
The Bedrock of Security

Virto Network
Pallet Pass Security Review

Lead Security Engineer: Timur Guvenkaya
Date of Engagement: 9th July 2025 - 18th July 2025
Visit: www.guvenkaya.co

Virto Network/ Pallet Pass Security Review

Contents
About Us 01

About Virto 01

Audit Results 02

.1 Project Scope 02

.2 Out of Scope 03

.3 Timeline 03

Methodology 04

Severity Breakdown 05

.1 Likelihood Ratings 05

.2 Impact 05

.3 Severity Ratings 05

.4 Likelihood Matrix 06

.5 Likelihood/Impact Matrix 06

Findings Summary 07

Findings Details 09

.1 GUV-1 DoS of The Main Functionality Through Session Key Hijacking - High 09

.2 GUV-2 Phishing and Cross-Site Credential Reuse Attacks Through Missing Origin & rpId Validation -
Medium

12

.3 GUV-3 Arbitrary Device Registration Through Missing Validation in Device Attestation - Medium 13

.4 GUV-4 Potential DoS and Resource Exhaustion Through Underestimated Benchmarks and Fixed
Weights - Medium

15

.5 GUV-5 Potential Out-of-Memory (OOM) and Degraded Performance Due to Inefficient Parsing -
Medium

17

.6 GUV-6 Silent or Unauthorized Authentication Through Missing Authenticator Flags Validation - Low 19

.7 GUV-7 Possible Storage Bloating Due To Unbounded Devices and Session Keys Per User - Low 20

.8 GUV-8 Authentication Through Incorrect Credential Type - Low 21

The Bedrock of Security

Virto Network/ Pallet Pass Security Review

About Us
Guvenkaya is a security research firm specializing in Rust security, Web3
security of Non-EVM protocols, and Web2 security. With our expertise, we
provide both security auditing services and custom security solutions

About Virto
Virto Network is next generation payment infrastructure for impactful
communities.

The Bedrock of Security 01

Virto Network/ Pallet Pass Security Review

Audit Results
Guvenkaya conducted a security assessment of the Virto network Substrate Pallet Pass from 9th
July 2025 to 18th July 2025. During this engagement, a total of 8 findings were reported. 1 of the
findings was high, 4 medium and the remaining were low severity. Major issues are not fixed by the
Virto Network team yet

Project Scope

Files Link

Pallet Pass https://github.com/virto-network/frame-
contrib/tree/d78e5e2236b8f8a8c5f07f7fef319729bf959249/pallets/pass

Pass
Authenticators

https://github.com/virto-network/pass-
authenticators/tree/344a4363b0a887810932d625c63dff896c1f094a

The Bedrock of Security 02

https://github.com/virto-network/frame-contrib/tree/d78e5e2236b8f8a8c5f07f7fef319729bf959249/pallets/pass
https://github.com/virto-network/pass-authenticators/tree/344a4363b0a887810932d625c63dff896c1f094a

Virto Network/ Pallet Pass Security Review

Out of Scope

The audit will include reviewing the code for security vulnerabilities. The audit does not include a
review of the tests and dependencies.

Timeline

Start of the audit

9th July 2025

Draft report

21st July 2025

The Bedrock of Security 03

Virto Network/ Pallet Pass Security Review

Methodology
RESEARCH INTO PROJECT ARCHITECTURE

PREPARING ATTACK VECTORS

SETTING UP AN ENVIRONMENT

MANUAL CODE REVIEW OF THE CODE

ASSESSMENT OF RUST SECURITY ISSUES

ASSESSMENT OF SUBSTRATE SECURITY ISSUES

ASSESSMENT OF ARITHMETIC ISSUES

BUSINESS LOGIC VULNERABILITY ASSESSMENT

BEST PRACTICES AND CODE QUALITY

CHECKING FOR CODE REFACTORING/SIMPLIFICATION POSSIBILITIES

ARCHITECTURE IMPROVEMENT SUGGESTIONS

PREPARING POCS AND/OR TESTS FOR EACH CRITICAL/HIGH ISSUES

The Bedrock of Security 04

Virto Network/ Pallet Pass Security Review

Severity Breakdown
01. Likelihood Ratings

Likely: The vulnerability is easily discoverable and not overly complex to exploit.
Possible: The vulnerability presents some challenges either in discovery or in the complexity of the
attack.
Rare: The vulnerability is either very difcult to discover or complex to exploit, or both.
This matrix provides a nuanced view, taking into account both the ease of discovering a vulnerability
and the complexity involved in exploiting it.

