/#common-substrate-issues
https://github.com/code-423n4/2024-02-hydradx-findings/issues/54
https://github.com/code-423n4/2024-02-hydradx-findings/issues/54
https://github.com/code-423n4/2024-02-hydradx-findings/issues/54
https://github.com/code-423n4/2024-02-hydradx-findings/issues/54

To ensure that this storage is only used for serious deposits, it is ensured to
be above MinimumPoolLiquidity which is 1,000,000 tokens in the
runtime configuration.

Additionally, whenever a deposit gets fully withdrawn, the storage entry is
removed:

Unfortunately, this implementation does not take into account that a
malicious user can add MinimumPoolLiquidity tokens, and then instantly
withdraw all but 1. In that case, he has incurred almost no cost for bloating
the storage (besides the 1 token and gas fees) and can keep on doing this

let instance_id = Self::create_and_mint_position_instance

<Positions<T>>::insert(instance_id, lp_position);

ensure!(
amount >= T::MinimumPoolLiquidity::get() && amount >
Error::<T>::MissingBalance

);

if updated_position.shares == Balance::zero() {
// All liquidity removed, remove position and burn NFT instance

<Positions<T>>::remove(position_id);
T::NFTHandler::burn(&T::NFTCollectionId::get(), &position_id, Some

Self::deposit_event(Event::PositionDestroyed {
position_id,
owner: who.clone(),

});
}

HydraDX https://code4rena.com/reports/2024-02-hydradx

52 of 148 09/06/2024, 14:43

countless times.

The issue allows a malicious attacker to bloat the storage in a cheap way. If
done often enough this allows him to DOS the functionality of the HydraDX
protocol by bloating the storage significantly until it can’t be maintained
anymore. If the attacker uses a very low-value token, he only incurs the gas
fee for each new entry.

If we consider that the intended cost for adding a new position entry (to
potentially DOS) as defined by the MinimumPoolLiquidity should be
1_000_000 tokens, this issue allows an attacker to get the same storage
bloat for 1/1_000_000 or 0.0001% of the intended cost.

The following testcase showcases the issue:

Impact

Proof of Concept

#[test]
fn remove_liquidity_but_one() {

ExtBuilder::default()
.with_endowed_accounts(vec![

(Omnipool::protocol_account(), DAI,
(Omnipool::protocol_account(), HDX, NATIVE_AMOUNT)
(LP2, 1_000, 2000 * ONE),
(LP1, 1_000, 5000 * ONE),

])
.with_initial_pool(FixedU128::from_float(
.with_token(1_000, FixedU128::from_float(
.build()
.execute_with(|| {

let liq_added = 1_000_000; //Exactly MinimumPoolLi
let current_position_id = <NextPositionId<Test>>::

HydraDX https://code4rena.com/reports/2024-02-hydradx

53 of 148 09/06/2024, 14:43

The testcase can be added to the pallets/omnipool/src/tests/
remove_liquidity.rs file.

The issue can be mitigated by not letting the amount in an open position fall
below MinimumPoolLiquidity . This can be enforced as follows in the
remove_liquidity() function:

assert_ok!(Omnipool::add_liquidity

let liq_removed = 200 * ONE;
assert_ok!(Omnipool::remove_liquidity

RuntimeOrigin::signed(LP1),
current_position_id,
1_000_000-1 //Remove all but one asset

));

let position = Positions::<Test>::
let expected = Position::<Balance, AssetId> {

asset_id: 1_000,
amount: 1,
shares: 1,
price: (1300000000650000,

};

//There now is a position with 1 single Wei bloati
assert_eq!(position, expected);

});
}

Recommended Mitigation Steps

HydraDX https://code4rena.com/reports/2024-02-hydradx

54 of 148 09/06/2024, 14:43

DoS

enthusiastmartin (HydraDX) disputed and commented:

This is publicly known issue, raised by our team here.

Lambda (judge) commented:

While the sponsor was already aware of the issue, it was not ruled out as
a known issue in the audit description and therefore, cannot be deemed
out of scope.

QiuhaoLi (warden) commented:

@Lambda and @enthusiastmartin, thanks for the review. I have a
question (not a dispute):

Haven’t we already limited the storage usage with gas fees (weight) in
omnipool/src/weights.rs?:

ensure!(
updated_position.amount >= T::MinimumPoolLiquidity
Error::<T>::InsufficientLiquidity

);

Assessed type

/// Storage: `Omnipool::Positions` (r:0 w:1) <===
/// Proof: `Omnipool::Positions` (`max_values`: None, `max_size`:
fn add_liquidity() -> Weight {

// Proof Size summary in bytes:
// Measured: `3919`
// Estimated: `8739`

HydraDX https://code4rena.com/reports/2024-02-hydradx

55 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx-findings/issues/54#issuecomment-1979163692
https://github.com/code-423n4/2024-02-hydradx-findings/issues/54#issuecomment-1979163692
https://github.com/galacticcouncil/HydraDX-node/issues/674
https://github.com/galacticcouncil/HydraDX-node/issues/674
https://github.com/code-423n4/2024-02-hydradx-findings/issues/54#issuecomment-1985489914
https://github.com/code-423n4/2024-02-hydradx-findings/issues/54#issuecomment-1985489914
https://github.com/code-423n4/2024-02-hydradx-findings/issues/54#issuecomment-1996571933
https://github.com/code-423n4/2024-02-hydradx-findings/issues/54#issuecomment-1996571933
https://github.com/code-423n4/2024-02-hydradx/blob/main/HydraDX-node/pallets/omnipool/src/weights.rs#L95
https://github.com/code-423n4/2024-02-hydradx/blob/main/HydraDX-node/pallets/omnipool/src/weights.rs#L95

As we can see, the user will be charged the fees of storage writes for
minting new positions. So if an attack tries to bloat the storage, it will
suffer from the corresponding fees.

J4X (warden) commented:

@QiuhaoLi - The costs for a protocol on Polkadot consist of 2 kinds of
costs. The computation costs are forwarded to the user using the weights
and the storage costs, which have to be handled by the protocol
themselves.

The attacker is correctly charged for the storage instruction (computation
cost) but is able to force the protocol to incur the constant cost of
maintaining the positions (storage cost). This storage cost should only be
incurred by the protocol for serious positions, which is why they have set
a minimum of 1 million tokens. From positions of that size, they can
recoup their storage cost through other fees. As one can see in the issue
this can be circumvented and the protocol will not be able to recoup the
storage costs through fees on dust positions leading to a potential DOS.
This can happen if the storage is flooded with dust positions, leading to
massive storage costs that the protocol can not recoup through fees due
to the insufficient size of each position.

As the sponsor has acknowledged this is a valid issue that they are trying
to fix internally, so I don’t see why this should be invalidated.

QiuhaoLi (warden) commented:

// Minimum execution time: 220_969_000 picoseconds.
Weight::from_parts(222_574_000, 8739)

.saturating_add(T::DbWeight::get().

.saturating_add(T::DbWeight::get().
}

HydraDX https://code4rena.com/reports/2024-02-hydradx

56 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx-findings/issues/54#issuecomment-1996595161
https://github.com/code-423n4/2024-02-hydradx-findings/issues/54#issuecomment-1996595161
https://github.com/code-423n4/2024-02-hydradx-findings/issues/54#issuecomment-1996610082
https://github.com/code-423n4/2024-02-hydradx-findings/issues/54#issuecomment-1996610082

@J4X - thanks a lot for the explanation! I once thought about the cost of
positions and decided it has been charged as fees just like Ethereum
storage, which seems wrong. As I said this is not a dispute, just a
question, nice finding!

Submitted by J4X, also found by tsvetanovv

The HydraDx protocol includes an oracle. This oracle generates prices,
based upon the information it receives from its sources (of which Omnipool
is one). The Omnipool provides information to the oracle through the
on_liquidity_changed and on_trade hooks. Whenever a trade happens
or the liquidity in one of the pools changes the corresponding hooks need
to be called with the updated values.

The Omnipool contract also includes the remove_token() function. This
function can only be called by the authority and can be only called on an
asset which is FROZEN and where all the liquidity shares are owned by the
protocol.

When the function gets called it transfers all remaining liquidity to the
beneficiary and removes the token. This is a change in liquidity in the
Omnipool. The functionality in terms of liquidity change is similar to the

[M-09] Missing hook call will lead to incorrect oracle
results

ensure!(asset_state.tradable == Tradability::FROZEN, Error::<T>::AssetNotF
ensure!(

asset_state.shares == asset_state.protocol_shares,
Error::<T>::SharesRemaining

);

HydraDX https://code4rena.com/reports/2024-02-hydradx

57 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx-findings/issues/51
https://github.com/code-423n4/2024-02-hydradx-findings/issues/51
https://github.com/code-423n4/2024-02-hydradx-findings/issues/141
https://github.com/code-423n4/2024-02-hydradx-findings/issues/141
https://github.com/code-423n4/2024-02-hydradx-findings/issues/51
https://github.com/code-423n4/2024-02-hydradx-findings/issues/51
https://github.com/code-423n4/2024-02-hydradx-findings/issues/51
https://github.com/code-423n4/2024-02-hydradx-findings/issues/51

withdraw_protocol_liquidity() where the protocol also withdraws
liquidity in the form of protocol_shares from the pool. When looking at
the withdraw_protocol_liquidity() function, one can see that it calls
the on_liquidity_changed hook at the end, so that the oracle receives
the information about the liquidity change.

Unfortunately, the remove_token() function does not call this hook,
keeping the oracle in an outdated state. As the token is removed later on,
the oracle will calculate based on liquidity that does not exist anymore in the
Omnipool.

The issue results in the oracle receiving incorrect information and
calculating new prices, based on an outdated state of the Omnipool.

The issue can be viewed when looking at the code of remove_token()
where one can see that no call to the hook happens:

T::OmnipoolHooks::on_liquidity_changed(origin, info)?;

Impact

Proof of Concept

#[pallet::call_index(12)]
#[pallet::weight(<T as Config>::WeightInfo::remove_token())]
#[transactional]
pub fn remove_token(origin: OriginFor<T>, asset_id: T::AssetId, beneficiar

T::AuthorityOrigin::ensure_origin(origin)?;
let asset_state = Self::load_asset_state(asset_id)?;

// Allow only if no shares are owned by LPs and the asset is froze
ensure!(asset_state.tradable == Tradability::FROZEN, Error::<T>::A
ensure!(

HydraDX https://code4rena.com/reports/2024-02-hydradx

58 of 148 09/06/2024, 14:43

The issue can be mitigated by forwarding the updated asset state to the
oracle by calling the on_liquidity_changed hook.

Oracle

asset_state.shares == asset_state.protocol_shares,
Error::<T>::SharesRemaining

);
// Imbalance update
let imbalance = <HubAssetImbalance<T>>::get();
let hub_asset_liquidity = Self::get_hub_asset_balance_of_protocol_
let delta_imbalance = hydra_dx_math::omnipool::calculate_delta_imb

asset_state.hub_reserve,
I129 {

value: imbalance.value,
negative: imbalance.negative,

},
hub_asset_liquidity,

)
.ok_or(ArithmeticError::Overflow)?;
Self::update_imbalance(BalanceUpdate::Increase(delta_imbalance))?;

T::Currency::withdraw(T::HubAssetId::get(), &Self
T::Currency::transfer(asset_id, &Self::protocol_account
<Assets<T>>::remove(asset_id);
Self::deposit_event(Event::TokenRemoved {

asset_id,
amount: asset_state.reserve,
hub_withdrawn: asset_state.hub_reserve,

});
Ok(())

}

Recommended Mitigation Steps

Assessed type

HydraDX https://code4rena.com/reports/2024-02-hydradx

59 of 148 09/06/2024, 14:43

enthusiastmartin (HydraDX) disputed and commented via duplicate issue
#141:

The calls is not needed in mentioned functions. sacrifice_position
does not change any liquidity and remove_token just removes token.

J4X (warden) commented:

@Lambda - This issue has been deemed as invalid due to a comment by
the sponsor on Issue #141. Issue #141 describes that in the functions
sacrifice_position() and remove_token() , a hook call to
on_liquidity_changed is missing. The sponsor has disputed this with
the claim that in none of those functions, the liquidity gets changed,
which is true for sacrifice_position() but not for remove_token() .
In sacrifice_position() , the sacrificed positions’ ownership is
transferred to the protocol but the liquidity does not change.

The same is not the case for the remove_token() function. As one can
see in the following code snippet, the function transfers out all liquidity
that is owned by protocol shares to a beneficiary, changing the liquidity in
the pool:

The function documentation also mentions the liquidity change.

So contrary to the comment of the sponsor, not only does the token get
removed but also the liquidity changes, as the protocol-owned liquidity is
sent to the beneficiary. This should result in a call to the hook so that the
circuit breaker and the oracle get accordingly updated (and trigger at the
right values). This could for example lead to an issue if we have a

T::Currency::transfer(asset_id, &Self::protocol_account(), &beneficiary, a

HydraDX https://code4rena.com/reports/2024-02-hydradx

60 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx-findings/issues/141#issuecomment-1980993667
https://github.com/code-423n4/2024-02-hydradx-findings/issues/141#issuecomment-1980993667
https://github.com/code-423n4/2024-02-hydradx-findings/issues/141#issuecomment-1980993667
https://github.com/code-423n4/2024-02-hydradx-findings/issues/141#issuecomment-1980993667
https://github.com/code-423n4/2024-02-hydradx-findings/issues/51#issuecomment-1993119034
https://github.com/code-423n4/2024-02-hydradx-findings/issues/51#issuecomment-1993119034
https://github.com/code-423n4/2024-02-hydradx-findings/issues/141
https://github.com/code-423n4/2024-02-hydradx-findings/issues/141
https://github.com/code-423n4/2024-02-hydradx/blob/main/HydraDX-node/pallets/omnipool/src/lib.rs#L1566
https://github.com/code-423n4/2024-02-hydradx/blob/main/HydraDX-node/pallets/omnipool/src/lib.rs#L1566
https://github.com/code-423n4/2024-02-hydradx/blob/main/HydraDX-node/pallets/omnipool/src/lib.rs#L1533C6-L1533C101
https://github.com/code-423n4/2024-02-hydradx/blob/main/HydraDX-node/pallets/omnipool/src/lib.rs#L1533C6-L1533C101

maximum liquidity change per block of 100 tokens chosen in our circuit
breaker and a token gets removed with 90 tokens of protocol liquidity
being withdrawn. A later call withdrawing 20 liquidity would incorrectly
pass as the earlier withdrawn liquidity is not accounted for due to the
missing hook call. This would undermine the security measure of the
circuit breaker as the limits are not correctly enforced. Additionally, due
to the missing liquidity update, the oracle will be outdated too.

I would like to mention that my issue is the only issue that fully and
correctly documents the problem, as Issue #141 is reporting an invalid
additional issue and also recommends an incorrect mitigation of
increasing the liquidityInBlock in sacrifice_position() .

Lambda (judge) commented:

Thanks for your comment. After looking at it again, remove_token
indeed changes the liquidity like add_token does. While add_token
calls on_liquidity_changed , remove_token does not, which can lead
to inconsistencies.

Submitted by castle_chain, also found by QiuhaoLi, oakcobalt, and J4X

https://github.com/code-423n4/2024-02-hydradx/
blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/
pallets/omnipool/src/lib.rs#L1330-L1360
https://github.com/code-423n4/2024-02-hydradx/
blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/

[M-10] A huge loss of funds for all the users who try to
remove liquidity after swapping got disabled at
manipulated price.

HydraDX https://code4rena.com/reports/2024-02-hydradx

61 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx-findings/issues/51#issuecomment-1999261871
https://github.com/code-423n4/2024-02-hydradx-findings/issues/51#issuecomment-1999261871
https://github.com/code-423n4/2024-02-hydradx-findings/issues/22
https://github.com/code-423n4/2024-02-hydradx-findings/issues/22
https://github.com/code-423n4/2024-02-hydradx-findings/issues/174
https://github.com/code-423n4/2024-02-hydradx-findings/issues/174
https://github.com/code-423n4/2024-02-hydradx-findings/issues/135
https://github.com/code-423n4/2024-02-hydradx-findings/issues/135
https://github.com/code-423n4/2024-02-hydradx-findings/issues/16
https://github.com/code-423n4/2024-02-hydradx-findings/issues/16
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L1330-L1360
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L1330-L1360
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L1330-L1360
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L1330-L1360
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L1330-L1360
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L1330-L1360
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L759-L764
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L759-L764
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L759-L764
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L759-L764
https://github.com/code-423n4/2024-02-hydradx-findings/issues/22
https://github.com/code-423n4/2024-02-hydradx-findings/issues/22
https://github.com/code-423n4/2024-02-hydradx-findings/issues/22
https://github.com/code-423n4/2024-02-hydradx-findings/issues/22
https://github.com/code-423n4/2024-02-hydradx-findings/issues/22
https://github.com/code-423n4/2024-02-hydradx-findings/issues/22

pallets/omnipool/src/lib.rs#L759-L764

This vulnerability will lead to huge loss of funds for liquidity providers that
want to withdraw their liquidity if the safe withdrawal is enabled. The loss of
funds can be 100% of the liquidity provider’s shares.

