

27 pages

Corporate Design

2016

Frontier Baseline Security Assurance
Threat model and hacking assessment report

v1.0, 24 May 2025

Prepared for:
Polkadot Assurance Legion

SRL-Frontier_baseline_assurance-report.docx Page 1 of 27

Das Logo Horizontal

— Pos / Neg

3

Content

Disclaimer ... 2
Timeline .. 3
Integrity Notice ... 4
1 Executive summary .. 5
1.1 Engagement overview .. 5
1.2 Observations and risk ... 5
1.3 Recommendations .. 5
2 Evolution suggestions .. 6
2.1 Secure development improvement suggestions .. 6
2.2 Address currently open security issues .. 7
2.3 Further recommended best practices .. 7
3 Motivation and scope .. 8
4 Methodology ... 9
4.1 Threat modeling and attacks .. 9
4.2 Security design coverage check. ... 11
4.3 Implementation check .. 12
4.4 Remediation support .. 12
5 Static analysis assessment .. 14
6 Dynamic analysis assessment ... 15
6.1 Fuzzing Campaign Coverage ... 15
7 Findings summary .. 16
7.1 Risk profile .. 16
7.2 Issue summary .. 17
8 Detailed findings .. 18
8.1 S3-55: Constructing smart contract can bypass precompile address bounding 18
8.2 S2-59: Missing check_inherent for note_min_gas_price_target inflates gas price 20
8.3 S2-58: Silent failure in Curve25519 arithmetic precompiles with malformed points 21
8.4 S2-57: Various underpriced precompiles can lead to DoS attack 22
8.5 S0-56: FeeMultiplierUpdate not set to a TargetedFeeAdjustment type 23
9 Bibliography ... 24
Appendix A: Technical services ... 26

SRL-Frontier_baseline_assurance-report.docx Page 2 of 27

Das Logo Horizontal

— Pos / Neg

3

Disclaimer

This report describes the findings and core conclusions derived from the audit carried out by Security
Research Labs within the timeframe and scope detailed in Chapter 3.

Please note that this report does not guarantee that all existing security vulnerabilities were
discovered in the codebase exhaustively. Following all suggestions may not ensure future code to be
bug free.

Version: v1.0

Client: Polkadot Assurance Legion

Date: 24 May 2025

Audit Team: Daniel Schmidt

Aarnav Bos

Cayo Fletcher-Smith

Kevin Valerio

SRL-Frontier_baseline_assurance-report.docx Page 3 of 27

Das Logo Horizontal

— Pos / Neg

3

Timeline

Security Research Labs performed the Frontier source code security assessment. The analysis
completed within 8 weeks, starting from 4th of March 2025.

Date Event

4 March 2025 Project Kickoff

30 April 2025 Report for the baseline security check delivered

24 May 2025 Final Report delivered (this document)

Table 1: Audit timeline

SRL-Frontier_baseline_assurance-report.docx Page 4 of 27

Das Logo Horizontal

— Pos / Neg

3

Integrity Notice

This document contains proprietary information belonging to Security Research Labs and Polkadot
Assurance Legion. No part of this document may be reproduced or cited separately; only the
document in its entirety may be reproduced. Any exceptions require prior written permission from
Security Research Labs or Polkadot Assurance Legion. Those granted permission must use the
document solely for purposes consistent with the authorization. Any reproduction of this document
must include this notice.

SRL-Frontier_baseline_assurance-report.docx Page 5 of 27

Das Logo Horizontal

— Pos / Neg

3

1 Executive summary

1.1 Engagement overview

This report documents the results of a baseline security assurance audit of Frontier that Security
Research Labs performed from March to April 2025. Security Research Labs consultants have been
providing specialized audit services for Polkadot and Polkadot SDK-based projects since 2019. During
this study, Frontier provided access to relevant documentation and effectively supported the
research team. We verified the protocol design and relevant available source code of Frontier.

This audit focused on assessing Frontier’s codebase for resilience against hacking and abuse
scenarios. Key areas of scrutiny included PoV estimation, gasometer, EVM, RPC, runtime
configuration, account mapping and precompiles. The testing approach combined static and
dynamic analysis techniques, leveraging both automated tools and manual inspection.

We prioritized reviewing critical functionalities and conducting thorough security tests to ensure the
robustness of Frontier’s platform. We collaborated closely with Frontier, utilizing full access to
source code and documentation to perform a rigorous assessment.

1.2 Observations and risk

The research team identified several issues ranging from high to informational level severity. No
critical issues were identified during the audit. Frontier partially acknowledged these issues and is
actively working on remediation in cooperation with us.