02. Impact

Severe: Exploitation could result in critical loss or compromise, such as full system control,
substantial financial loss, or severe reputational damage.
Moderate: Exploitation may lead to limited data loss, partial compromise, moderate financial impact,
or noticeable degradation of services.
Negligible: Exploitation has minimal impact, such as minor data exposure without significant
consequences or slight inconvenience without substantial disruption.

03. Severity Ratings

Critical: Assigned to vulnerabilities with severe impact and a likely likelihood of exploitation.
High: For vulnerabilities with either severe impact but only a possible likelihood, or moderate impact
with a likely likelihood.
Medium: Used for vulnerabilities with severe impact but a rare likelihood, moderate impact with a
possible likelihood, or negligible impact with a likely likelihood.
Low: For vulnerabilities with moderate impact and rare likelihood, or negligible impact with a possible
likelihood.
Informational: The lowest severity rating, typically for vulnerabilities with negligible impact and a rare
likelihood of exploitation.

CRITICAL HIGH MEDIUM Low Informational

The Bedrock of Security 05

Virto Network/ Pallet Pass Security Review

Likelihood Matrix:

Attack Complexity \ Discovery Ease Obvious Concealed Hidden

Complex Possible Rare Rare

Moderate Likely Possible Rare

Straightforward Likely Possible Possible

Likelihood/Impact Matrix:

Likelihood \ Impact Severe Moderate Negligible

Likely CRITICAL HIGH MEDIUM

Possible HIGH MEDIUM Low

Rare MEDIUM Low Informational

The Bedrock of Security 06

Virto Network/ Pallet Pass Security Review

Findings Summary
01. Remediation Complexity: This measures how difcult it is to fx the vulnerability once it has been
identifed.

Simple: Patches or fixes are readily available and easily implemented.
Moderate: Requires some time and resources to remediate, but well within the capabilities of most
organizations.
Difficult: Remediation requires significant resources, specialized skills, or substantial changes to
systems or architecture.

02. Status: This measures how difcult it is to fx the vulnerability once it has been identifed.

Not Fixed: Indicates that the vulnerability has been identifed but no remedial action has been taken
yet. This status is crucial for newly discovered vulnerabilities or those awaiting prioritization.
Fixed: This status is applied when the vulnerability has been successfully remediated. It implies that
appropriate measures (like patching, confguration changes, or architectural modifcations) have been
implemented to resolve the issue.
Acknowledged: This status is used for vulnerabilities that have been recognized, but for various
reasons (such as risk acceptance, cost, or other business decisions), have not been fxed. It indicates
that the risk posed by the vulnerability is known and has been consciously accepted.
Scheduled: This status indicates that the vulnerability has been acknowledged and a plan is in place
to fix it in the future. It signifies that while remediation hasn't yet occurred, the issue has been
prioritized and is part of the planned development roadmap.

The Bedrock of Security 07

Virto Network/ Pallet Pass Security Review

Finding Impact Likelihood Severity Remediation
Complexity

Remediation
Status

GUV-1: DoS of The Main Functionality
Through Session Key Hijacking

Moderate Likely HIGH Simple Not Fixed

GUV-2: Phishing and Cross-Site Credential
Reuse Attacks Through Missing Origin &
rpId Validation

Severe Rare MEDIUM Simple Not Fixed

GUV-3: Arbitrary Device Registration
Through Missing Validation in Device
Attestation

Severe Rare MEDIUM Moderate Not Fixed

GUV-4: Potential DoS and Resource
Exhaustion Through Underestimated
Benchmarks and Fixed Weights