Normal Scenario of manipulating price and disabling removing or adding
liquidity:

If the price of certain asset got manipulated, there is an ensure function
exist in the remove_liquidity() and add_liquidity() , so the function
should revert in case of the price of an asset got manipulated.

This ensure_price() function checks that the difference between spot
price and oracle price is not too high, so it has critical role to prevent the
profitability from this manipulation.

There is also another security parameter which is the Tradability state which
can prevent removing or adding liquidity. There is also withdrawal_fee ,
which is used to make manipulating price not profitable, and it can prevent
the attacker from getting any of assets if the price difference is too high.

Impact

Proof of Concept

 T::PriceBarrier::ensure_price(
 &who,
 T::HubAssetId::get(),
 asset,
 EmaPrice::new(asset_state.hub_reserve, ass
)
 .map_err(|_| Error::<T>::PriceDifferenceTooHigh)?;

HydraDX https://code4rena.com/reports/2024-02-hydradx

62 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L759-L764
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L759-L764

Important assumption:

The assumption is that the withdrawal can be done safely without checking
the price difference because the swapping of this asset got disabled so the
price is stable, as shown here.

Edge case:

Due to the fact that there is not limitation on setting tradability states to any
asset except the hub_asset , the tradability state can be set to prevent
swapping on asset at manipulated price, by making the tradability state only
contain remove and add liquidity flags, when the difference between spot
price and the oracle price is too high.

In such cases, the remove_liquidity() function will not revert with price
error because the function ensure-price() will not work, but it will pass
and the withdrawal_fee will be equal to 1. So 100% of the liquidity to be
removed will be taken from the user as fees and will be distributed on the
other liquidity providers.

How this vulnerability can be applied:

1. The price of asset got manipulated and the difference between spot
and oracle price is too high.

2. The tradability state of the asset has been set to remove and add

let safe_withdrawal = asset_state.tradable.

pub(crate) fn is_safe_withdrawal(&self) -> bool {
 *self == Tradability::ADD_LIQUIDITY | Tradability::REMOVE_
 }
}

HydraDX https://code4rena.com/reports/2024-02-hydradx

63 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L743
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L743

liquidity only (buying and selling are disabled).

3. Any user trying to remove his liquidity will be taken as fees and there is
no asset will be transferred to the user and the transaction will not
revert, since there is no slippage (safety) parameter that can be set by
the user to ensure that amount comes from this transaction is equal to
what is expected.

The normal scenario here is that the remove_liquidity function should
revert instead of taking all user assets as withdrawal_fee .

The code that calculates the withdrawal fee is:

pub fn calculate_withdrawal_fee(
 spot_price: FixedU128,
 oracle_price: FixedU128,
 min_withdrawal_fee: Permill,
) -> FixedU128 {

let price_diff = if oracle_price <= spot_price {
 spot_price.saturating_sub(oracle_price)
 } else {
 oracle_price.saturating_sub(spot_price)
 };

let min_fee: FixedU128 = min_withdrawal_fee.into();
debug_assert!(min_fee <= FixedU128::one());

if oracle_price.is_zero() {
return min_fee;

 }

// fee can be set to 100%
 -> price_diff.div(oracle_price).clamp(min_fee, FixedU128::
}

HydraDX https://code4rena.com/reports/2024-02-hydradx

64 of 148 09/06/2024, 14:43

The delta assets that send to the user will be zero in case that
withdrawal_fee is 1.

VS Code

This vulnerability can be mitigated by only one step:

Check that the price is in the allowed Range before disabling the swapping
and allow remove and add liquidity on any asset. This mitigation will make
sure that the safe_withdrawal is set to true, except if the price in the
Range so the price is actually stable and safe to withdraw liquidity on this
price.

https://github.com/code-423n4/2024-02-hydradx/
blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/
pallets/omnipool/src/lib.rs#L1330-L1361

Consider modifying set_asset_tradable_state() function to ensure that

// fee_complement = 0 ;
let fee_complement = FixedU128::one().saturating_sub

// Apply withdrawal fee
let delta_reserve = fee_complement.checked_mul_int
let delta_hub_reserve = fee_complement.checked_mul_int
let hub_transferred = fee_complement.checked_mul_int

let delta_imbalance = calculate_delta_imbalance(delta_hub_reserve,

Tools Used

Recommended Mitigation Steps

HydraDX https://code4rena.com/reports/2024-02-hydradx

65 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L1330-L1361
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L1330-L1361
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L1330-L1361
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L1330-L1361
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L1330-L1361
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L1330-L1361

if the state is set to preventing swapping, then ensure the price:

pub fn set_asset_tradable_state(
 origin: OriginFor<T>,
 asset_id: T::AssetId,
 state: Tradability,
) -> DispatchResult {
 T::TechnicalOrigin::ensure_origin

if asset_id == T::HubAssetId::get
// At the moment, omnipool does not allow
// Although BUY is not supported yet, we c
ensure!(

 !state.contains(Tradability::ADD_L
 Error::<T>::InvalidHubAssetTradabl
);

 HubAssetTradability::<T>::
 *value = state;

Self::deposit_event
 Ok(())
 })
 } else {

 Assets::<T>::try_mutate(asset_id, |maybe_a
let asset_state = maybe_asset.

+ if (state == Tradability::ADD_LIQUIDITY | Tradability::REMOVE_LIQUIDITY
+
+ T::PriceBarrier::ensure_price(
+ &who,
+ T::HubAssetId::get
+ asset_id,
+ EmaPrice::new(asset_state.hub_rese
+)
+ .map_err(|_| Error::<T>::PriceDifferenceTo

HydraDX https://code4rena.com/reports/2024-02-hydradx

66 of 148 09/06/2024, 14:43

Invalid Validation

Lambda (judge) decreased severity to Low and commented:

Intended behaviour/design that this check is not performed in this state
which can only be set by the AuthorityOrigin , downgrading to QA.

castle_chain (warden) commented:

@Lambda,

1. This finding points to the vulnerable function
set_asset_tradable_state , because it does not check that the price
of the oracle is not too far from the spot price before activate the safe
mode so it can be front-run by attackers.

2. The impact of the 100% of the liquidity withdrawn by the user will be
taken as the withdrawal_fee , the impact of the Issue #93 is just a 1%
due to the absence of the slippage parameter.

Lambda (judge) increased severity to Medium and commented:

The issue demonstrates that there can be edge cases where a very high

 asset_state.tradable = state;
Self::deposit_event

 Ok(())
 })
 }
 }

Assessed type

HydraDX https://code4rena.com/reports/2024-02-hydradx

67 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx-findings/issues/22#issuecomment-1985621735
https://github.com/code-423n4/2024-02-hydradx-findings/issues/22#issuecomment-1985621735
https://github.com/code-423n4/2024-02-hydradx-findings/issues/22#issuecomment-1993479372
https://github.com/code-423n4/2024-02-hydradx-findings/issues/22#issuecomment-1993479372
https://github.com/code-423n4/2024-02-hydradx-findings/issues/93
https://github.com/code-423n4/2024-02-hydradx-findings/issues/93
https://github.com/code-423n4/2024-02-hydradx-findings/issues/22#issuecomment-1998469201
https://github.com/code-423n4/2024-02-hydradx-findings/issues/22#issuecomment-1998469201

fee is charged, therefore, upgrading it to a medium.

enthusiastmartin (HydraDX) acknowledged

Note: For full discussion, see here.

For this audit, 18 reports were submitted by wardens detailing low risk and
non-critical issues. The report highlighted below by castle_chain received
the top score from the judge.

The following wardens also submitted reports: oakcobalt, J4X, zhaojie,
alix40, tsvetanovv, bin2chen, alkrrrrp, carrotsmuggler, Ocean_Sky,
3docSec, TheSchnilch, peachtea, QiuhaoLi, Aymen0909, Franfran,
ihtishamsudo, and ZanyBonzy.

Affected code here.

The function add_liquidity_shares uses the function
calculate_add_one_asset here, which has a constrain that ensures that
the shares specified by the user to be minted are not greater than the total
issuance. There is nothing should prevent the liquidity providers from
providing such amount of asset, and this amount of shares to be minted is
not prevented by the function add_liquidity so such a constrain should

Low Risk and Non-Critical Issues

Stapleswap

1. Liquidity providers can not provide the amount of assets that will
result in shares more than the total issuance by calling
add_liquidity_shares function, which is considered loss of value

for the protocol

HydraDX https://code4rena.com/reports/2024-02-hydradx

68 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx-findings/issues/22#issuecomment-2034435094
https://github.com/code-423n4/2024-02-hydradx-findings/issues/22#issuecomment-2034435094
https://github.com/code-423n4/2024-02-hydradx-findings/issues/22
https://github.com/code-423n4/2024-02-hydradx-findings/issues/22
https://github.com/code-423n4/2024-02-hydradx-findings/issues/35
https://github.com/code-423n4/2024-02-hydradx-findings/issues/35
https://github.com/code-423n4/2024-02-hydradx-findings/issues/197
https://github.com/code-423n4/2024-02-hydradx-findings/issues/197
https://github.com/code-423n4/2024-02-hydradx-findings/issues/181
https://github.com/code-423n4/2024-02-hydradx-findings/issues/181
https://github.com/code-423n4/2024-02-hydradx-findings/issues/161
https://github.com/code-423n4/2024-02-hydradx-findings/issues/161
https://github.com/code-423n4/2024-02-hydradx-findings/issues/148
https://github.com/code-423n4/2024-02-hydradx-findings/issues/148
https://github.com/code-423n4/2024-02-hydradx-findings/issues/147
https://github.com/code-423n4/2024-02-hydradx-findings/issues/147
https://github.com/code-423n4/2024-02-hydradx-findings/issues/134
https://github.com/code-423n4/2024-02-hydradx-findings/issues/134
https://github.com/code-423n4/2024-02-hydradx-findings/issues/122
https://github.com/code-423n4/2024-02-hydradx-findings/issues/122
https://github.com/code-423n4/2024-02-hydradx-findings/issues/111
https://github.com/code-423n4/2024-02-hydradx-findings/issues/111
https://github.com/code-423n4/2024-02-hydradx-findings/issues/99
https://github.com/code-423n4/2024-02-hydradx-findings/issues/99
https://github.com/code-423n4/2024-02-hydradx-findings/issues/45
https://github.com/code-423n4/2024-02-hydradx-findings/issues/45
https://github.com/code-423n4/2024-02-hydradx-findings/issues/38
https://github.com/code-423n4/2024-02-hydradx-findings/issues/38
https://github.com/code-423n4/2024-02-hydradx-findings/issues/14
https://github.com/code-423n4/2024-02-hydradx-findings/issues/14
https://github.com/code-423n4/2024-02-hydradx-findings/issues/203
https://github.com/code-423n4/2024-02-hydradx-findings/issues/203
https://github.com/code-423n4/2024-02-hydradx-findings/issues/196
https://github.com/code-423n4/2024-02-hydradx-findings/issues/196
https://github.com/code-423n4/2024-02-hydradx-findings/issues/82
https://github.com/code-423n4/2024-02-hydradx-findings/issues/82
https://github.com/code-423n4/2024-02-hydradx-findings/issues/71
https://github.com/code-423n4/2024-02-hydradx-findings/issues/71
https://github.com/code-423n4/2024-02-hydradx-findings/issues/25
https://github.com/code-423n4/2024-02-hydradx-findings/issues/25
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/math/src/stableswap/math.rs#L317-L337
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/math/src/stableswap/math.rs#L317-L337
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/math/src/stableswap/math.rs#L317
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/math/src/stableswap/math.rs#L317

be removed.

Coded PoC

Consider add this test to the test file add_liquidity.rs :

if shares > share_asset_issuance {
return None;

 }

#[test]
fn add_liquidity_should_work_correctly_when_fee_is_applied_test

let asset_a: AssetId = 1;
let asset_b: AssetId = 2;
let asset_c: AssetId = 3;
ExtBuilder::default()

.with_endowed_accounts(vec![
(BOB, asset_a, 200_000_000_000_000_000_000
(ALICE, asset_a, 52425995641788588073263117
(ALICE, asset_b, 52033213790329),
(ALICE, asset_c, 119135337044269),

])
.with_registered_asset("one".as_bytes().to_vec
.with_registered_asset("two".as_bytes().to_vec
.with_registered_asset("three".as_bytes().
.with_pool(

ALICE,
PoolInfo::<AssetId, u64> {

assets: vec![asset_a, asset_b, asset_c].
initial_amplification: NonZeroU16::
final_amplification: NonZeroU16::
initial_block: 0,
final_block: 0,
fee: Permill::from_float(

},

HydraDX https://code4rena.com/reports/2024-02-hydradx

69 of 148 09/06/2024, 14:43

This test should revert due to the shares requested is greater than the total
issuance by 1. To make this test work, you can simply remove this one here:

InitialLiquidity {
account: ALICE,
assets: vec![

AssetAmount::new(asset_a,
AssetAmount::new(asset_b,
AssetAmount::new(asset_c,

],
},

)
.build()
.execute_with(|| {

let pool_id = get_pool_id_at(0);
// let amount = 2_000_000_000_000_000_000;
let total_shares = Tokens::total_issuance
assert_ok!(Stableswap::add_liquidity_shares

RuntimeOrigin::signed(BOB),
pool_id,
total_shares + 1,
asset_a,
200_000_000_000_000_000_000

));
let received = Tokens::free_balance
println!("shares received after providing 2_000_00
let bob_balance = Tokens::free_balance
let used = 200_000_000_000_000_000_000
println!("used: {:?}", used);

});
// 108_887_514_683_615_710_558 assets should be taken from the user but th
}

+ total_shares,
- total_shares + 1,

HydraDX https://code4rena.com/reports/2024-02-hydradx

70 of 148 09/06/2024, 14:43

Recommendation

Consider removing this constrain:

Affected code here and here.

The implementation of stableswap assumes that all the shares assets have
18 decimals only but there is no check for this in the function
create_pool , which can allow set the share_asset to have any number
of decimals. This will affect the whole pool since the normalization function
scale all the reserves to 18 decimals in order to calculate D and Y
parameters.

Impact

This will lead to huge loss of funds for the user and the protocol because of
the wrong calculation of Y and D parameters.

Recommendation

Consider adding a check to ensure that the share_asset decimals are
equal to 18 decimals. Add this check to the do_create_pool function:

- if shares > share_asset_issuance {
- return None;
- }

2. Huge loss of funds for the users and the protocol, if the pool is
created with share_asset that does have a different decimals from
18 decimals

+ ensure!(

HydraDX https://code4rena.com/reports/2024-02-hydradx

71 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/stableswap/src/lib.rs#L341-L369
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/stableswap/src/lib.rs#L341-L369
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/stableswap/src/lib.rs#L950-L992
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/stableswap/src/lib.rs#L950-L992

Affected code here.

Each token is assigned a maximum weight cap, specifying the maximum
amount of hub asset that can be minted in its corresponding pool. If the
quantity of hub asset paired (minted) with the added token surpasses its
permitted weight capacity, liquidity provision will be frozen. This is because
the add_liquidity function, here, incorporates a capacity constraint and
exceeding this limit triggers the freezing of liquidity provision.

Recommendation

Check the cap of the asset in the function add_token() :

+ T::AssetInspection::decimals(share_asset)== 18,
+ Error::<T>::Invalid_decimals
+);

Omnipool

1. The add_token() function lacks a check to prevent exceeding
the maximum weight cap which will disable liquidity provision

HydraDX https://code4rena.com/reports/2024-02-hydradx

72 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L447-L549
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L447-L549
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L636-L639
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L636-L639

Affected code here.

Tokens like Gemini USD possess just 2 decimals, while others like USDC has
6 decimals. Within the add_liquidity function, it is crucial to align the
MinimumPoolLiquidity with the amount of hub_asset . Failure to
consider this alignment, particularly when the specified amount surpasses
the maxWeightCap established for the asset, can result in the disabling of
liquidity provision for that specific token.

To illustrate, let’s take a low-decimal asset with 2 decimals and set its
MinimumPoolLiquidity at 10,000 , equating to 100 units of that asset. If
this quantity of tokens corresponds to an amount of hub assets exceeding
the weight cap assigned to the asset. If the max weight cap for this asset is
20% of a total hub reserve is 100,000 , then the max amount of hub
allowed to be added equal to 25,000 and if the corresponding hub asset
for the 100 units of asset equal to 30,000 , liquidity provision for this asset
becomes disabled. This underscores the necessity for a nuanced approach

 pub fn add_token(
 origin: OriginFor<T>,
 asset: T::AssetId,
 initial_price: Price,
 weight_cap: Permill,
 position_owner: T::AccountId,
) -> DispatchResult {

 ensure!(
 hub_reserve_ratio <= new_asset_state.weigh
 Error::<T>::AssetWeightCapExceeded
);

2. Customizing the minimum trading limit on a per-asset basis is
essential to facilitate liquidity provision for assets characterized by
lower decimal precision and higher market prices

HydraDX https://code4rena.com/reports/2024-02-hydradx

73 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L577-L584
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L577-L584
https://etherscan.io/token/0x056Fd409E1d7A124BD7017459dFEa2F387b6d5Cd?a=0x5f65f7b609678448494De4C87521CdF6cEf1e932
https://etherscan.io/token/0x056Fd409E1d7A124BD7017459dFEa2F387b6d5Cd?a=0x5f65f7b609678448494De4C87521CdF6cEf1e932

in determining the minimum trading limit, ensuring the smooth provision of
liquidity for assets with lower decimal precision and elevated market values,
whether with 2 or 6 decimals.