1.3 Recommendations

In addition to mitigating the remaining open issues, Security Research Labs recommends applying
additional resources to developing meaningful documentation both throughout the codebase and
via external sources. Specific focus should be given to configuration options and complex processes
that may otherwise be ambiguous to developers. Furthermore, alongside improving the test
coverage, we encourage the continued maintenance of a specialized Frontier fuzzing campaign to
help identify hard to reach edge cases.

SRL-Frontier_baseline_assurance-report.docx Page 6 of 27

Das Logo Horizontal

— Pos / Neg

3

2 Evolution suggestions

To ensure that Frontier is secure against further unknown or yet undiscovered threats, we
recommend considering the following evolution suggestions and best practices described in this
section.

2.1 Secure development improvement suggestions

We recommend further strengthening the security of the blockchain by implementing the following
recommendations:

Perform threat modeling. Threat modeling for all new features and major updates before coding
promotes better code security. This practice lets developers identify potential security threats and
vulnerabilities early in the design phase, enabling them to implement appropriate mitigations from
the outset. Including the threat model in the pull request description ensures that the entire team is
aware of the identified risks and the measures taken to address them, promoting a proactive
security culture and enhancing the overall robustness of the codebase. Additionally, it helps the
audit team to identify gaps in the threat model and focus their assessment.

Use static analysis. Static analysis tools help detect security flaws in the codebase, thus improving
code security. These tools, such as Dylint and Semgrep for the Rust ecosystem, analyze code without
executing it. They identify vulnerabilities, coding errors, and compliance issues early in the
development process. This proactive approach helps developers address potential security issues
before they reach production, ensuring a more secure and reliable codebase.

Perform dynamic analysis. Continuously improving and developing harnesses for critical
components is essential to identify security vulnerabilities and business logic issues. By employing
invariants, fuzzing tests can effectively uncover subtle flaws that might otherwise go unnoticed. This
is especially critical in a hardened codebase like Frontier, where bugs often emerge from the
complex interplay of various modules, resulting in logical flaws that traditional testing overlooks.

The Polkadot codebase exemplifies this approach by utilizing multiple fuzzing harnesses based on
the substrate-runtime-fuzzer. This demonstrates how comprehensive and targeted fuzz testing can
significantly enhance the security and reliability of complex systems. For details, see the substrate-
runtime-fuzzer [1].

Memory and computation usage analysis. Alongside continuous dynamic analysis through fuzzing,
we recommend periodically performing execution analyses on the fuzzing corpus seeds to identify
spikes in computation and catch undervalued processes. This practice may be implemented to
ensure the robustness of existing benchmarks.

Account for edge cases in tests. Most test cases are reliant on artificial genesis data generated to
test the desired module. This genesis data is generally forcefully loaded irreflective of the execution
flow of on-chain operations. This approach fails to catch bugs in the execution flow necessary to
initialize the genesis data itself. An example of this are the tests surrounding smart contract
accounts, where fixed bytecode is directly inserted within storage instead of being deployed via a
creation transaction. This fails to catch bugs and edge-cases within the creation itself, as illustrated
in finding S3-55: Constructing smart contract can bypass precompile address bounding. We
recommend improving tests to simulate the true flow of on-chain operations where possible.

Use safe operation alternatives. Adhering to safe default operations is strongly recommended. This
includes replacing unsafe mathematical operations with safer alternatives, avoiding silent truncation
during data conversions, and favoring error propagation over unwinding. In most cases, adopting

SRL-Frontier_baseline_assurance-report.docx Page 7 of 27

Das Logo Horizontal

— Pos / Neg

3

these safer practices doesn’t have any significant downside. As demonstrated in Section 5, many of
the identified issues could have been prevented by following the established best practices.

2.2 Address currently open security issues

We recommend addressing already-known security issues with timely updates. Even if an open issue
has a limited impact, an attacker might use it as part of their exploitation chain, which may have a
more severe impact on third-party chains relying on Frontier’s security. This is especially true
considering this codebase is currently live in many high-profile projects.

2.3 Further recommended best practices

Integrate Ethereum End-to-End Tests. Ethereum execution clients maintain a comprehensive suite
of end-to-end test cases that can be continuously leveraged by Frontier. While Frontier does not
implement a one-to-one feature set with Ethereum, integrating these tests would likely surface bugs
early in the development lifecycle, improving overall software robustness.

Documentation. Documentation for Frontier and the EVM code was missing or incomplete. This
made it challenging to understand the code without consulting the development team. Accurate
documentation ensures that developers, auditors, and other stakeholders can comprehend the
codebase without necessarily consulting the development team. To achieve this, establish a practice
of updating the documentation concurrently with any code changes. Incorporating documentation
verification into the code review process can help detect discrepancies early.