Moderate Possible MEDIUM Moderate Not Fixed

GUV-5: Potential Out-of-Memory (OOM)
and Degraded Performance Due to
Inefficient Parsing

Moderate Possible MEDIUM Moderate Not Fixed

GUV-6: Silent or Unauthorized
Authentication Through Missing
Authenticator Flags Validation

Negligible Possible Low Simple Not Fixed

GUV-7: Possible Storage Bloating Due To
Unbounded Devices and Session Keys Per
User

Negligible Possible Low Simple Not Fixed

GUV-8: Authentication Through Incorrect
Credential Type

Negligible Possible Low Simple Not Fixed

The Bedrock of Security 08

Virto Network/ Pallet Pass Security Review

Findings Details
GUV-1 DoS of The Main Functionality Through Session Key Hijacking -
High

In Pallet Pass, session keys are publicly exposed through the SessionCreated event (emitted in
add_session_key with the raw session_key value) and are queryable via the SessionKeys storage
map. An attacker can monitor events or query storage to obtain existing session keys from other
users. Due to insufficient checks in add_session_key, the attacker can then call this extrinsic with
the stolen key for their own pass account. This triggers try_remove_session_key, which removes
the key from the original owner's storage (decrementing their consideration count and emitting
SessionRemoved), and re-assigns it to the attacker with a new expiration. The uniqueness check
!frame_system::Pallet::<T>::account_exists(session_key) only prevents collisions with persistent
system accounts, not with existing ephemeral session keys in the pallet's storage. As a result,
attackers can hijack keys before their natural expiry, rendering the session key functionality unreliable.

add_session_key:pallet_pass/src/lib.rs

ConsiderationHandler::<
 T::AccountId,
 SessionKeyConsiderations<T, I>,
 T::SessionKeyConsideration,T::AccountId,>::increment(address)?;

 Self::try_remove_session_key(session_key)?;

 let until = duration
 .unwrap_or(T::MaxSessionDuration::get())
 .min(T::MaxSessionDuration::get());
 SessionKeys::<T, I>::insert(session_key.clone(), (address.clone(), until));
 Self::schedule_next_removal(session_key, duration)?;
 ...
 }

The Bedrock of Security 09

Virto Network/ Pallet Pass Security Review

try_remove_session_key:pallet_pass/src/lib.rs

if let Some(address) = &Self::pass_account_from_session_key(session_key) {
 ConsiderationHandler::<
 T::AccountId,
 SessionKeyConsiderations<T, I>,
 T::SessionKeyConsideration,
 T::AccountId,
 >::decrement(address)?;

 SessionKeys::<T, I>::remove(session_key);

 Self::deposit_event(Event::<T, I>::SessionRemoved {
 session_key: session_key.clone(),
 })
 ...
 }

Impact:

Denial-of-Service (DoS) of main functionality: Attackers can continuously hijack all active
session keys (e.g., by monitoring events and calling add_session_key with short durations like 1
block), making sessions unusable for legitimate users. Victims must re-authenticate via
passkeys/devices, degrading UX and potentially overwhelming the system with re-auth requests.
Griefing Vector: As outlined, attackers can target specific users (e.g., high-value accounts) or
broadly disrupt the session feature, rendering it "useless" without constant re-creation. With short
durations, attackers avoid risks to their own accounts while forcing expirations.
Economic Waste: Victims lose active sessions prematurely, incurring re-auth costs (e.g., time/gas
for new keys).
Reputation Damage: Undermines trust in session keys as a reliable "short-lived" auth
mechanism.

The Bedrock of Security 10

Virto Network/ Pallet Pass Security Review

POC: GUV-1

Recommendation

Prevent Key Reuse: Add a check in add_session_key to ensure the key isn't already in
SessionKeys: ensure!(!SessionKeys::<T, I>::contains_key(session_key), Error::<T,
I>::SessionKeyInUse);.
Obscure Keys in Events: Emit a hash instead of raw session_key in SessionCreated (e.g.,
session_key_hash: T::Hashing::hash(&session_key.encode())).

Remediation - Not Fixed

The Virto Network team has not fixed the issue yet.