Recommendation

Create a map type to store the minimumPoolLiquidty of each Pool, or can
store this minimum limit in the asset registry. This will allow specify a
suitable minimum limit to each asset in the omnipool.

Affected code here and here.

The get_hub_asset_balance_of_protocol_account() function can be
used instead of getting the balance of the protocol in each function like this:

Affected code here.

As per the frame docs here, the require_transactional macro should
be used if the function is executed within storage transaction.

The function sell_hub_asset should have require_transactional
macro to make sure that storage update is done correctly; otherwise, this
can allow execution without send the assets to the protocol and to the user,

3. The getter function can be used instead of repeating code to get
the hub_asset_liquidity , to increase code simplicity

- let current_hub_asset_liquidity = T::Currency::free_b
+ let hub_asset_liquidity = Self::get_hub_asset_b

4. Should add require_transactional macro for the function that
should perform storage update to make sure that storage mutated
successfully

HydraDX https://code4rena.com/reports/2024-02-hydradx

74 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L1946-L1948
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L1946-L1948
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L509
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L509
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L1698-L1705
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/omnipool/src/lib.rs#L1698-L1705
https://paritytech.github.io/polkadot-sdk/master/frame_support/attr.require_transactional.html
https://paritytech.github.io/polkadot-sdk/master/frame_support/attr.require_transactional.html

which is considered loss of funds for the user and the protocol.

Recommendation

Add the [require_transactional] macro and consider adding this line
to the function sell_hub_asset :

Affected code here and here.

The functions on_trade and on_liquidity_changed do not check if the
asset_in equal asset_out or not, so this will allow storing invalid prices
in the oracle.

The function buy on stableswap pallet does not prevent that asset_in to
be equal to asset_out , as shown here:

+ #[require_transactional]
 fn sell_hub_asset(
 origin: T::RuntimeOrigin,
 who: &T::AccountId,
 asset_out: T::AssetId,
 amount: Balance,
 limit: Balance,
) -> DispatchResult {

EMA Oracle

1. Prevent calling the funtcions on_trade and
on_liquidity_changed with asset_in = asset_out , to prevent

storing invalid prices

pub fn buy(

HydraDX https://code4rena.com/reports/2024-02-hydradx

75 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/ema-oracle/src/lib.rs#L386-L417
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/ema-oracle/src/lib.rs#L386-L417
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/ema-oracle/src/lib.rs#L428-L456
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/ema-oracle/src/lib.rs#L428-L456
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/stableswap/src/lib.rs#L787-L807
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/stableswap/src/lib.rs#L787-L807

Recommendation

The function should prevent set asset_in to be equal to asset_out .

Affected code here.

The on_trade function should be called by the adapter in order to store
the price after a trade has been executed. In order to consider the price
comes from a trade is valid, the amount traded should be greater than zero.

Recommendation

 origin: OriginFor<T>,
 pool_id: T::AssetId,
 asset_out: T::AssetId,
 asset_in: T::AssetId,
 amount_out: Balance,
 max_sell_amount: Balance,
) -> DispatchResult {

let who = ensure_signed(origin)?;

ensure!(
Self::is_asset_allowed(pool_id, asset_in,

 && Self::is_asset_allowed
 Error::<T>::NotAllowed
);

ensure!(
 amount_out >= T::MinTradingLimit::
 Error::<T>::InsufficientTradingAmount
);

2. Prevent store prices from on_trade function with amount_a and
amount_b equal to zero

HydraDX https://code4rena.com/reports/2024-02-hydradx

76 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/ema-oracle/src/lib.rs#L386-L404
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/ema-oracle/src/lib.rs#L386-L404

The function should check if the amount_a and amount_b are greater than
zero, if not the function should return error. Consider adding this code to
on_trade function:

Affected code here and here.

The functions such as ensure_and_update_trade_volume_limit , and
ensure_and_update_add_liquidity_limit , should make sure that the
amount_out and amount_in , and liquidity_added are greater than
zero before keeping execution of the code.

// We assume that zero liquidity values are not valid and
if amount_a.is_zero() && amount_b.is_zero

 log::warn!(
 target: LOG_TARGET,

"trade amounts should not be zero. Source:
);

return Err((Self::on_trade_weight
 }

Circuit Breaker

1. Should check that the amounts to be added or subtracted are
greater than zero before executing the rest of the function and
update the values

fn ensure_and_update_trade_volume_limit(
 asset_in: T::AssetId,
 amount_in: T::Balance,
 asset_out: T::AssetId,
 amount_out: T::Balance,
) -> DispatchResult {

// liquidity in

HydraDX https://code4rena.com/reports/2024-02-hydradx

77 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/circuit-breaker/src/lib.rs#L485-L516
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/circuit-breaker/src/lib.rs#L485-L516
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/circuit-breaker/src/lib.rs#L518-L545
https://github.com/code-423n4/2024-02-hydradx/blob/603187123a20e0cb8a7ea85c6a6d718429caad8d/HydraDX-node/pallets/circuit-breaker/src/lib.rs#L518-L545

Recommendation

Check that those amounts are not equal to zero.

// ignore Omnipool's hub asset
if asset_in != T::OmnipoolHubAsset::get() {

let mut allowed_liquidity_range = Pallet::<T>::
 .ok_or(Error::<T>::LiquidityLimitNotStored

 allowed_liquidity_range.update_amounts
 allowed_liquidity_range.check_limits

 <AllowedTradeVolumeLimitPerAsset<T>>::
 }

// liquidity out
// ignore Omnipool's hub asset
if asset_out != T::OmnipoolHubAsset::get() {

let mut allowed_liquidity_range = Pallet::<T>::
 .ok_or(Error::<T>::LiquidityLimitNotStored

 allowed_liquidity_range.update_amounts
 allowed_liquidity_range.check_limits

 <AllowedTradeVolumeLimitPerAsset<T>>::
 }

 Ok(())
 }

ensure!(

HydraDX https://code4rena.com/reports/2024-02-hydradx

78 of 148 09/06/2024, 14:43

Omnipool enforces a minimum limit of 1,000,000 for both adding and
removing liquidity, regardless of the specific asset.

Due to that, there is no Range for the limits in the circuit breaker.
Considering that the default_max_add_liquidity_limit is equal to 5%,
the liquidity addition can be frozen by depositing the initial deposit equals
to the MinimumPoolLiquidity , so if the initial liquidity is 1_000_000 , the
max amount to be added in a single block allowed by the circuit breaker is
5000; which is much less than the minimum limit of liquidity set by the
omnipool, so the liquidity addition will be frozen.

Recommendation

Set the max limit of adding liquidity of the asset in the circuit breaker to be
equal to the minimum liquidity limit of the omnipool if the calculated max
limit is below it.

!amount_out.is_zero() && !amount_in.
Error::<T>::invalidValues

);

2. Potential liquidity addition freeze in Omnipool due to limited add
functionality by the circuit breaker

 fn calculate_and_store_liquidity_limits(asset_id: T::AssetId, init
 // we don't track liquidity limits for the Omnipool Hub as
 if asset_id == T::OmnipoolHubAsset::get() {
 return Ok(());
 }

 // add liquidity
 if let Some(limit) = Pallet::<T>::add_liquidity_limit_per_
 if !<AllowedAddLiquidityAmountPerAsset<T>>::contai

HydraDX https://code4rena.com/reports/2024-02-hydradx

79 of 148 09/06/2024, 14:43

enthusiastmartin (HydraDX) acknowledged, but disagreed with severity
and commented:

This report has some points, but some of them are invalid assumptions.
Some points are valid; although, without any impact, just informational.

Stableswap 1 - Valid.
Stableswap 2 - Invalid.
Omnipool 1 - Invalid, it is not required to respect the weight cap.
Omnipool 2 - Somewhat correct, but it is not designed to be like that. It is
soft limit same for all assets.
Omnipool 3 - Okay.
Omnipool 4 - Okay.
Oracle 1 - Okay.
Oracle 2 - Okay.
Circuit breaker 1 - Okay.
Circuit breaker 1 - Not clear.

Lambda (judge) commented:

 let max_limit = Self::calculate_limit(init
+ if (max_limit < 1_000_000) {
+ max_limit = 1_000_000 ;
+ }
 <AllowedAddLiquidityAmountPerAsset<T>>::in
 asset_id,
 LiquidityLimit::<T> {
 limit: max_limit,
 liquidity: Zero::zero(),
 },
);
 }
 }

HydraDX https://code4rena.com/reports/2024-02-hydradx

80 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx-findings/issues/35#issuecomment-1980554463
https://github.com/code-423n4/2024-02-hydradx-findings/issues/35#issuecomment-1980554463
https://github.com/code-423n4/2024-02-hydradx-findings/issues/35#issuecomment-1980554463
https://github.com/code-423n4/2024-02-hydradx-findings/issues/35#issuecomment-1980554463
https://github.com/code-423n4/2024-02-hydradx-findings/issues/35#issuecomment-1986828369
https://github.com/code-423n4/2024-02-hydradx-findings/issues/35#issuecomment-1986828369

Valid suggestions; although, the team chose to implement some of them
differently (and there are arguments for both designs).

For this audit, 11 analysis reports were submitted by wardens. An analysis
report examines the codebase as a whole, providing observations and
advice on such topics as architecture, mechanism, or approach. The report
highlighted below by hunter_w3b received the top score from the judge.

The following wardens also submitted reports: castle_chain, popeye,
yongskiws, fouzantanveer, carrotsmuggler, kaveyjoe, 0xSmartContract,
ZanyBonzy, Franfran, and TheSchnilch.

HydraDX is a cutting-edge DeFi protocol designed to enhance liquidity
within the Polkadot ecosystem. At its core, HydraDX operates as a cross-
chain liquidity protocol built on Substrate, offering an open and
permissionless platform for users. The protocol functions as a parachain
within the Polkadot network, enabling native asset swaps within the
ecosystem while also facilitating interoperability with other blockchain
networks such as Ethereum.

One of the key innovations of HydraDX is its Omnipool, which serves as an
AMM. Unlike traditional order book-based exchanges, where buyers and
sellers create orders that are matched against each other, an AMM like the
Omnipool provides liquidity through a single pool where assets are traded
against the protocol itself. Liquidity providers contribute assets to the pool
and earn rewards in return, helping to maintain liquidity for various trading
pairs.

Audit Analysis

Overview of the HydraDX Audit

HydraDX https://code4rena.com/reports/2024-02-hydradx

81 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx-findings/issues/143
https://github.com/code-423n4/2024-02-hydradx-findings/issues/143
https://github.com/code-423n4/2024-02-hydradx-findings/issues/143
https://github.com/code-423n4/2024-02-hydradx-findings/issues/143
https://github.com/code-423n4/2024-02-hydradx-findings/issues/65
https://github.com/code-423n4/2024-02-hydradx-findings/issues/65
https://github.com/code-423n4/2024-02-hydradx-findings/issues/60
https://github.com/code-423n4/2024-02-hydradx-findings/issues/60
https://github.com/code-423n4/2024-02-hydradx-findings/issues/205
https://github.com/code-423n4/2024-02-hydradx-findings/issues/205
https://github.com/code-423n4/2024-02-hydradx-findings/issues/168
https://github.com/code-423n4/2024-02-hydradx-findings/issues/168
https://github.com/code-423n4/2024-02-hydradx-findings/issues/136
https://github.com/code-423n4/2024-02-hydradx-findings/issues/136
https://github.com/code-423n4/2024-02-hydradx-findings/issues/130
https://github.com/code-423n4/2024-02-hydradx-findings/issues/130
https://github.com/code-423n4/2024-02-hydradx-findings/issues/117
https://github.com/code-423n4/2024-02-hydradx-findings/issues/117
https://github.com/code-423n4/2024-02-hydradx-findings/issues/78
https://github.com/code-423n4/2024-02-hydradx-findings/issues/78
https://github.com/code-423n4/2024-02-hydradx-findings/issues/77
https://github.com/code-423n4/2024-02-hydradx-findings/issues/77
https://github.com/code-423n4/2024-02-hydradx-findings/issues/70
https://github.com/code-423n4/2024-02-hydradx-findings/issues/70

HydraDX addresses several challenges faced by existing DEX protocols,
such as slippage, impermanent loss, and front-running. To overcome these
challenges, HydraDX implements several innovative features. The Omnipool
consolidates liquidity for all assets into a single pool, reducing slippage and
improving trading efficiency. Additionally, the protocol employs an order
matching engine connected to the AMM pool via an oracle, allowing for
more efficient trade execution. Transaction fees can be paid in any
currency, enhancing flexibility for users, and the protocol supports dollar-
cost averaging, automating asset purchases at regular intervals regardless
of price fluctuations. Looking ahead, HydraDX is exploring additional
features such as zkRollups for transaction scalability, resistance mechanisms
against front-running, and the introduction of new financial instruments like
lending, derivatives, and synthetics. The protocol also utilizes a LBP model
to distribute tokens and bootstrap liquidity, ensuring a fair and sustainable
ecosystem for users and the community.

1. lib.rs: This contract implements a DEX using an AMM model on the
Substrate framework. It allows users to trade assets without
intermediaries by pooling liquidity from providers and using on-chain
math functions to calculate state changes during operations like
adding/removing liquidity or executing swaps. Key functions allow
managing the assets, positions represented as NFTs, and trades, while
adhering to parameters like price barriers and dynamic fees. Precise
updates to the pool reserves and hub asset imbalance are performed
through hooks and events provide transparency. The non-custodial and
low fee nature of the omnipool model enables greater decentralization
and accessibility for traders compared to order-book based HydraDX
alternatives.

System Overview

Omnipool

HydraDX https://code4rena.com/reports/2024-02-hydradx

82 of 148 09/06/2024, 14:43

Here’s a breakdown of the key functions:

• Protocol Account:

• protocol_account() : Returns the protocol account address,
which is used for managing the omnipool’s assets.

• Asset Management:

• load_asset_state(asset_id) : Retrieves the state of an asset,
including its reserve and tradability.

• set_asset_state(asset_id, new_state) : Sets the new state of
an asset.

• add_asset(asset_id, state) : Adds a new asset to the
omnipool.

• update_asset_state(asset_id, delta) : Updates the state of
an asset with the given delta changes.

• remove_asset(asset_id) : Removes an asset from the omnipool.

• allow_assets(asset_in, asset_out) : Checks if the given
assets can be traded based on their tradability.

• sell_hub_asset(origin, who, asset_out, amount, limit) :
Swaps hub asset for asset_out .

• buy_asset_for_hub_asset(origin, who, asset_out,

amount, limit) : Swaps asset for hub asset.

• buy_hub_asset(who, asset_in, amount, limit) : Buys hub
asset from the pool.

• sell_asset_for_hub_asset(who, asset_in, amount, limit) :
Sells asset for hub asset.

• Position Management:

• create_and_mint_position_instance(owner) : Generates an

HydraDX https://code4rena.com/reports/2024-02-hydradx

83 of 148 09/06/2024, 14:43

NFT instance ID and mints an NFT for the position.

• set_position(position_id, position) : Inserts or updates a
position with the given data.

• load_position(position_id, owner) : Loads a position and
checks its owner.

• Other Functions:

• get_hub_asset_balance_of_protocol_account() : Returns the
hub asset balance of the protocol account.

• is_hub_asset_allowed(operation) : Checks if the given
operation is allowed for the hub asset.

• exists(asset) : Checks if an asset exists in the omnipool.

• process_trade_fee(trader, asset, amount) : Calls the
on_trade_fee hook and ensures that no more than the fee
amount is transferred.

• process_hub_amount(amount, dest) : Processes the given hub
amount by transferring it to the specified destination or burning it if
the transfer fails.

2. types.rs: The codebase defines types and structures used in an
Omnipool.

Here’s a breakdown of the key functions:

• Types:

• Balance : This type represents the balance of an asset and is
implemented as a u128 .

• Price : This type represents the price of an asset and is
implemented as a FixedU128 .

• Tradability : This bitflag type indicates whether an asset can be

HydraDX https://code4rena.com/reports/2024-02-hydradx

84 of 148 09/06/2024, 14:43

bought, sold, or have liquidity added or removed.

• AssetState : This type stores the state of an asset in the
Omnipool, including its hub reserve, LP shares, protocol shares,
weight cap, and tradability.

• Position : This type represents a liquidity position in the
Omnipool, including the asset ID, amount added, LP shares
owned, and the price at which liquidity was provided.

• SimpleImbalance : This type represents an imbalance, which can
be positive or negative.

• AssetReserveState : This type stores the state of an asset
reserve, including its reserve, hub reserve, LP shares, protocol
shares, weight cap, and tradability.

• Functions:

• impl From<AssetReserveState<Balance>> for

AssetState<Balance> : Converts an AssetReserveState to an
AssetState .

• impl From<(MathReserveState<Balance>, Permill,

Tradability)> for AssetState<Balance> : Converts a tuple of
MathReserveState , Permill , and Tradability to an
AssetState .

• impl From<&Position<Balance, AssetId>> for

hydra_dx_math::omnipool::types::Position<Balance> :
Converts a Position to a Position in the
hydra_dx_math::omnipool::types module.

• impl Position<Balance, AssetId> : Provides methods to
update the position state with delta changes.

• impl Add<Balance> for SimpleImbalance<Balance> : Adds a
Balance to a SimpleImbalance .

HydraDX https://code4rena.com/reports/2024-02-hydradx

85 of 148 09/06/2024, 14:43

• impl Sub<Balance> for SimpleImbalance<Balance> :
Subtracts a Balance from a SimpleImbalance .

• impl From<&AssetReserveState<Balance>> for

MathReserveState<Balance> : Converts an AssetReserveState
to a MathReserveState .

• impl From<AssetReserveState<Balance>> for

MathReserveState<Balance> : Converts an AssetReserveState
to a MathReserveState .

• impl From<(&AssetState<Balance>, Balance)> for

AssetReserveState<Balance> : Converts a tuple of AssetState
and Balance to an AssetReserveState .

• impl From<(AssetState<Balance>, Balance)> for

AssetReserveState<Balance> : Converts a tuple of AssetState
and Balance to an AssetReserveState .

• impl AssetReserveState<Balance> : Provides methods to
calculate the price and weight cap of an asset, and update the
asset state with delta changes.

• Key Features:

• The Tradability bitflag provides a convenient way to
represent the tradability of an asset.

• The SimpleImbalance type provides a simple way to
represent imbalances, which can be positive or negative.

• The AssetReserveState type provides a comprehensive
representation of an asset reserve’s state in the Omnipool.

• The Position type provides a complete representation of a
liquidity position in the Omnipool.

• The functions provided allow for the conversion between

HydraDX https://code4rena.com/reports/2024-02-hydradx

86 of 148 09/06/2024, 14:43

different representations of assets, liquidity positions, and
imbalances.

3. traits.rs: This contract defines traits , structs , and
implementations facilitating the management of an Omnipool,
including hooks for liquidity changes and trades, external price
fetching, and enforcing price constraints.

Here’s a breakdown of the key functions:

• Traits:

• OmnipoolHooks : This trait defines hooks that can be implemented
to perform custom actions when liquidity is changed or a trade
occurs in the Omnipool.

• ExternalPriceProvider : This trait defines an interface for an
external price provider that can be used to get the price of an
asset pair.

• ShouldAllow : This trait defines a way to validate whether a price
change is allowed.

• Types:

• AssetInfo : This type stores information about an asset before
and after a liquidity change or trade.

• EnsurePriceWithin : This type implements the ShouldAllow
trait and ensures that the price of an asset is within a certain range
of the current spot price and the external oracle price.

• Key Features:

• The OmnipoolHooks trait provides a way to hook into the
Omnipool protocol and perform custom actions when liquidity is
changed or a trade occurs.

• The ExternalPriceProvider trait provides a way to get the price

HydraDX https://code4rena.com/reports/2024-02-hydradx

87 of 148 09/06/2024, 14:43

of an asset pair from an external source.

• The ShouldAllow trait provides a way to validate whether a price
change is allowed.

• The EnsurePriceWithin type implements the ShouldAllow trait
and ensures that the price of an asset is within a certain range of
the current spot price and the external oracle price.

1. math.rs: This codebase implements a set of functions for calculating
the delta changes in the state of an asset pool when various liquidity-
related operations are performed, such as selling, buying, adding
liquidity, removing liquidity, and calculating the total value locked (TVL)
and cap difference.

Here’s a breakdown of the key functionality of the contract:

• Selling an asset:

• calculate_sell_state_changes : Calculates the delta changes
in the state of the asset pool when an asset is sold. It takes the
current state of the asset in and out, the amount being sold, and
the asset and protocol fees as input. It calculates the delta changes
in the hub and reserve balances of both assets, the delta change in
the imbalance, and the fee amounts.

• calculate_sell_hub_state_changes : Calculates the delta
changes in the state of the asset pool when the asset being sold is
the Hub asset. It takes the current state of the asset out, the
amount of Hub asset being sold, the asset fee, the current
imbalance, and the total hub reserve as input. It calculates the
delta changes in the reserve and hub reserve balances of the asset
out, the delta change in the imbalance, and the fee amount.

• Buying an asset:

Omnipool Math

HydraDX https://code4rena.com/reports/2024-02-hydradx

88 of 148 09/06/2024, 14:43

• calculate_buy_for_hub_asset_state_changes : Calculates the
delta changes in the state of the asset pool when the asset being
bought is the Hub asset. It takes the current state of the asset out,
the amount of asset out being bought, the asset fee, the current
imbalance, and the total hub reserve as input. It calculates the
delta changes in the reserve and hub reserve balances of the asset
out, the delta change in the imbalance, and the fee amount.

• calculate_buy_state_changes : Calculates the delta changes in
the state of the asset pool when an asset is bought. It takes the
current state of the asset in and out, the amount being bought, the
asset and protocol fees, and the current imbalance as input. It
calculates the delta changes in the hub and reserve balances of
both assets, the delta change in the imbalance, and the fee
amounts.

• Adding liquidity:

• calculate_add_liquidity_state_changes : Calculates the delta
changes in the state of the asset pool when liquidity is added. It
takes the current state of the asset, the amount being added, the
current imbalance, and the total hub reserve as input. It calculates
the delta changes in the hub and reserve balances of the asset, the
delta change in the shares, and the delta change in the imbalance.

• Removing liquidity:

• calculate_remove_liquidity_state_changes : Calculates the
delta changes in the state of the asset pool when liquidity is
removed. It takes the current state of the asset, the shares being
removed, the position from which liquidity should be removed, the
current imbalance, the total hub reserve, and the withdrawal fee as
input. It calculates the delta changes in the hub and reserve
balances of the asset, the delta change in the shares, the delta
change in the imbalance, the amount of Hub asset transferred to
the LP, and the delta changes in the position’s reserve and shares.

HydraDX https://code4rena.com/reports/2024-02-hydradx

89 of 148 09/06/2024, 14:43

• Calculating TVL and cap difference:

• calculate_tvl : Calculates the total value locked (TVL) in the
asset pool. It takes the hub reserve and the stable asset reserve as
input. It calculates the TVL by multiplying the hub reserve by the
stable asset reserve and dividing by the stable asset’s hub reserve.

• calculate_cap_difference : Calculates the difference between
the current weight of an asset in the pool and its weight cap. It
takes the current state of the asset, the asset cap, and the total hub
reserve as input. It calculates the weight cap, the maximum
allowed hub reserve, the price of the asset, and the cap difference.

• calculate_tvl_cap_difference : Calculates the difference
between the current TVL of the asset pool and its TVL cap. It takes
the current state of the asset, the current state of the stable asset,
the TVL cap, and the total hub reserve as input. It calculates the
TVL cap, the maximum allowed hub reserve, the price of the asset,
and the TVL cap difference.

• verify_asset_cap : Verifies if the weight of an asset in the pool
exceeds its weight cap. It takes the current state of the asset, the
asset cap, the hub amount being added, and the total hub reserve
as input. It calculates the weight of the asset and compares it to
the weight cap.

2. types.rs: This contract defines structs and implementations related to
asset reserves, liquidity pools, and trading mechanics, including
functions for updating asset states, calculating prices, and handling
balance updates.

Here’s a breakdown of the key functions:

• AssetReserveState : Represents the current state of an asset in
the Omnipool, including its reserve, hub reserve, and LP shares.

HydraDX https://code4rena.com/reports/2024-02-hydradx

90 of 148 09/06/2024, 14:43

• BalanceUpdate : Indicates whether the balance of an asset should
be increased or decreased, and by how much.

• AssetStateChange : Tracks delta changes in asset state, such as
reserve, hub reserve, and shares.

• TradeFee : Stores information about trade fees, including the
asset fee and protocol fee.

• TradeStateChange : Represents the changes in asset states after a
trade is executed, including fee information.

• LiquidityStateChange : Tracks delta changes in asset states and
other parameters after liquidity is added or removed.

• Position : Represents the amount of asset added to the
Omnipool and the corresponding LP shares owned by the LP.

1. lib.rs: It implements a Curve-style stablecoin AMM with up to 5 assets
in a pool. Pools are created by an authority and have a pricing formula
based on amplification. Also implements a stableswap pallet for the
HydraDX runtime.The stableswap pallet allows for the creation of
liquidity pools for stablecoins, which are asset that are pegged to a usd.
Stablecoins are designed to be less volatile than other assets, making
them more suitable for use in everyday transactions. The stableswap
pallet uses a constant product formula to calculate the price of assets in
a pool. This formula ensures that the price of an asset in a pool is
always proportional to the amount of that asset in the pool.

Here’s a breakdown of the key functionality:

• Pool creation: Pools can be created by any account that has the
AuthorityOrigin role. When a pool is created, the creator must
specify the following information:

Stableswap

HydraDX https://code4rena.com/reports/2024-02-hydradx

91 of 148 09/06/2024, 14:43

• The pool’s share asset: The share asset is a token that represents
ownership of a share of the pool.

• The pool’s assets: The pool’s assets are the stablecoins that will be
traded in the pool.

• The pool’s amplification: The pool’s amplification is a parameter
that can be used to adjust the shape of the constant product curve.

• The pool’s trade fee: The pool’s trade fee is a fee that is charged on
all trades executed in the pool.

• Liquidity addition: Liquidity can be added to a pool by any
account that has the LiquidityProviderOrigin role. When
liquidity is added to a pool, the provider must specify the following
information:

• The pool’s share asset: The share asset is the token that represents
ownership of a share of the pool.

• The pool’s assets: The pool’s assets are the stablecoins that will be
traded in the pool.

• The amount of liquidity to add: The amount of liquidity to add is
the amount of each asset that the provider is willing to contribute
to the pool.

• Liquidity removal: Liquidity can be removed from a pool by any
account that has the LiquidityProviderOrigin role. When
liquidity is removed from a pool, the provider must specify the
following information:

• The pool’s share asset: The share asset is the token that represents
ownership of a share of the pool.

• The pool’s assets: The pool’s assets are the stablecoins that will be
traded in the pool.

• The amount of liquidity to remove: The amount of liquidity to
remove is the amount of each asset that the provider wants to

HydraDX https://code4rena.com/reports/2024-02-hydradx

92 of 148 09/06/2024, 14:43

withdraw from the pool.

• Trading: Trades can be executed in a pool by any account that has
the TraderOrigin role. When a trade is executed, the trader must
specify the following information:

• The pool’s share asset: The share asset is the token that represents
ownership of a share of the pool.

• The pool’s assets: The pool’s assets are the stablecoins that will be
traded in the pool.

• The amount of the input asset: The amount of the input asset is the
amount of the asset that the trader is willing to trade.

• The amount of the output asset: The amount of the output asset is
the amount of the asset that the trader wants to receive.

2. types.rs: This codebase defines data structures and traits related to the
management of stable pools. It includes representations of pool
properties, asset amounts, tradability flags, and interfaces for
interacting with the oracle and calculating weights.

Here’s a breakdown of the key functionality:

• PoolInfo

• The PoolInfo struct defines the properties of a stable pool.

• It includes the following fields:

• assets : List of asset IDs in the pool.

• initial_amplification : Initial amplification parameter.

• final_amplification : Final amplification parameter.

• initial_block : Block number at which the pool was
created.

HydraDX https://code4rena.com/reports/2024-02-hydradx

93 of 148 09/06/2024, 14:43

• final_block : Block number at which the amplification
parameter will reach its final value.

• fee : Trade fee to be withdrawn on sell/buy operations.

• It provides methods to find an asset by ID and check if the pool is
valid (has at least two unique assets).

• AssetAmount

• The AssetAmount struct represents the amount of an asset with a
specified asset ID.

• It can be converted to and from a u128 balance value.

• Tradability

• The Tradability flag indicates whether an asset can be bought,
sold, or have liquidity added or removed.

• It is represented as a bitmask with the following flags:

• FROZEN : Asset is frozen and no operations are allowed.

• SELL : Asset can be sold into the stable pool.

• BUY : Asset can be bought from the stable pool.

• ADD_LIQUIDITY : Liquidity of the asset can be added.

• REMOVE_LIQUIDITY : Liquidity of the asset can be removed.

• By default, all operations are allowed.

• PoolState

• The PoolState struct tracks the state of a stable pool before and
after an operation.

• It includes the following fields:

• assets : List of asset IDs in the pool.

HydraDX https://code4rena.com/reports/2024-02-hydradx

94 of 148 09/06/2024, 14:43

• before : Balances of assets before the operation.

• after : Balances of assets after the operation.

• delta : Difference in balances between before and after.

• issuance_before : Total issuance before the operation.

• issuance_after : Total issuance after the operation.

• share_prices : Share prices of the assets in the pool.

• StableswapHooks

• The StableswapHooks trait defines an interface for
interacting with the oracle and calculating weights.

• It includes the following methods:

• on_liquidity_changed : Called when liquidity is added or
removed from a pool.

• on_trade : Called when a trade occurs in a pool.

• on_liquidity_changed_weight : Calculates the weight for
liquidity changed operations.

• on_trade_weight : Calculates the weight for trade
operations.

• The default implementation of this trait does nothing and
returns zero weight.

1. math.rs: The contract implementing functions for a stableswap pool,
used for AMM with multiple assets, incorporating features such as
calculating asset amounts for liquidity provision, trading between assets
with fees, and determining the number of shares to be distributed to
liquidity providers based on their contribution. The contract

Stableswap Math

HydraDX https://code4rena.com/reports/2024-02-hydradx

95 of 148 09/06/2024, 14:43

implements formulas for calculating the D invariant, representing the
product of reserves to maintain stable trading ratios between assets,
and the Y reserve value, used in trading calculations within the pool.
These calculations are performed using mathematical operations and
iterative algorithms to ensure accuracy and stability within the
automated market making system.

Here’s a breakdown of the key function:

• calculate_d : Calculates the pool’s D invariant.

• calculate_y : Calculates new reserve amounts.

• calculate_shares : Handles share minting.

• normalize_value : Ensures consistent precision.

• calculate_out_given_in / in_given_out Handles trades.

2. types.rs: This contract an implementation of the StableSwap for
calculating the amount of tokens to be received or sent to a liquidity
pool given the amount of tokens to be sent or received from the pool,
respectively. That is use a mathematical formula that ensures that the
ratio of the reserves of the different assets in the pool remains constant,
even as tokens are added or removed from the pool.

Here’s a breakdown of the key functionality:

• calculate_out_given_in : Calculates the amount of tokens to be
received from the pool given the amount of tokens to be sent to
the pool.

• calculate_in_given_out : Calculates the amount of tokens to be
sent to the pool given the amount of tokens to be received from
the pool.

• calculate_out_given_in_with_fee : Calculates the amount of

HydraDX https://code4rena.com/reports/2024-02-hydradx

96 of 148 09/06/2024, 14:43

tokens to be received from the pool given the amount of tokens to
be sent to the pool, taking into account a fee.

• calculate_in_given_out_with_fee : Calculates the amount of
tokens to be sent to the pool given the amount of tokens to be
received from the pool, taking into account a fee.

• calculate_shares : Calculates the amount of shares to be given
to a liquidity provider after they have provided liquidity to the pool.

• calculate_shares_for_amount : Calculates the amount of shares
to be given to a liquidity provider after they have provided a
specific amount of a single asset to the pool.

• calculate_withdraw_one_asset : Calculates the amount of a
specific asset to be withdrawn from the pool by a liquidity provider,
given the amount of shares they have in the pool.

• calculate_add_one_asset : Calculates the amount of a specific
asset that needs to be added to the pool by a liquidity provider in
order to receive a specific number of shares in the pool.

• calculate_d : Calculates the “D” invariant of the StableSwap
algorithm, which is a mathematical value that remains constant as
tokens are added or removed from the pool.

• calculate_y_given_in : Calculates the new reserve of an asset
in the pool given the amount of that asset to be added to the pool.

• calculate_y_given_out : Calculates the new reserve of an asset
in the pool given the amount of that asset to be removed from the
pool.

1. lib.rs: The code is implementation of an EMA oracle for the protocol.
The EMA oracle is used to track the price, volume, and liquidity of
assets traded on the HydraDX over time. The oracle is implemented as

EMA Oracle

HydraDX https://code4rena.com/reports/2024-02-hydradx

97 of 148 09/06/2024, 14:43

a pallet in the Substrate framework.