The Bedrock of Security 11

https://gist.github.com/guvenkaya-security-team/c053cc113557493c40b2b7e0264acb45#file-guv_1-rs

Virto Network/ Pallet Pass Security Review

GUV-2 Phishing and Cross-Site Credential Reuse Attacks Through
Missing Origin & rpId Validation - Medium

Pallet Pass's WebAuthn verification lacks checks for the origin (client domain) in client_data JSON
and rpIdHash in authenticator_data, allowing credentials generated for one site to be reused on
another. Per WebAuthn specs, these must match the expected Relying Party (RP) to prevent cross-
origin misuse. The verifier only does signature checks, ignoring these fields.

Impact:

Cross-Site Credential Reuse: Allows auth from unintended domains, bypassing site isolation.
Compliance Failures: Non-spec-compliant; may fail interop with standard WebAuthn clients,
causing auth denials or bugs.

POC: GUV-2

Recommendation

To ensure the passkey is genuine and from a verified source, you should:

Parse and Validate Client Data: Ensure origin matches expected RP domain.
Validate rpIdHash: Parse authenticator_data; verify rpIdHash == SHA256(expected rpId).

Remediation - Not Fixed

The Virto Network team has not fixed the issue yet.

The Bedrock of Security 12

https://gist.github.com/guvenkaya-security-team/c053cc113557493c40b2b7e0264acb45#file-guv_2-rs

Virto Network/ Pallet Pass Security Review

GUV-3 Arbitrary Device Registration Through Missing Validation in
Device Attestation - Medium

The is_valid method in the DeviceAttestation implementation always returns true, bypassing critical
verification steps required for secure device registration in a WebAuthn-based system. This method
is part of the DeviceChallengeResponse trait and is invoked during the Authenticator::verify_device
process, which handles new device attestations for user accounts. Normally, attestation verification
should follow the WebAuthn Level 3 specification, including parsing the attestation object (CBOR-
encoded with fields like fmt, attStmt, and authData), validating signatures against certificate chains,
checking RP ID and origin bindings, and ensuring the authenticator's authenticity via AAGUID and
FIDO Metadata. However, the current implementation skips all these checks.

is_valid:authenticators/webauthn/src/runtime/attestation.rs

impl<Cx> DeviceChallengeResponse<Cx> for Attestation<Cx>
 where
 Cx: Parameter + Copy + 'static,
 {
 // TODO: @pandres95, considering that DeviceChallengeResponse is used for
creating a new
 // authentication device, webauth_verify wouldn't work here. We need to
implement a new
 // verification method exclusively for credential creation.
 fn is_valid(&self) -> bool {
 true
 }

 fn used_challenge(&self) -> (Cx, Challenge) {
 (self.meta.context, self.challenge())
 }

The Bedrock of Security 13

Virto Network/ Pallet Pass Security Review

Impact:

Arbitrary Device Registration: Attackers can register new accounts with malicious public keys,
enabling front-running of legitimate users. For existing accounts, combined with phishing, it allows
adding backdoor devices, leading to permanent unauthorized access and actions.
Phishing Amplification: Weak attestation accepts cross-origin or fake attestations, making it
easier to phish users into registering cloned/malicious devices.
Reputation and Compliance Risks: Violates WebAuthn standards, exposing users to
cloning/replay attacks.

Recommendation

Implement Full Attestation Verification: Replace is_valid = true with spec-compliant logic in
DeviceChallengeResponse per this specification: https://www.w3.org/TR/webauthn-3/#sctn-
registering-a-new-credential
Enhance Challenge Binding: Use non-empty xtc in verify_device to prevent precomputation.
Add Uniqueness and Limits: Enforce unique devices per account; cap devices per account
(e.g., via BoundedVec).

Remediation - Not Fixed

The Virto Network team has not fixed the issue yet.