Here’s a breakdown of the key functionality:

• on_trade : This function is called when a trade occurs on the
HydraDX . It updates the EMA oracle with the new trade data.

• on_liquidity_changed : This function is called when the liquidity
of an asset pair changes on the HydraDX . It updates the EMA
oracle with the new liquidity data.

• get_entry : This function is used to retrieve the current value of
the EMA oracle for a given asset pair and period.

• get_price : This function is used to retrieve the current price of
an asset pair from the EMA oracle.

2. types.rs: The types.rs contract using the exponential moving
average (EMA). It maintains a set of EMA oracles for each asset pair and
period, and updates them whenever a trade or liquidity change occurs
on the HydraDX .

Here’s a breakdown of the key functionality:

• OracleEntry : This struct represents a single oracle entry, which
includes the price, volume, liquidity, and updated timestamp.

• calculate_new_by_integrating_incoming : This function
calculates a new oracle entry by integrating the incoming data with
the previous oracle entry.

• update_to_new_by_integrating_incoming : This function
updates the current oracle entry with the new oracle entry
calculated by calculate_new_by_integrating_incoming .

• calculate_current_from_outdated : This function calculates the

HydraDX https://code4rena.com/reports/2024-02-hydradx

98 of 148 09/06/2024, 14:43

current oracle entry from an outdated oracle entry.

• update_outdated_to_current : This function updates the current
oracle entry with the current oracle entry calculated by
calculate_current_from_outdated .

1. math.rs: The contract defines functions for calculating exponential
moving averages (EMAs) and performing weighted averages for oracle
values in a HydraDX .

• EMA: A type of moving average that gives more weight to recent
values.

• Oracle: A service that provides external data (e.g., asset prices) to
a blockchain.

• Weighted average: A calculation where each value is multiplied by
a weight before being averaged.

Here’s a breakdown of the key functions:

• calculate_new_by_integrating_incoming : Calculates new
oracle values by integrating incoming values with previous values,
using a specified smoothing factor.

• update_outdated_to_current : Updates outdated oracle values
to current values, using a smoothing factor and the number of
iterations since the outdated values were calculated.

• iterated_price_ema : Calculates the iterated EMA for prices.

• iterated_balance_ema : Calculates the iterated EMA for
balances.

• iterated_volume_ema : Calculates the iterated EMA for volumes.

EMA Oracle Math

HydraDX https://code4rena.com/reports/2024-02-hydradx

99 of 148 09/06/2024, 14:43

• iterated_liquidity_ema : Calculates the iterated EMA for
liquidity values.

• exp_smoothing : Calculates the smoothing factor for a given
period.

• smoothing_from_period : Calculates the smoothing factor based
on a specified period.

• price_weighted_average : Calculates a weighted average for
prices, giving more weight to the incoming value.

• balance_weighted_average : Calculates a weighted average for
balances, giving more weight to the incoming value.

• volume_weighted_average : Calculates a weighted average for
volumes, giving more weight to the incoming value.

• liquidity_weighted_average : Calculates a weighted average
for liquidity values, giving more weight to the incoming value.

1. lib.rs: This contract is pallet for the Substrate framework. It defines a
pallet named pallet that manages circuit breakers for trade volume
and liquidity limits in a HydraDX .

Here’s a breakdown of the key functionalities:

• Config Trait: The Config trait defines the requirements that the
pallet has on the runtime environment.

• It includes:

• RuntimeEvent : The type of events that the pallet can emit.

• AssetId : The type representing the identifier of an asset.

• Balance : The type representing the balance of an asset.

Circuit breaker

HydraDX https://code4rena.com/reports/2024-02-hydradx

100 of 148 09/06/2024, 14:43

• TechnicalOrigin : The origin that is allowed to change trade
volume limits.

• WhitelistedAccounts : The list of accounts that bypass liquidity
limit checks.

• DefaultMaxNetTradeVolumeLimitPerBlock : The default
maximum percentage of a pool’s liquidity that can be traded in a
block.

• DefaultMaxAddLiquidityLimitPerBlock : The default maximum
percentage of a pool’s liquidity that can be added in a block.

• DefaultMaxRemoveLiquidityLimitPerBlock : The default
maximum percentage of a pool’s liquidity that can be removed in a
block.

• OmnipoolHubAsset : The asset ID of the Omnipool’s hub asset.

• WeightInfo : The weight information for the pallet’s extrinsic.

• Pallet Implementation: The implementation of the pallet includes
various functions and methods:

• initialize_trade_limit : Initializes the trade volume limit for an
asset if it doesn’t exist.

• calculate_and_store_liquidity_limits : Calculates and stores
the liquidity limits for an asset if they don’t exist.

• ensure_and_update_trade_volume_limit : Ensures that the
trade volume limit for an asset is not exceeded and updates the
allowed trade volume limit for the current block.

• ensure_and_update_add_liquidity_limit : Ensures that the
add liquidity limit for an asset is not exceeded and updates the
allowed add liquidity amount for the current block.

• ensure_and_update_remove_liquidity_limit : Ensures that the
remove liquidity limit for an asset is not exceeded and updates the

HydraDX https://code4rena.com/reports/2024-02-hydradx

101 of 148 09/06/2024, 14:43

allowed remove liquidity amount for the current block.

• validate_limit : Validates a limit value.

• calculate_limit : Calculates the limit value based on the
provided liquidity and limit ratio.

• ensure_pool_state_change_limit : Ensures that the trade
volume limit is not exceeded when performing a pool state change.

• ensure_add_liquidity_limit : Ensures that the add liquidity
limit is not exceeded.

• ensure_remove_liquidity_limit : Ensures that the remove
liquidity limit is not exceeded.

• is_origin_whitelisted_or_root : Checks if the provided origin
is whitelisted or is the root account.

1. lib.rs

2. types.rs

• Tradability:

• Role: Represents the tradability status of an asset within the
Omnipool.

• Responsibilities: Defines whether an asset can be bought or sold
into the Omnipool and whether liquidity can be added or removed.

• Relevant Code: Tradability enum and its associated methods.

• AssetState:

• Role: Represents the state of an asset within the Omnipool.

Roles

Omnipool

HydraDX https://code4rena.com/reports/2024-02-hydradx

102 of 148 09/06/2024, 14:43

• Responsibilities: Stores various parameters related to an asset’s
state, such as reserves, shares, weight cap, and tradability status.

• Relevant Code: AssetState struct and its associated methods for
conversion and updating state.

• Position:

• Role: Represents a position in the Omnipool, indicating when
liquidity was provided for an asset at a particular price.

• Responsibilities: Stores information about the asset, the amount
added to the pool, LP shares owned, and the price at which
liquidity was provided.

• Relevant Code: Position struct and its associated methods.

• SimpleImbalance:

• Role: Represents an imbalance, which can be positive or negative.

• Responsibilities: Provides a simple way to handle positive or
negative imbalances.

• Relevant Code: SimpleImbalance struct and its associated
methods for addition and subtraction.

• AssetReserveState:

• Role: Represents the state of an asset pool reserve within the
Omnipool.

• Responsibilities: Stores information about the asset reserve, hub
reserve, shares, weight cap, and tradability status.

• Relevant Code: AssetReserveState struct and its associated
methods for conversion, calculating price, and updating state.

3. traits.rs

• AssetInfo:

HydraDX https://code4rena.com/reports/2024-02-hydradx

103 of 148 09/06/2024, 14:43

• Role: Represents information about an asset’s state before and
after a change.

• Responsibilities: Stores details such as asset ID, reserve states,
delta changes, and a flag indicating safe withdrawal.

• Relevant Code: AssetInfo struct and its associated methods.

• OmnipoolHooks:

• Role: Defines hooks for handling liquidity changes, trades, and hub
asset trades within the Omnipool.

• Responsibilities: Provides methods to handle various actions
related to liquidity changes, trades, and hub asset trades.

• Relevant Code: OmnipoolHooks trait and its associated methods.

• ExternalPriceProvider:

• Role: Defines an interface for fetching external price information.

• Responsibilities: Provides a method to get the price of an asset pair
from an external oracle.

• Relevant Code: ExternalPriceProvider trait and its associated
method.

• ShouldAllow:

• Role: Defines a trait for enforcing conditions or permissions,
particularly related to asset price changes.

• Responsibilities: Provides a method to ensure that a price change
is allowed based on certain conditions.

• Relevant Code: ShouldAllow trait and its associated method.

• EnsurePriceWithin:

• Role: Implements the ShouldAllow trait to ensure that the price
change is within certain bounds.

• Responsibilities: Enforces a constraint on the allowable price

HydraDX https://code4rena.com/reports/2024-02-hydradx

104 of 148 09/06/2024, 14:43

change based on the current spot price, external oracle price, and
a maximum allowed difference.

• Relevant Code: EnsurePriceWithin struct and its
implementation of the ShouldAllow trait.

1. math.rs:

• Trade Calculations:

• Roles: calculate_sell_state_changes ,
calculate_sell_hub_state_changes ,
calculate_buy_for_hub_asset_state_changes and
calculate_buy_state_changes .

• Responsibilities: These functions are responsible for calculating the
delta changes in asset reserves and other parameters when trades
occur, such as selling or buying assets.

• Liquidity Operations:

• Roles: calculate_add_liquidity_state_changes and
calculate_remove_liquidity_state_changes .

• Responsibilities: These functions handle the calculations for adding
and removing liquidity from the pool, including updating asset
reserves, shares, and other relevant parameters.

• Fee Calculations:

• Roles: calculate_fee_amount_for_buy and
calculate_withdrawal_fee .

• Responsibilities: These functions calculate the fees associated with
trades and withdrawals, considering parameters such as asset
amounts, fees, and protocol-specific configurations.

Omnipool Math

HydraDX https://code4rena.com/reports/2024-02-hydradx

105 of 148 09/06/2024, 14:43

• Imbalance Handling:

• Roles: calculate_imbalance_in_hub_swap and
calculate_delta_imbalance .

• Responsibilities: These functions handle the calculation of
imbalances that may occur during trades or liquidity operations,
ensuring the proper adjustment of reserves and other parameters
to maintain stability.

• Price Calculations:

• Roles: calculate_spot_sprice and
calculate_lrna_spot_sprice .

• Responsibilities: These functions calculate spot prices for assets
based on their reserve states, which are essential for determining
trade ratios and other financial metrics.

• Capacity and Cap Management:

• Roles: calculate_cap_difference ,
calculate_tvl_cap_difference and verify_asset_cap .

• Responsibilities: These functions manage the capacity and cap
constraints of assets within the system, ensuring that they do not
exceed predefined limits and handling adjustments based on
reserve states and total hub reserves.

2. types.rs

• AssetReserveState: Represents the state of an asset within the
system. Roles associated with this struct include:

• Keeper of asset reserves: Tracks the quantity of the asset in the
omnipool and hub reserves.

• Keeper of LP shares: Tracks the quantity of LP shares for the asset
and LP shares owned by the protocol.

HydraDX https://code4rena.com/reports/2024-02-hydradx

106 of 148 09/06/2024, 14:43

• Calculator of asset price: Provides functions to calculate the price
of the asset in terms of the hub asset.

• AssetStateChange: Represents the delta changes of asset state.
Roles associated with this struct include:

• Tracker of changes: Tracks changes in reserve, hub reserve,
shares, and protocol shares.

• TradeFee: Contains information about trade fee amounts. Roles
associated with this struct include:

• Keeper of fee amounts: Tracks asset fees and protocol fees
associated with trades.

• TradeStateChange: Represents the delta changes after a trade is
executed. Roles associated with this struct include:

• Tracker of trade effects: Tracks changes in asset in, asset out, delta
imbalance, HDX hub amount, and fees.

• HubTradeStateChange: Represents delta changes after a trade
with hub asset is executed. Roles associated with this struct
include:

• Tracker of hub asset trade effects: Tracks changes in assets, delta
imbalance, and fees for trades involving the hub asset.

• LiquidityStateChange: Represents delta changes after adding or
removing liquidity. Roles associated with this struct include:

• Tracker of liquidity changes: Tracks changes in asset reserves,
delta imbalance, delta position reserves, delta position shares, and
LP hub amount.

• Position: Represents a position with regard to liquidity provision.
Roles associated with this struct include:

• Keeper of position information: Tracks the amount of assets added
to the omnipool, LP shares owned, and the price at which liquidity
was provided.

HydraDX https://code4rena.com/reports/2024-02-hydradx

107 of 148 09/06/2024, 14:43

• I129: Represents a signed integer. Roles associated with this struct
include:

• Keeper of signed integer value: Stores a signed integer value along
with a flag indicating its sign.

1. lib.rs:

• Authority Origin: This role is designated to the origin that has the
authority to create a new pool. It is specified in the Config trait as
type AuthorityOrigin .

• Liquidity Provider (LP): Liquidity providers are users who add
liquidity to the pool by providing assets. They are the origin of
functions like add_liquidity and remove_liquidity .

• Pool Manager: The pool manager is responsible for managing and
updating pool parameters such as fees and amplification. The pool
manager’s role is typically associated with the Authority
Origin .

• System Account: The system account, represented by
frame_system::Config::AccountId , may have implicit roles in
the contract, such as executing transactions and maintaining
system-level operations.

• Share Token Holder: Share token holders are users who receive
shares in exchange for providing liquidity to the pool. These shares
represent the LP’s ownership stake in the pool.

2. types.rs

• PoolInfo: Represents the properties of a liquidity pool. Roles
associated with this struct include:

Stableswap

HydraDX https://code4rena.com/reports/2024-02-hydradx

108 of 148 09/06/2024, 14:43

• Configuration keeper: Stores parameters related to the
liquidity pool such as assets, amplification, fee, and block
numbers.

• Validator: Validates the validity of the pool configuration.

• AssetAmount: Represents the amount of an asset. Roles
associated with this struct include:

• Data holder: Stores information about the asset ID and its
amount.

• Tradability: Represents the tradability flags for assets. Roles
associated with this struct include:

• Permission manager: Controls the tradability permissions for
different operations such as buying, selling, adding liquidity,
and removing liquidity.

• BenchmarkHelper: Trait for benchmarking purposes. Roles
associated with this trait include:

• Benchmark utility: Provides functions for benchmarking asset
registration.

• PoolState: Represents the state of a liquidity pool. Roles associated
with this struct include:

• State keeper: Stores information about the assets in the pool,
their balances before and after a transaction, issuance
amounts, and share prices.

• StableswapHooks: Trait for interacting with the stableswap
module. Roles associated with this trait include:

HydraDX https://code4rena.com/reports/2024-02-hydradx

109 of 148 09/06/2024, 14:43

• Oracle updater: Defines functions for updating the oracle with
liquidity changes and trades.

• Weight calculator: Calculates the weight associated with
liquidity changes and trades for benchmarking.

• Default implementations (impl blocks): Provide default behavior
for certain structs and traits. Roles associated with these blocks
include:

• Default behavior provider: Defines default implementations for
certain functionalities.

1. math.rs: The roles represented in the provided Rust code are primarily
related to managing and interacting with a stableswap pool, which is a
type of automated market maker (AMM) commonly used in
decentralized finance (DeFi) platforms. Here’s a breakdown of the roles
associated with the functions in the code:

• Liquidity Providers (LPs):

• LPs provide liquidity to the stableswap pool by depositing
assets.

• They receive shares representing their ownership in the pool.

• calculate_shares and calculate_shares_for_amount
functions calculate the amount of shares to be given to LPs
based on the assets they provide and the fees involved.

• Traders:

• Traders interact with the stableswap pool to swap assets.

• They may also provide liquidity to the pool and receive shares

Stableswap Math

HydraDX https://code4rena.com/reports/2024-02-hydradx

110 of 148 09/06/2024, 14:43

in return.

• Functions like calculate_out_given_in ,
calculate_in_given_out ,
calculate_out_given_in_with_fee , and
calculate_in_given_out_with_fee are used by traders to
determine the amounts they will receive or need to send for a
given trade, taking into account fees.

• Stableswap Pool:

• The stableswap pool facilitates asset swaps and provides
liquidity to traders.

• It maintains reserves of various assets and calculates prices
and fees for trades.

• Functions such as calculate_d , calculate_ann ,
calculate_amplification , normalize_reserves , and
normalize_value are involved in managing the stableswap
pool’s internal state and performing calculations related to
trading and liquidity provision.

• Governance:

• Governance may set parameters such as the amplification
factor and fee percentage for the stableswap pool.

• calculate_amplification function calculates the current
amplification value based on specified parameters and the
current block number, which could be set by governance.

• Developers:

• Developers maintain and improve the stableswap pool’s
functionality.

HydraDX https://code4rena.com/reports/2024-02-hydradx

111 of 148 09/06/2024, 14:43

• They implement and optimize algorithms for calculating swap
amounts, share prices, fees, and other parameters.

Overall, these roles work together to ensure the efficient operation of
the stableswap pool, providing liquidity to traders while incentivizing
LPs with fees and share ownership in the pool.