The Bedrock of Security 14

https://www.w3.org/TR/webauthn-3/#sctn-registering-a-new-credential
https://www.w3.org/TR/webauthn-3/#sctn-registering-a-new-credential

Virto Network/ Pallet Pass Security Review

GUV-4 Potential DoS and Resource Exhaustion Through Underestimated
Benchmarks and Fixed Weights - Medium

The benchmarks and weights in the pallet are not correctly configured to handle the variability
introduced by WebAuthn-specific paths, particularly in functions like register and authenticate that
involve parsing variable-sized fields such as client_data (a Vec<u8> containing JSON). The
benchmarks rely on fixed-size, small inputs generated via BenchmarkHelper for SubstrateKey
(sr25519-based) attestations, which are typically 100-200 bytes and do not exercise the WebAuthn
variant. As a result, the weights are fixed and do not scale parametrically with input size.

Impact:

Denial of Service (DoS) Vulnerability: Attackers can submit extrinsics with large client_data
which are charged the same low fixed weight but incur high actual execution time and memory.
This can exceed block production limits, cause node crashes, or fill blocks with resource-
intensive transactions, disrupting network consensus.
Economic Exploitation: Undercharged weights allow spamming without proportional gas fees,
enabling cheap DoS attacks that waste validator resources (CPU, memory) while refunding
minimal costs to the attacker.
Degraded Performance: In production, unaccounted WebAuthn paths lead to slower block
times or validation failures under load, especially if extensions inflate data sizes. This erodes pallet
reliability for WebAuthn users.
Incomplete Security Model: Fixed weights ignore adversarial inputs, potentially allowing griefing
where large extrinsics pass validation but strain nodes, leading to operational costs and reduced
scalability.

The Bedrock of Security 15

Virto Network/ Pallet Pass Security Review

Recommendation

Update Benchmarks for Variability: Revise benchmarks to include WebAuthn-specific paths
with parametric inputs.
Implement Parametric Weights: Calculate weights as base_weight + per_byte_weight *
client_data_len, incorporating measured costs for decoding, parsing, and verification.
Add Input Bounds: Enforce limits on Vec<u8>fields (e.g., via BoundedVec<u8,
ConstU32<4096>>) to cap maximum sizes and prevent extreme cases.
Separate Paths in Benchmarks: Benchmark SubstrateKey and WebAuthn variants
independently to ensure accurate weights for each authenticator type.

Remediation - Not Fixed

The Virto Network team has not fixed the issue yet.

The Bedrock of Security 16

Virto Network/ Pallet Pass Security Review

GUV-5 Potential Out-of-Memory (OOM) and Degraded Performance Due
to Inefficient Parsing - Medium

The find_challenge_from_client_data function (and related get_from_json_then_map) employs a
simplistic, non-robust parsing approach for extracting keys like "challenge" from clientDataJSON (a
Vec<u8>). It converts the entire input to a string via String::from_utf8 then performs O(n) operations
like split and linear iteration with find_map scanning substrings for matches. This allocates memory
proportional to the input size (O(n)) and iterates in O(n) time worst-case, making it vulnerable to large
or adversarial inputs.

find_challenge_from_client_data:src/runtime/helpers.rs

pub fn find_challenge_from_client_data(client_data: Vec<u8>) -> Option<Challenge> {
 get_from_json_then_map(client_data, "challenge", |challenge| {
 base64::decode_engine(challenge.as_bytes(),
&BASE64_URL_SAFE_NO_PAD).ok()
 })
 }
 ...
 // get_from_json_then_map function declaration
 let json = String::from_utf8(json).ok()?;

 let value = json
 .split(",")
 .find_map(|kv| kv.contains(key).then_some(kv.split_once(":")?.1))
 .map(|v| v.trim_matches(|c: char| c.eq(&' ') || c.eq(&'"')))
 .and_then(map)?;
 ...

The Bedrock of Security 17

Virto Network/ Pallet Pass Security Review

Impact:

Out-of-Memory (OOM) Errors: Large inputs during String::from_utf8 or iteration can cause
allocation failures, crashing the node or extrinsic execution, leading to failed transactions or
consensus disruptions.
Degraded Performance and DoS: O(n) time for huge JSON causes excessive CPU usage,
slowing block validation/production and enabling cheap DoS by spamming large extrinsics that
tie up resources without proportional weight charges.
Resource Exhaustion: In validators, sustained large inputs consume memory/CPU, reducing
throughput, increasing latency, or evicting other data, impacting overall network health and
scalability.

Recommendation

Use Efficient Parsing: Replace naive string operations with a proper JSON parser that validates
structure, handles duplicates/escapes, and extracts keys without full buffering.
Implement Incremental Parsing: Scan for keys without converting to a full string (e.g., byte-level
searching), reducing memory to O(1) where possible.
Enforce Size Limits: Bound client_data (e.g., BoundedVec<u8, ConstU32<8192>>) to a
reasonable max based on WebAuthn specs, rejecting larger inputs early.
Add Early Validation: Check UTF-8 validity and size before parsing; fail fast on anomalies to
minimize resource use.

Remediation - Not Fixed

The Virto Network team has not fixed the issue yet.

The Bedrock of Security 18

Virto Network/ Pallet Pass Security Review

GUV-6 Silent or Unauthorized Authentication Through Missing
Authenticator Flags Validation - Low

No parsing/validation of authenticator_data flags: UP (User Present), UV (User Verified), BE (Backup
Eligible), BS (Backup State). Specs require UP (always), UV (if needed), and BE/BS consistency to
ensure user interaction and detect backups/clones. Verifier ignores these, accepting silent auth.

Impact:

Silent Auth Without Consent: No UP/UV allows auth without touch/biometrics, enabling
scripted attacks (e.g., malware on device).
Backup/Cloning Undetected: No BE/BS checks fails to handle multi-device risks (e.g., insecure
backups).
Security Downgrade: Bypasses user verification, weakening passkey protection against
physical access attacks.

POC: GUV-6

Recommendation

Follow flag verification per this specification: https://www.w3.org/TR/webauthn-3/#sctn-
verifying-assertion

Remediation - Not Fixed

The Virto Network team has not fixed the issue yet.

The Bedrock of Security 19

https://gist.github.com/guvenkaya-security-team/c053cc113557493c40b2b7e0264acb45#file-guv_6-rs
https://www.w3.org/TR/webauthn-3/#sctn-verifying-assertion
https://www.w3.org/TR/webauthn-3/#sctn-verifying-assertion

Virto Network/ Pallet Pass Security Review

GUV-7 Possible Storage Bloating Due To Unbounded Devices and
Session Keys Per User - Low

No bounds on devices or session keys per user allow unlimited additions, leading to storage bloat.
Costs exist (deposits via linear StoragePrice), but first device/session are free (FirstItemsFree), and
privileged origins (Root/Communities) skip entirely (SkipConsideration). Attackers can loop
registrations (pay per cycle) + free additions, orphaning data. Alternatively, a single account can add
unlimited number of keys or devices.

Impact:

Storage Bloat: Unlimited devices and sessions per account can fill storage maps, increasing
node costs and degrading performance.

Recommendation

Introduce configurable limits, e.g., MaxDevicesPerAccount u32 = 5; MaxSessionsPerAccount u32
= 5. Check in extrinsics.

Remediation - Not Fixed

The Virto Network team has not fixed the issue yet.

The Bedrock of Security 20

Virto Network/ Pallet Pass Security Review

GUV-8 Authentication Through Incorrect Credential Type - Low

The verifier doesn't check the type field in client_data JSON (must be "webauthn.get" for assertions
per specs). It hashes client_data without parsing, accepting any type (e.g., "webauthn.create" for
registrations misused as assertions).

Impact:

Type Confusion Attacks: Allows "create" credentials (for registration) to auth as assertions,
potentially creating invalid sessions or bypassing checks.
Compliance Issues: Violates specs; may cause interop failures with clients enforcing types.

POC: GUV-8

Recommendation

Parse Client Data Type: Deserialize client_data; ensure type == "webauthn.get".

Remediation - Not Fixed

The Virto Network team has not fixed the issue yet.

The Bedrock of Security 21

https://gist.github.com/guvenkaya-security-team/c053cc113557493c40b2b7e0264acb45#file-guv_8-rs