2. types.rs: The roles represented in the provided Rust code are related to
managing asset reserves within a system. Here’s an overview:

• Asset Reserves Manager:

• This role manages the reserves of various assets within the
system.

• The AssetReserve struct represents each asset reserve,
containing information about the reserve amount and the
number of decimals.

• The manager initializes and updates the reserves as needed.

• It ensures that the reserves are correctly represented and can
be queried when necessary.

• Asset Reserves Users:

• Users of the system interact with asset reserves for various
purposes such as trading, providing liquidity, or obtaining
information.

• They may query the state of asset reserves to understand the
available liquidity or perform calculations based on reserve
amounts.

• The AssetReserve struct provides methods like new and
is_zero for users to create new asset reserves and check if a
reserve is empty.

HydraDX https://code4rena.com/reports/2024-02-hydradx

112 of 148 09/06/2024, 14:43

• Integration Developers:

• Developers integrating this code into larger systems or
applications need to understand and utilize the functionality
provided by the AssetReserve struct.

• They may use these reserves in conjunction with other
components of their system, such as liquidity pools or trading
algorithms.

• Integration developers ensure that asset reserves are correctly
managed and utilized within the broader context of their
application.

Overall, the AssetReserve struct and associated functionality serve to
manage asset reserves efficiently within a system, providing a foundational
component for various financial operations and calculations.

1. lib.rs:

• Source: The source of the data. E.g. xyk pallet.

• Asset Pair: The pair of assets for which the oracle is being
calculated. E.g. HDX/DOT.

• Period: The period over which the oracle is averaged. E.g. 10
minutes.

• Oracle: The oracle entry for the given source, asset pair, and
period. Contains the price, volume, liquidity, and updated_at
timestamp.

• Accumulator: A temporary storage for oracle data that is
aggregated during the block and updated at the end of the block.

• OnActivityHandler: A callback handler for trading and liquidity

EMA Oracle

HydraDX https://code4rena.com/reports/2024-02-hydradx

113 of 148 09/06/2024, 14:43

activity that schedules oracle updates.

2. types.rs:

• Oracle: The oracle is responsible for providing the price data for
the asset.

• Consumer: The consumer is responsible for using the price data
provided by the oracle.

1. math.rs:

• EMA Calculation Functions:

• These functions are responsible for calculating exponential
moving averages (EMAs) of prices, volumes, and liquidity.

• Functions like iterated_price_ema ,
iterated_balance_ema , iterated_volume_ema , and
iterated_liquidity_ema calculate EMAs based on previous
values, incoming values, and smoothing factors.

• Weighted Average Calculation Functions:

• Functions like price_weighted_average ,
balance_weighted_average , volume_weighted_average ,
and liquidity_weighted_average compute weighted
averages for prices, balances, volumes, and liquidity.

• These functions are used in EMA calculations to determine the
influence of incoming data on the overall average.

• Utility Functions:

EMA Oracle Math

HydraDX https://code4rena.com/reports/2024-02-hydradx

114 of 148 09/06/2024, 14:43

• Functions like saturating_sub , multiply , round ,
round_to_rational , rounding_add , and rounding_sub
are utility functions used in precision handling, arithmetic
operations, and rounding during EMA calculations.

• Constants and Types:

• Definitions for types like EmaPrice , EmaVolume , and
EmaLiquidity are provided.

• Constants like Fraction::ONE and Fraction::ZERO are
used in calculations.

1. lib.rs:

• Technical Origin: This role has permission to change the trade
volume limit of an asset. It is specified in the Config trait as type
TechnicalOrigin: EnsureOrigin<Self::RuntimeOrigin>; .
Functions that require this role include:

• set_trade_volume_limit

• Whitelisted Accounts: These accounts bypass checks for adding/
removing liquidity. The root account is always whitelisted.
Functions that check for whitelisted accounts include:

• ensure_add_liquidity_limit

• ensure_remove_liquidity_limit

• Root: The root account always has special privileges and is
considered whitelisted by default.

Circuit breaker

HydraDX https://code4rena.com/reports/2024-02-hydradx

115 of 148 09/06/2024, 14:43

Note: please see function breakdowns in the warden’s original submission.

Accordingly, I analyzed and audited the subject in the following steps:

I focused on thoroughly understanding the codebase and providing
recommendations to improve its functionality. The main goal was to take a
close look at the important contracts and how they work together in the
HydraDX .

Main contracts I looked at:

I start with the following contracts, which play crucial roles in the HydraDX:

I started my analysis by examining the intricate structure and functionalities

Invariants Generated

Approach taken in evaluating HydraDX Protocol

1. Core Protocol Contract Overview

omnipool/src/lib.rs
omnipool/src/types.rs
omnipool/src/traits.rs
src/omnipool/math.rs
src/omnipool/types.rs
stableswap/src/lib.rs
stableswap/src/types.rs
src/stableswap/math.rs
src/stableswap/types.rs
ema-oracle/src/lib.rs
ema-oracle/src/types.rs
src/ema/math.rs
circuit-breaker/src/lib.rs

HydraDX https://code4rena.com/reports/2024-02-hydradx

116 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx-findings/issues/143
https://github.com/code-423n4/2024-02-hydradx-findings/issues/143

of the hydrax protocol, particularly focusing on its various modules such as
Omnipool, Omnipool Math, and Stableswap. These modules offer a
comprehensive suite of features for managing liquidity, trading assets, and
maintaining stablecoin pools within the ecosystem.

In Omnipool, the protocol enables decentralized trading through an
Automated Market Maker (AMM) model, facilitating asset swaps without
intermediaries. Key functions such as asset management, position
management, and trade processing are provided to ensure efficient
operation of the liquidity pool. Additionally, the protocol defines types and
traits to facilitate the management and interaction with the Omnipool.

The Omnipool Math module offers essential mathematical functions for
calculating changes in asset states during various liquidity-related
operations. Functions for selling, buying, adding liquidity, removing liquidity,
as well as calculating total value locked (TVL) and cap differences, are
meticulously implemented to ensure accurate state transitions within the
pool. On the other hand, the Stableswap module introduces a Curve-style
stablecoin AMM, allowing the creation and management of liquidity pools
for stablecoins. With features like pool creation, liquidity addition, removal,
and trading, the Stableswap module provides a robust framework for
maintaining stablecoin liquidity pools with adjustable parameters such as
amplification and trade fees.

Reviewed this doc for a more detailed and technical explanation of the
HydraDX project.

2. Documentation review

3. Compiling code and running provided tests

4. Manual code review

HydraDX https://code4rena.com/reports/2024-02-hydradx

117 of 148 09/06/2024, 14:43

https://docs.hydradx.io/
https://docs.hydradx.io/

In this phase, I initially conducted a line-by-line analysis, following that, I
engaged in a comparison mode.

• Line by Line Analysis: Pay close attention to the contract’s intended
functionality and compare it with its actual behavior on a line-by-line
basis.

• Comparison Mode: Compare the implementation of each function with
established standards or existing implementations, focusing on the
function names to identify any deviations.

Overall, I consider the quality of the HydraDX protocol codebase to be
good. The code appears to be mature and well-developed. We have
noticed the implementation of various standards adhere to appropriately.
Details are explained below:

Architecture & Design: The protocol features a modular design,
segregating functionality into distinct contracts (e.g., Omnipool, Stableswap,
Oracle) for clarity and ease of maintenance. The use of libraries like
Stableswap Math for mathematical operations also indicates thoughtful
design choices aimed at optimizing contract performance and gas
efficiency.

Upgradeability & Flexibility: The project does not explicitly implement
upgradeability patterns (e.g., proxy contracts), which might impact long-
term maintainability. Considering an upgrade path or versioning strategy
could enhance the project’s flexibility in addressing future requirements.

Community Governance & Participation: The protocol incorporates
mechanisms for community governance, enabling token holders to
influence decisions. This fosters a decentralized and participatory
ecosystem, aligning with the broader ethos of blockchain development.

Codebase Quality

HydraDX https://code4rena.com/reports/2024-02-hydradx

118 of 148 09/06/2024, 14:43

Error Handling & Input Validation: Functions check for conditions and
validate inputs to prevent invalid operations, though the depth of validation
(e.g., for edge cases transactions) would benefit from closer examination.

Code Maintainability and Reliability: The provided contracts are well-
structured, exhibiting a solid foundation for maintainability and reliability.
Each contract serves a specific purpose within the ecosystem, following
established patterns and standards. This adherence to best practices and
standards ensures that the code is not only secure but also future-proof.
The usage of contracts for implementing token and security features like
access control further underscores the commitment to code quality and
reliability. However, the centralized control present in the form of admin and
owner privileges could pose risks to decentralization and trust in the long
term. Implementing decentralized governance or considering
upgradeability through proxy contracts could mitigate these risks and
enhance overall reliability.

Code Comments: The contracts are accompanied by comprehensive
comments, facilitating an understanding of the functional logic and critical
operations within the code. Functions are described purposefully, and
complex sections are elucidated with comments to guide readers through
the logic. Despite this, certain areas, particularly those involving intricate
mechanics or tokenomics, could benefit from even more detailed
commentary to ensure clarity and ease of understanding for developers
new to the project or those auditing the code.

Testing: The contracts exhibit a commendable level of test coverage,
approaching nearly 100%, which is indicative of a robust testing regime.
This coverage ensures that a wide array of functionalities and edge cases
are tested, contributing to the reliability and security of the code. However,
to further enhance the testing framework, the incorporation of fuzz testing
and invariant testing is recommended. These testing methodologies can
uncover deeper, systemic issues by simulating extreme conditions and

HydraDX https://code4rena.com/reports/2024-02-hydradx

119 of 148 09/06/2024, 14:43

verifying the invariants of the contract logic, thereby fortifying the codebase
against unforeseen vulnerabilities.

Code Structure and Formatting: The codebase benefits from a consistent
structure and formatting, adhering to the stylistic conventions and best
practices of Solidity programming. Logical grouping of functions and
adherence to naming conventions contribute significantly to the readability
and navigability of the code. While the current structure supports clarity,
further modularization and separation of concerns could be achieved by
breaking down complex contracts into smaller, more focused components.
This approach would not only simplify individual contract logic but also
facilitate easier updates and maintenance.

Strengths: Among the notable strengths of the codebase are its adherence
to innovative integration of blockchain technology with dex’s and
stableswaps. The utilization of stableswap libraries for security and standard
compliance emphasizes a commitment to code safety and interoperability.
The creative use of circuit-breaker/src/lib.rs and src/ema/math.rs in the
Dex’s mechanics demonstrates.

Documentation: The contracts themselves contain comments and some
descriptions of functionality, which aids in understanding the immediate
logic. It was learned that the project also provides external documentation.
However, it has been mentioned that this documentation is somewhat
outdated. For a project of this complexity and scope, keeping the
documentation up-to-date is crucial for developer onboarding, security
audits, and community engagement. Addressing the discrepancies between
the current codebase and the documentation will be essential for ensuring
that all stakeholders have a clear and accurate understanding of the
system’s architecture and functionalities.

Architecture

HydraDX https://code4rena.com/reports/2024-02-hydradx

120 of 148 09/06/2024, 14:43

Omnipool

1. Asset Management:

• Assets are added to the Omnipool, each with its own state
(tradability, reserve, etc.).

• Users can buy, sell, add liquidity, or remove liquidity for any
supported asset.

2. Position Management:

• Liquidity providers create positions by adding liquidity to the
Omnipool.

• Positions represent the amount of liquidity provided and the LP
shares owned.

3. Trade Execution:

• Trades are executed between assets in the Omnipool based on the
constant product formula.

• Trades incur fees, which are distributed to the protocol and
liquidity providers.

Stableswap

1. Pool Creation:

• Pools are created with a set of stablecoins and an amplification
parameter.

• The amplification parameter determines the shape of the constant
product curve for the pool.

System Workflow

HydraDX https://code4rena.com/reports/2024-02-hydradx

121 of 148 09/06/2024, 14:43

2. Liquidity Management:

• Liquidity providers can add or remove liquidity from pools.

• Liquidity changes are calculated using mathematical formulas to
maintain the pool’s stability.

3. Trading:

• Traders can buy or sell stablecoins within a pool.

• Trades are executed based on the constant product formula,
ensuring that the price of each stablecoin remains relatively stable.

EMA Oracle

1. Price Tracking:

• The EMA oracle tracks the price, volume, and liquidity of assets
traded on the HydraDX.

• This data is used to provide accurate and up-to-date information to
traders and other users.

2. Exponential Moving Average (EMA):

• The EMA oracle uses an EMA to smooth out price fluctuations and
provide a more stable representation of asset values.

• The EMA is calculated based on historical data and a smoothing
factor.

Circuit Breaker

1. Trade Volume and Liquidity Limits:

• Circuit breakers are implemented to prevent excessive trading

HydraDX https://code4rena.com/reports/2024-02-hydradx

122 of 148 09/06/2024, 14:43

volume or liquidity changes in a short period.

• These limits help maintain the stability and liquidity of the HydraDX
markets.

2. Limit Enforcement:

• The circuit breaker pallet ensures that trade volume and liquidity
limits are not exceeded.

• If a limit is reached, trading or liquidity changes may be restricted
until the limit resets.

Overall Workflow

The HydraDX protocol combines these components to provide a
comprehensive and flexible trading platform for digital assets. Users can
trade assets, provide liquidity, and access accurate price information
through the EMA oracle. The circuit breaker mechanism helps ensure the
stability and liquidity of the markets, while the Omnipool and Stableswap
modules provide efficient and scalable trading mechanisms for both volatile
and stable assets.

File
Na
me

Core Functionality Technical Characteristics Importance and
Management

om
ni
po
ol
/
sr
c/
li
b.
rs

The core functionality
of this contract is to
provide a decentralized
exchange (DEX) using
an Automated Market
Maker (AMM) model,
allowing users to trade
assets without
intermediaries by
pooling liquidity and
utilizing on-chain math
functions for state

Technical characteristics
include asset
management
functionalities, position
management represented
as NFTs, and trade
execution with
parameters like price
barriers and dynamic
fees, all implemented
through precise updates
to pool reserves and

Importance and
management in this
contract involve
enabling non-custodial
trading with low fees,
thereby promoting
greater decentralization
and accessibility
compared to order-
book based alternatives
like HydraDX.

HydraDX https://code4rena.com/reports/2024-02-hydradx

123 of 148 09/06/2024, 14:43

File
Na
me

Core Functionality Technical Characteristics Importance and
Management

calculations. asset imbalances using
hooks and events.

om
ni
po
ol
/
sr
c/
ty
pe
s.
rs

The core functionality
of this contract is to
define types and
structures essential for
managing an
Omnipool, including
representations of asset
balances, prices,
tradability, positions,
imbalances, and asset
reserve states.

Technical characteristics
encompass features like
using bitflags for asset
tradability, providing
types for representing
imbalances and asset
reserve states, and
offering functions for
converting between
different representations
of assets and positions.

Importance and
management in this
contract involve
facilitating precise
tracking and
management of asset
states and positions
within the Omnipool,
thereby enabling
efficient liquidity
provision and trading
operations while
ensuring consistency
and accuracy in state
transitions.

om
ni
po
ol
/
sr
c/
tr
ai
ts
.r
s

The core functionality
of this contract is to
define traits, structs,
and implementations
facilitating the
management of an
Omnipool, including
hooks for liquidity
changes and trades,
external price fetching,
and enforcing price
constraints.

Technical characteristics
include the definition of
traits such as
OmnipoolHooks ,
ExternalPriceProvide
r , and ShouldAllow ,
along with types like
AssetInfo and
EnsurePriceWithin ,
which collectively enable
extensibility, external
integration, and validation
mechanisms within the
Omnipool ecosystem.

Importance and
management in this
contract involve
providing a flexible
framework for
customizing Omnipool
behavior, integrating
external price data, and
enforcing price
constraints, thus
ensuring the integrity
and efficiency of
liquidity management
and trading operations
within the ecosystem.

sr
c/
om
ni
po
ol
/

The core functionality
of this contract is to
implement
mathematical functions
for calculating delta
changes in the state of
an asset pool during
liquidity-related

Technical characteristics
include the provision of
precise mathematical
calculations for various
liquidity operations,
including selling, buying,
adding, and removing
liquidity, along with

Importance and
management in this
contract involve
enabling accurate and
efficient management
of liquidity operations
within the asset pool,
facilitating informed

HydraDX https://code4rena.com/reports/2024-02-hydradx

124 of 148 09/06/2024, 14:43

File
Na
me

Core Functionality Technical Characteristics Importance and
Management

ma
th
.r
s

operations like selling,
buying, adding liquidity,
removing liquidity, and
determining metrics
such as total value
locked (TVL) and cap
differences.

functionalities for
determining TVL and cap
differences, ensuring
accuracy and efficiency in
managing asset pools.

decision-making
regarding TVL and cap
differences, thereby
enhancing the stability
and functionality of the
liquidity system.

sr
c/
om
ni
po
ol
/
ty
pe
s.
rs

The core functionality
of this contract involves
defining structures and
implementations for
managing asset
reserves, liquidity
pools, and trading
mechanisms,
facilitating operations
such as updating asset
states, calculating
prices, and handling
balance adjustments.

Technical characteristics
include the provision of
structured data types and
functions to efficiently
represent and manipulate
asset states, balance
updates, trade fees, and
liquidity changes within
the Omnipool, ensuring
accuracy and reliability in
managing liquidity
operations.

Importance and
management in this
contract entail enabling
precise tracking and
management of asset
reserves, liquidity
states, and trading
activities, thereby
enhancing the stability,
efficiency, and
functionality of the
Omnipool ecosystem.

st
ab
le
sw
ap
/
sr
c/
li
b.
rs

The core functionality
of this contract is to
enable the creation and
management of Curve-
style stablecoin
automated market
maker (AMM) pools
with up to 5 assets,
featuring a pricing
formula based on
amplification and
facilitating liquidity
provision, removal, and
asset trading.

Technical characteristics
include the
implementation of a
stableswap pallet within
the HydraDX runtime,
utilizing a constant
product formula for price
calculation and providing
roles such as
AuthorityOrigin ,
LiquidityProviderOri
gin , and TraderOrigin
for managing pool
creation, liquidity
addition/removal, and
trading operations.

Importance and
management in this
contract involve
facilitating stablecoin
trading with minimized
volatility, enabling
efficient liquidity
provision and removal,
and ensuring fair and
transparent trading
mechanisms, ultimately
enhancing the stability
and usability of the
ecosystem for everyday
transactions.

st
ab
le

The core functionality
of this contract is to
define data structures

Technical characteristics
include the
representation of pool

Importance and
management in this
contract revolve around

HydraDX https://code4rena.com/reports/2024-02-hydradx

125 of 148 09/06/2024, 14:43

File
Na
me

Core Functionality Technical Characteristics Importance and
Management

sw
ap
/
sr
c/
ty
pe
s.
rs

and traits for managing
stable pools, including
pool properties, asset
amounts, tradability
flags, and interfaces for
oracle interaction and
weight calculation.

information through the
PoolInfo struct, asset
amounts with the
AssetAmount struct,
tradability flags with the
Tradability bitmask,
and pool state tracking
with the PoolState
struct, alongside the
StableswapHooks trait
for oracle interaction and
weight calculation.

enabling the creation
and management of
stable pools, ensuring
efficient tracking of
pool state and asset
tradability, and
providing extensible
interfaces for oracle
integration and weight
calculation to support
stable trading
operations effectively.

sr
c/
st
ab
le
sw
ap
/
ma
th
.r
s

The core functionality
of this contract involves
implementing
mathematical functions
for a stableswap pool,
facilitating automated
market making with
multiple assets,
including liquidity
provision, asset trading
with fees, and share
distribution to liquidity
providers, ensuring
stable trading ratios
between assets.

Technical characteristics
include formulas for
calculating the D
invariant and reserve
values (Y), alongside
functions for handling
share minting, precision
normalization, and trade
execution using
mathematical operations
and iterative algorithms.

Importance and
management in this
contract revolve around
maintaining accurate
and stable trading
within the automated
market making system,
enabling efficient
liquidity provision, asset
trading, and fair share
distribution among
liquidity providers,
crucial for the effective
operation of the
stableswap pool.

sr
c/
st
ab
le
sw
ap
/
ty
pe
s.
rs

The core functionality
of this contract involves
implementing the
StableSwap algorithm
for calculating token
amounts in liquidity
pools, maintaining
constant reserve ratios,
and facilitating token
swaps.

Technical characteristics
include mathematical
functions like
calculate_out_given_
in ,
calculate_in_given_o
ut , calculate_shares ,
and others, ensuring
accurate calculation of
token amounts, shares,
and reserves in liquidity
pools.

Importance and
management in this
contract lie in providing
efficient and stable
token swaps within
liquidity pools, crucial
for decentralized
exchanges and other
DeFi applications,
enabling effective
liquidity provision,
trading, and asset
management.

HydraDX https://code4rena.com/reports/2024-02-hydradx

126 of 148 09/06/2024, 14:43

File
Na
me

Core Functionality Technical Characteristics Importance and
Management

em
a-
or
ac
le
/
sr
c/
li
b.
rs

The core functionality
of this contract involves
implementing an
Exponential Moving
Average (EMA) oracle
for tracking asset price,
volume, and liquidity
over time in the
HydraDX protocol.

Technical characteristics
include functions such as
ontrade and
`onliquiditychanged for
updating the oracle
with trade and
liquidity data, as
well as methods
like getentry and get_pri
ce` for retrieving EMA
values and asset prices.

Importance and
management in this
contract revolve around
providing accurate and
up-to-date data on
asset metrics, crucial
for efficient price
discovery, liquidity
provision, and trading
strategies within the
HydraDX protocol,
managed by the
oracle’s functionalities.

em
a-
or
ac
le
/
sr
c/
ty
pe
s.
rs

The core functionality
of this contract involves
managing Exponential
Moving Average (EMA)
oracles for each asset
pair and period in the
HydraDX protocol,
updating them with
trade and liquidity
changes.

Technical characteristics
include OracleEntry
struct for storing oracle
data, and functions like
calculate_new_by_int
egrating_incoming and
update_to_new_by_int
egrating_incoming for
calculating and updating
oracle entries.

Importance and
management lie in
providing accurate
EMA data for asset
pairs and periods,
crucial for price
tracking, liquidity
monitoring, and
informed decision-
making within the
HydraDX protocol,
managed through
oracle updates and
calculations.

sr
c/
em
a/
ma
th
.r
s

The core functionality
of this contract lies in
providing functions for
calculating exponential
moving averages
(EMAs) and performing
weighted averages for
oracle values in the
HydraDX protocol.

Technical characteristics
include the calculation of
EMAs and weighted
averages using specified
smoothing factors, as well
as functions for updating
outdated values and
determining smoothing
factors based on periods.

Importance and
management revolve
around accurately
tracking oracle values,
particularly prices,
balances, volumes, and
liquidity, which are
crucial for informed
decision-making within
the HydraDX protocol,
managed through the
calculation and
updating of EMAs and

HydraDX https://code4rena.com/reports/2024-02-hydradx

127 of 148 09/06/2024, 14:43

File
Na
me

Core Functionality Technical Characteristics Importance and
Management

weighted averages.

ci
rc
ui
t-
br
ea
ke
r/
sr
c/
li
b.
rs

The core functionality
of this contract lies in
managing circuit
breakers for trade
volume and liquidity
limits in the HydraDX
protocol.

Technical characteristics
include the definition of a
Config trait specifying
runtime requirements and
the implementation of
functions to initialize and
enforce trade and
liquidity limits, as well as
account whitelisting.

Importance and
management revolve
around maintaining the
stability and security of
the HydraDX protocol
by preventing excessive
trading and liquidity
operations through
circuit breakers, which
are configurable and
enforceable via the
pallet’s functions and
methods.

Here’s an analysis of potential systemic, centralization, Technical and
Integration risks in the contracts:

1. lib.rs:

2. types.rs

• Systemic Risks:

• Asset Reserve State Mutation: Changes to the asset reserve state
may impact the stability and functioning of the Omnipool,
potentially leading to systemic risks if not managed properly.

• Market Liquidity Fluctuations: Fluctuations in market liquidity can
affect the overall performance and stability of the Omnipool

Systemic Risks, Centralization Risks, Technical Risks &
Integration Risks

Omnipool

HydraDX https://code4rena.com/reports/2024-02-hydradx

128 of 148 09/06/2024, 14:43

system, posing systemic risks to users and investors.

• Operational risk: The contract could be subject to downtime or
other operational issues that could prevent traders from accessing
their funds or executing trades.

• Centralization Risks:

• Protocol-Owned Asset Shares: The presence of protocol-owned
asset shares may introduce centralization risks, potentially giving
the protocol undue influence over market dynamics and user
interactions.

• Hub Asset Control: Centralized control over the hub asset reserves
may lead to centralization risks, affecting the autonomy and
decentralization of the Omnipool ecosystem.

• Technical Risks:

• Code complexity: The contract code is complex and could be
difficult to understand and maintain.

• Mathematical Calculations: The reliance on complex mathematical
calculations for asset pricing and state updates introduces
technical risks related to computational accuracy and efficiency.

• Data Integrity: Risks associated with data integrity and accuracy in
asset state representation, which may impact the reliability and
trustworthiness of the Omnipool system.

• Integration Risks:

• Runtime Environment Dependencies: Dependencies on specific
runtime environments and configurations may pose integration
risks, potentially leading to compatibility issues with different
blockchain frameworks or versions.

• Third-Party Module Integration: Risks associated with integrating
third-party modules or dependencies into the Omnipool system,
including version compatibility, security vulnerabilities, and

HydraDX https://code4rena.com/reports/2024-02-hydradx

129 of 148 09/06/2024, 14:43

maintenance challenges.

• Exchange integration: The contract may not be listed on all
exchanges, which could limit the liquidity available to traders.

3. traits.rs

• Systemic Risks:

• External Price Provider Failure: Reliance on external price
providers for asset prices may introduce systemic risks if these
providers experience downtime or provide inaccurate data, leading
to potential disruptions in pricing mechanisms and trade execution.

• Price Discrepancies: Discrepancies between the spot price and
prices provided by external oracles may result in systemic risks,
impacting the fairness and efficiency of trading within the
Omnipool system.

• Centralization Risks:

• Whitelisted Accounts Influence: The presence of whitelisted
accounts that bypass price checks may introduce centralization
risks, potentially allowing certain entities to manipulate asset prices
and trading activities within the Omnipool.

• Dependency on External Oracles: Reliance on external oracle
data for price comparisons introduces centralization risks, as the
accuracy and reliability of asset prices are contingent on the
performance and integrity of these oracles.

• Price manipulation: The contract could be used to manipulate the
price of assets by creating artificial demand or supply.

• Technical Risks:

• Data Integrity: Risks associated with data integrity and accuracy in
asset price comparisons, including potential vulnerabilities to data
manipulation or tampering that may compromise the integrity of

HydraDX https://code4rena.com/reports/2024-02-hydradx

130 of 148 09/06/2024, 14:43

trading operations within the Omnipool.

• Numerical Stability: Risks related to numerical stability and
precision in price calculations, particularly when performing
arithmetic operations on fixed-point numbers, which may result in
computational errors or inaccuracies.

• Integration Risks:

• External Oracle Integration: Risks associated with integrating
external price providers into the Omnipool system, including
challenges related to compatibility, reliability, and maintenance of
these external services, which may impact the overall performance
and functionality of the system.

• Whitelisted Account Management: Risks associated with
managing whitelisted accounts within the Omnipool system,
including potential complexities in account verification,
authorization, and access control mechanisms, which may
introduce vulnerabilities or operational inefficiencies.

1. math.rs:

• Systemic Risks:

• Asset Price Calculation: Incorrect calculation of asset prices may
lead to systemic risks, affecting the accuracy of trade executions
and liquidity provision within the system.

• Withdrawal Fee Calculation: Inaccurate calculation of withdrawal
fees based on spot prices and oracle prices may introduce
systemic risks, impacting the fairness and efficiency of liquidity
withdrawals.

• Centralization Risks:

• Reliance on External Data: Dependency on external data sources,

Omnipool Math

HydraDX https://code4rena.com/reports/2024-02-hydradx

131 of 148 09/06/2024, 14:43

such as spot prices and oracle prices, for fee calculations and
liquidity adjustments introduces centralization risks, as the integrity
and reliability of these sources can affect the overall performance
of the system.

• Imbalance Calculation: Centralization risks arise from the
calculation of imbalances in liquidity provision, as discrepancies in
determining the appropriate imbalance may impact the stability
and fairness of the system.

• Technical Risks:

• Numerical Precision: Risks associated with numerical precision in
arithmetic operations, particularly when handling fixed-point
numbers and calculating fees, may lead to technical challenges
such as overflow or underflow errors, potentially compromising the
accuracy of financial calculations.

• Data Integrity: Risks related to data integrity and accuracy in asset
reserve states and position calculations, including potential
vulnerabilities to data manipulation or tampering that may
undermine the reliability of liquidity adjustments and fee
calculations.

• Integration Risks:

• External Price Integration: Risks associated with integrating
external price data providers for asset price calculations and fee
determinations, including challenges related to compatibility,
reliability, and security of data transmission, may impact the overall
functionality and performance of the system.

• Liquidity Adjustment Integration: Risks arise from integrating
liquidity adjustment mechanisms, such as imbalance calculations
and position adjustments, into the system, including complexities
in implementation, maintenance, and validation that may affect the
stability and robustness of liquidity management.

HydraDX https://code4rena.com/reports/2024-02-hydradx

132 of 148 09/06/2024, 14:43

2. types.rs:

• Systemic Risks:

• Unchecked Overflow: There is a risk of arithmetic overflow in
operations involving balance updates (BalanceUpdate) if the
balances exceed their maximum representable value. This can lead
to unexpected behavior or loss of funds if not handled properly.

• Centralization Risks:

• Protocol Controlled Shares: The presence of protocol_shares
in AssetReserveState indicates a degree of control exerted by
the protocol over the LP shares for an asset. Depending on how
these shares are managed and utilized, there could be
centralization risks if the protocol wields disproportionate power.

• Technical Risks:

• Unchecked Arithmetic Operations: The use of unchecked
arithmetic operations (CheckedAdd , CheckedSub) in the
implementation of balance updates (BalanceUpdate) introduces
technical risks. While these operations aim to prevent arithmetic
overflow or underflow, there is still a risk of unexpected behavior if
the checks fail or if the checks are not comprehensive.

• Integration Risks:

• Compatibility Issues: The integration of this contract with other
systems or modules may pose risks related to compatibility,
especially if different parts of the system handle balances
differently or rely on different balance representations. Ensuring
seamless integration and interoperability with other components of
the system is crucial to mitigate these risks.

1. lib.rs:
Stableswap

HydraDX https://code4rena.com/reports/2024-02-hydradx

133 of 148 09/06/2024, 14:43

• Systemic Risks:

• Maximum Assets in Pool: The contract has a maximum limit for the
number of assets allowed in a pool (MAX_ASSETS_IN_POOL).
Exceeding this limit could potentially cause systemic issues or
unexpected behavior in the pool management logic.

• Centralization Risks:

• AuthorityOrigin: The create_pool function requires an origin
that must be T::AuthorityOrigin , indicating a centralized
authority responsible for creating pools. This centralization could
lead to dependency risks if the authority is compromised or
misuses its power.

• Technical Risks:

• Amplification Range: The contract specifies an amplification range
(AmplificationRange), and the update_amplification
function allows modifying the pool’s amplification within this range.
However, incorrect manipulation of amplification could introduce
technical risks such as impermanent loss or instability in the pool’s
behavior.

• Integration Risks:

• Asset Registry: The contract relies on an asset registry
(T::AssetInspection) to check if assets are correctly registered
and retrieve asset decimals. Integration with this external registry
introduces the risk of data inconsistency or reliance on external
systems, which could impact the contract’s functionality if the
registry is unavailable or inaccurate.

2. types.rs:

• Systemic Risks:

• Maximum Assets in Pool: The contract specifies a maximum

HydraDX https://code4rena.com/reports/2024-02-hydradx

134 of 148 09/06/2024, 14:43

number of assets allowed in a pool (MAX_ASSETS_IN_POOL).
Exceeding this limit could lead to systemic issues or unexpected
behavior in the pool management logic.

• Centralization Risks:

• Authority Over Pool Creation: The contract does not include
explicit mechanisms for decentralized pool creation. The authority
to create pools is not distributed among users or governed by a
decentralized mechanism, potentially leading to centralization risks
if the central authority misuses its power or becomes
compromised.

• Technical Risks:

• Asset Uniqueness Check: The contract includes a function
has_unique_elements to check for unique elements in a
collection of assets. However, this function relies on the correct
implementation of iterators and could introduce technical risks if
not implemented correctly, potentially leading to incorrect pool
configurations or unexpected behavior.

• Integration Risks:

• Asset Decimals Retrieval: The contract interacts with an external
asset registry (Pallet::<T>::retrieve_decimals) to retrieve
asset decimals. Integration with this external registry introduces
the risk of data inconsistency or reliance on external systems,
which could impact the contract’s functionality if the registry is
unavailable or inaccurate.

1. math.rs:

• Systemic Risks:

• Convergence Issues: The contract relies on iterative methods such

Stableswap Math

HydraDX https://code4rena.com/reports/2024-02-hydradx

135 of 148 09/06/2024, 14:43

as Newton’s formula for convergence, which might not converge
properly if the number of iterations (D and Y) is insufficient. This
lack of convergence can lead to incorrect calculations and
potential loss of funds.

• Centralization Risks:

• Amplification Parameter Adjustment: The
calculate_amplification function adjusts the amplification
parameter based on block numbers. Depending on how this
adjustment is governed, it could introduce centralization risks if
controlled by a small number of entities or subject to manipulation.

• Technical Risks:

• Numerical Precision: The contract involves numerous calculations
with fixed-point arithmetic and conversions between different
numeric representations. Any miscalculations or inaccuracies in
these operations could result in incorrect financial outcomes or
vulnerabilities to attacks.

• Iteration Limits: The contract imposes limits on the number of
iterations for certain iterative calculations (MAX_Y_ITERATIONS and
MAX_D_ITERATIONS). If these limits are set too low, it may lead to
premature termination of calculations, potentially resulting in
inaccurate results or failed transactions.

• Overflow/Underflow: There are several arithmetic operations
throughout the contract (checked_add , checked_sub , etc.)
aimed at preventing overflow or underflow. However, if these
checks are inadequate or incorrectly implemented, they could
introduce vulnerabilities to arithmetic errors.

• Input Validation: The contract assumes valid input parameters in
functions such as calculate_out_given_in ,
calculate_in_given_out , etc. Insufficient input validation could
lead to unexpected behavior or vulnerabilities such as denial-of-

HydraDX https://code4rena.com/reports/2024-02-hydradx

136 of 148 09/06/2024, 14:43

service attacks or manipulation of calculations.

• Integration Risks:

• External Dependencies: The contract relies on external crates and
libraries (num_traits , primitive_types , sp_arithmetic ,
sp_std , etc.). Any vulnerabilities or changes in these
dependencies could impact the security and functionality of the
contract.

• Interoperability: If this contract interacts with other contracts or
systems, there could be integration risks associated with data
consistency, protocol compatibility, and security vulnerabilities in
the interaction mechanisms.

2. types.rs:

• Systemic Risks:

• Data Loss Risk: While the contract defines a is_zero function to
check if the reserve amount is zero, there are no measures in place
to prevent or handle data loss or corruption. If reserve amounts are
inadvertently set to zero or corrupted, it could lead to unexpected
behavior or loss of funds.

• Centralization Risks:

• Control over Reserves: Depending on how the reserve amounts
are managed and updated, there could be centralization risks if a
small number of entities or controllers have the authority to modify
these reserves. Centralized control over reserves could lead to
manipulation or misuse, impacting the fairness and integrity of the
system.

• Technical Risks:

• Data Integrity: There are no explicit checks or validations to ensure
the integrity of reserve amounts or decimals. If reserve amounts

HydraDX https://code4rena.com/reports/2024-02-hydradx

137 of 148 09/06/2024, 14:43

are manipulated or set incorrectly, it could lead to incorrect
calculations or financial losses.

• Data Conversion: The contract provides conversion functions
(From) to convert AssetReserve instances into u128 values.
However, there are no checks or safeguards to ensure the validity
of these conversions, potentially leading to unexpected behavior or
errors if used improperly.

• Zero Balance Handling: While the is_zero function checks if the
reserve amount is zero, there are no explicit error-handling
mechanisms if zero balance assets are encountered in calculations.
This lack of error handling could lead to unexpected behavior or
vulnerabilities in downstream processes or calculations.

• Integration Risks:

• Dependency Risks: The contract relies on external dependencies
such as num_traits . Any vulnerabilities or changes in these
dependencies could impact the security and functionality of the
contract.

• Interoperability: If this contract is part of a larger system or
interacts with other contracts or systems, there could be
integration risks associated with data consistency, protocol
compatibility, and security vulnerabilities in the interaction
mechanisms.

1. lib.rs:

• Systemic Risks:

• Data Loss Risk: There’s a potential risk of data loss if the
accumulator storage encounters issues during write operations. If
data is not properly stored or overwritten, it could lead to

EMA Oracle

HydraDX https://code4rena.com/reports/2024-02-hydradx

138 of 148 09/06/2024, 14:43

inaccuracies or loss of historical information required for
calculating oracle values accurately.

• Centralization Risks:

• Control over Oracles: The pallet seems to centralize the
aggregation of oracle data, as it accumulates data from various
sources into a single accumulator. Depending on how this data
aggregation is managed, there could be centralization risks if a
small number of entities or controllers have the authority to
influence oracle values, potentially leading to manipulation or
inaccuracies.

• Technical Risks:

• Data Integrity: The pallet relies on accurate data aggregation and
calculation of oracle values. Any bugs or vulnerabilities in the data
aggregation logic could lead to incorrect oracle values being
reported, impacting the reliability and trustworthiness of the
system.

• Error Handling: While error handling is implemented for certain
scenarios, such as when liquidity amounts are zero, there might be
other potential error scenarios that are not adequately handled,
leading to unexpected behavior or vulnerabilities.

• Dependency Risks: The pallet relies on external dependencies
such as frame_support and sp_runtime . Any vulnerabilities or
changes in these dependencies could impact the security and
functionality of the pallet.

• Integration Risks:

• Dependence on Other Pallets: The pallet relies on data ingestion
from other pallets, such as the xyk pallet, through provided
callback handlers. Any changes or issues in the integration with
these pallets could affect the functionality and accuracy of oracle
values reported by this pallet.

HydraDX https://code4rena.com/reports/2024-02-hydradx

139 of 148 09/06/2024, 14:43

• Protocol Compatibility: As the pallet interacts with other modules
or systems, there’s a risk of compatibility issues or protocol
mismatches, especially if the integration requirements or protocols
change over time.

2. types.rs:

• Systemic Risks:

• Dependency on External Systems: The contract relies on external
systems like hydra_dx_math and hydradx_traits for
mathematical operations and trait implementations. Any failure or
vulnerability in these dependencies could impact the contract’s
functionality.

• Block Number Dependency: The contract relies on block numbers
for certain operations. Any disruption or inconsistency in block
generation could affect the accuracy of data or trigger unexpected
behavior.

• Centralization Risks:

• Single Source of Truth: The contract appears to centralize price,
volume, and liquidity data. Depending on a single oracle or source
for this critical information could lead to manipulation or
inaccuracies if the oracle or source is compromised.

• Vendor Lock-in: The contract’s dependency on specific libraries
(hydra_dx_math and hydradx_traits) could create a
centralization risk if these libraries are controlled by a single entity
or if there are limited alternatives available.

• Technical Risks:

• Algorithm Complexity: The contract utilizes complex mathematical
algorithms for calculating exponential moving averages and
updating oracle entries. Complex algorithms increase the risk of
implementation errors, which could lead to incorrect results or

HydraDX https://code4rena.com/reports/2024-02-hydradx

140 of 148 09/06/2024, 14:43

vulnerabilities.

• Data Type Safety: The contract uses custom data types (Price ,
Volume , Liquidity) that may require careful handling to ensure
type safety and prevent overflow or underflow vulnerabilities.

• External Call Dependence: The contract may rely on external calls
to retrieve data or perform calculations. Dependency on external
calls introduces risks such as network congestion, oracle failures,
or malicious data feeds.

• Integration Risks:

• Compatibility Issues: Integrating this contract with other systems
or smart contracts may pose compatibility challenges due to its
reliance on specific libraries and data structures.

• Versioning Concerns: Changes to external dependencies or
upgrades to the contract itself may introduce versioning conflicts
or compatibility issues when integrating with existing systems.

• Oracle Integration: The contract’s functionality heavily depends on
oracle entries. Integrating with different oracles or upgrading the
oracle system may require careful consideration and testing to
ensure seamless integration and data consistency.

1. math.rs: Here’s an analysis of the provided contract for systemic risks,
centralization risks, technical risks, and integration risks:

• Systemic Risks:

• Precision Loss: The contract performs arithmetic operations on
rational numbers (EmaPrice , EmaVolume , EmaLiquidity) with
limited precision. Precision loss during calculations could lead to
inaccuracies in the oracle values, especially over multiple iterations
or when dealing with large numbers.

EMA Oracle Math

HydraDX https://code4rena.com/reports/2024-02-hydradx

141 of 148 09/06/2024, 14:43

• Iteration Dependency: Certain functions in the contract, such as
iterated_price_ema and iterated_balance_ema , rely on the
number of iterations (u32) to calculate exponential moving
averages. Dependency on iteration count introduces risks if
iterations are miscounted or inconsistent, leading to incorrect
results.

• Centralization Risks:

• Dependency on External Libraries: The contract depends on
external libraries (crate::fraction , crate::support ,
crate::transcendental) for arithmetic operations and utility
functions. Centralization risks arise if these libraries are controlled
by a single entity or if there are limited alternatives available.

• Single Source of Truth: The contract centralizes oracle
calculations for price, volume, and liquidity. Depending on a single
source for critical calculations could lead to manipulation or
inaccuracies if the source is compromised.

• Integration Risks:

• Arithmetic Overflows: The contract performs arithmetic
operations on large numbers (U512) and may be susceptible to
arithmetic overflow or underflow vulnerabilities if not handled
properly. Saturating operations are used to mitigate this risk, but
thorough testing is required to ensure correctness.

• Precision Handling: The contract uses shifting and rounding
techniques to handle precision reduction. Mishandling precision
reduction could lead to incorrect results or unexpected behavior,
especially in edge cases or under extreme conditions.

• Complex Arithmetic Logic: The contract contains complex
arithmetic logic for weighted averaging and exponential moving
average calculations. Complex logic increases the risk of
implementation errors, making the contract harder to maintain and

HydraDX https://code4rena.com/reports/2024-02-hydradx

142 of 148 09/06/2024, 14:43

debug.

• Integration Risks:

• Compatibility Challenges: Integrating this contract with other
systems or smart contracts may pose compatibility challenges due
to its reliance on specific external libraries and data structures.
Ensuring compatibility and consistency across different
environments may require additional effort and testing.

• External Dependency Management: The contract relies on
external dependencies for arithmetic operations and utility
functions. Managing these dependencies, including versioning and
updates, could introduce integration risks if not handled properly.

• Interoperability Concerns: Interacting with this contract from
other smart contracts or systems may require careful consideration
of data types and precision handling to ensure seamless
integration and data consistency.

1. lib.rs:

• Systemic Risks:

• Arithmetic Errors: The contract performs arithmetic operations like
addition, subtraction, multiplication, and division on balance types
(T::Balance). Errors like overflow, underflow, and division by zero
can lead to systemic risks if not handled properly, potentially
disrupting the functioning of the entire system.

• Centralization Risks:

• Whitelisted Accounts: Certain accounts specified in type
WhitelistedAccounts bypass checks for adding/removing
liquidity. Centralizing control over these accounts poses
centralization risks as they can influence liquidity operations

Circuit breaker

HydraDX https://code4rena.com/reports/2024-02-hydradx

143 of 148 09/06/2024, 14:43

without standard checks, potentially favoring specific entities and
impacting the fairness of the system.

• Integration Risks:

• Origin Permissions: The contract relies on the TechnicalOrigin
to ensure the origin of certain calls. Technical permissions are
crucial for maintaining the integrity of the system, but incorrect or
insufficient origin checks can lead to technical risks such as
unauthorized access or manipulation of critical parameters.

• Integration Risks:

• External Contract Integration: If this contract interacts with
external contracts or systems, integration risks may arise. These
risks include vulnerabilities in the external interfaces, dependencies
on external systems’ availability and correctness, and the potential
for unforeseen interactions impacting the contract’s behavior and
security.

If we look at the test scope and content of the project with a systematic
checklist, we can see which parts are good and which areas have room for
improvement As a result of my analysis, those marked in green are the ones
that the project has fully achieved. The remaining areas are the
development areas of the project in terms of testing ;

Note: to view the provided image, please see the original submission here.

1. Integration of Stableswap and Omnipool:

Suggestions

What could they have done better?

What ideas can be incorporated?

HydraDX https://code4rena.com/reports/2024-02-hydradx

144 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx-findings/issues/143
https://github.com/code-423n4/2024-02-hydradx-findings/issues/143

• Explore opportunities to integrate the Stableswap AMM model with
the Omnipool contract to provide users with additional trading
functionalities, particularly for stablecoin trading pairs.

• Implement cross-contract calls between Stableswap and Omnipool
contracts to enable seamless trading experiences for users looking
to swap between stablecoins and other assets.

2. Dynamic Fee Adjustment Mechanism:

• Develop a dynamic fee adjustment mechanism that adjusts trading
fees based on factors such as liquidity utilization, trading volume,
and network congestion.

• Implement governance controls to allow token holders to vote on
proposed fee adjustments, promoting community engagement and
decentralization.

3. Advanced Risk Management Strategies:

• Introduce advanced risk management strategies such as
impermanent loss protection mechanisms or dynamic capital
allocation strategies to mitigate risks for liquidity providers.

• Explore options for integrating with decentralized insurance
protocols to provide additional risk coverage for liquidity providers.

4. Enhanced Oracle Integration:

• Enhance the oracle integration to support multiple oracle providers
and decentralized oracle networks, improving price accuracy and
resilience against oracle failures or manipulation.

• Implement price aggregation mechanisms to obtain reliable and
accurate price feeds from multiple independent oracles.

5. Security Audits and Formal Verification:

HydraDX https://code4rena.com/reports/2024-02-hydradx

145 of 148 09/06/2024, 14:43

• Conduct comprehensive security audits and formal verification
processes to identify and mitigate potential security vulnerabilities
and smart contract bugs.

• Engage with reputable auditing firms and security experts to
perform code reviews and penetration testing, ensuring the
contracts’ robustness and resilience against attacks.

• Circumvent any of the mitigation mechanisms (eg through a price
manipulation).

• Sandwich attack on add / remove liquidity, since we do not have
slippage limits on these transactions.

• Attack exploiting assets with different decimal counts.

• Price manipulation attacks.

• Price manipulation sandwiching add or remove liquidity.

• Find the edges / limitations of our current attack prevention
mechanisms (caps, withdrawal fees, trading fees).

• Large Omnipool LPs - extract value from other LPs by manipulating
prices and withdrawing liquidity.

• Attacks via XCM (cross-chain messaging) - for example, fake minting
on another parachain.

• DDOS via fees.

Issues surfaced from Attack Ideas in README

General

Omnipool

HydraDX https://code4rena.com/reports/2024-02-hydradx

146 of 148 09/06/2024, 14:43

https://github.com/galacticcouncil/HydraDX-security/blob/main/threat_modelling.md
https://github.com/galacticcouncil/HydraDX-security/blob/main/threat_modelling.md

• Attack on stableswap as A (amplification) changes.

• Implications of having stablepool shares in the Omnipool - rounding,
conversions, add/withdraw liquidity, IL from fees?

• Stableswap - manipulation via withdraw_asset_amount (buy / add
liquidity), missing in Curve implementation.

• Stableswap - manipulation via add_liquidity_shares (buy / add
liquidity), missing in Curve implementation.

• Correct oracle price and liquidity update via Omnipool and Stableswap
hooks.

• Oracle price manipulation.

• What damage can be done? (withdrawal limits, DCA)

• Manipulating blocking add / remove liquidity.

• Manipulate trade volume limits.

• Attack on LBP taking advantage of exponent implementation.

90 hours

Lambda (judge) commented:

While the report contains some generic recommendations and errors (like

Stableswap

Oracles

Circuit breaker

LBP

Time spent

HydraDX https://code4rena.com/reports/2024-02-hydradx

147 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx-findings/issues/143#issuecomment-1999313749
https://github.com/code-423n4/2024-02-hydradx-findings/issues/143#issuecomment-1999313749

most other reports), there are various good recommendations (many of
which have been reported as separate issues); for instance, checking the
convergence of Newton’s method, centralization issues because of the
amplification parameter changes, valid improvement suggestions, and
good attack ideas.

Note: For full discussion, see here.

C4 is an open organization governed by participants in the community.

C4 audits incentivize the discovery of exploits, vulnerabilities, and bugs in
smart contracts. Security researchers are rewarded at an increasing rate for
finding higher-risk issues. Audit submissions are judged by a knowledgeable
security researcher and rust developer and disclosed to sponsoring
developers. C4 does not conduct formal verification regarding the provided
code but instead provides final verification.

C4 does not provide any guarantee or warranty regarding the security of
this project. All smart contract software should be used at the sole risk and
responsibility of users.

Top

An open organization | Twitter | Discord | GitHub | Blog | Newsletter | Media kit |
Careers | code4rena.eth

Disclosures

HydraDX https://code4rena.com/reports/2024-02-hydradx

148 of 148 09/06/2024, 14:43

https://github.com/code-423n4/2024-02-hydradx-findings/issues/143
https://github.com/code-423n4/2024-02-hydradx-findings/issues/143
https://twitter.com/code4rena
https://twitter.com/code4rena
https://discord.gg/code4rena
https://discord.gg/code4rena
https://github.com/code-423n4/
https://github.com/code-423n4/
https://code4rena.com/blog
https://code4rena.com/blog
https://code4rena.com/newsletter-signup
https://code4rena.com/newsletter-signup
https://github.com/code-423n4/media-kit
https://github.com/code-423n4/media-kit
https://code4rena.com/careers
https://code4rena.com/careers
https://etherscan.io/address/0xC2BC2F890067C511215F9463A064221577A53E10
https://etherscan.io/address/0xC2BC2F890067C511215F9463A064221577A53E10