Regular updates. New released dependencies, as shown in Section 5. may contain fixes for critical
security issues. Since Frontier is a product that heavily relies on various dependencies, updates to
the latest version should be integrated as soon as possible. Many crates do not mark security fixes as
such and hence updating crates used for important functionality early is highly recommended.

SRL-Frontier_baseline_assurance-report.docx Page 8 of 27

Das Logo Horizontal

— Pos / Neg

3

3 Motivation and scope

This report presents the results of the security audit for Frontier from March to April 2025.

Frontier aims to provide an Ethereum compatibility layer for the Polkadot ecosystem by
implementing a broad Ethereum feature set. This vision has been fundamentally achieved with the
following key features:

1. Support for Ethereum-style RPC calls to allow existing Ethereum applications to be compatible
with Polkadot SDK based platforms.

2. Mapping for existing Substrate accounts to the 20-byte Ethereum address format which allows
users and smart contract applications to interact with accounts uniformly between both
Ethereum and Polkadot SDK platforms.

3. Integration of runtime gas metering to emulate the transaction fee mechanisms present in the
Ethereum blockchain, while remaining compliant with the Substrate weight system. This allows
Solidity smart contracts to exist on Frontier integrated Polkadot SDK based blockchains, without
prior need for benchmarking.

4. Implementation of an extensive precompile feature set, mapping core Polkadot SDK pallets to
Solidity interfaces accessible via Ethereum style calls.

Security Research Labs collaborated with the Frontier development team to create an overview
containing the modules in scope and their audit priority. The in-scope components and their
assigned priorities are reflected in Table 2. During the audit, Security Research Labs used threat
modelling to guide our efforts on exploring potential security flaws and realistic attack scenarios.

Repository Priority Component(s)

Frontier [2] High fp-evm
fp-storage
pallet-evm
pallet-ethereum

Medium pallet-dynamic-fee
fp-consensus
fc-consensus
fc-db
fc-mapping-sync
fc-rpc-core
fp-rpc
fc-rpc

EVM [3] High evm-core
evm-runtime
evm-gasometer

Table 2: In-scope Frontier`s components with audit priority

SRL-Frontier_baseline_assurance-report.docx Page 9 of 27

Das Logo Horizontal

— Pos / Neg

3

4 Methodology

We applied the following four-step methodology when performing feature for Frontier: (1) threat
modeling, (2) security design coverage checks, (3) implementation baseline check, and finally (4)
remediation support.

4.1 Threat modeling and attacks

The goal of the threat model framework is to determine specific areas of risk in Frontier. Familiarity
with these risk areas can provide guidance for the design of the implementation stack, the actual
implementation of the stack, as well as security testing. This section introduces how risk is defined
and provides an overview of the identified threat scenarios.

The risk level is categorized into low, medium, and high and considers both the hacking value and
the damage that could result from successful exploitation. The risk of a threat scenario is calculated
by the following formula:

𝑅𝑖𝑠𝑘 = 𝐷𝑎𝑚𝑎𝑔𝑒 × 𝐻𝑎𝑐𝑘𝑖𝑛𝑔	𝑉𝑎𝑙𝑢𝑒 =
𝐷𝑎𝑚𝑎𝑔𝑒 × 𝐼𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒

𝐸𝑓𝑓𝑜𝑟𝑡

The Hacking Value is similarly categorized into low, medium, and high and considers the incentive of
an attacker, as well as the effort required by an adversary to successfully execute the attack. The
hacking value is calculated as follows:

𝐻𝑎𝑐𝑘𝑖𝑛𝑔	𝑉𝑎𝑙𝑢𝑒 = 	
𝐼𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒
𝐸𝑓𝑓𝑜𝑟𝑡

While incentive describes what an adversary might gain from performing an attack successfully,
effort estimates the complexity of this same attack. The degrees of incentive and effort are defined
as follows:

Incentive:

• Low: Attacks offer the hacker little to no gain from executing the threat

• Medium: Attacks offer the hacker considerable gains from executing the threat

• High: Attacks offer the hacker high gains by executing this threat

Easiness:

• High: Attacks are easy to execute. They require neither elaborate technical knowledge nor
considerable amounts of resources

• Medium: Attacks are difficult to execute. They might require bypassing countermeasures,
the use of expensive resources, or a considerable amount of technical knowledge

• Low: Attacks are difficult to execute. The attacks might require in-depth technical
knowledge, vast amounts of expensive resources, bypassing countermeasures, or any
combination of these factors

Incentive and Easiness are divided according to Table 3.

SRL-Frontier_baseline_assurance-report.docx Page 10 of 27

Das Logo Horizontal

— Pos / Neg

3

Hacking Value/Likelihood Low Incentive Medium Incentive High Incentive

Low Easiness Low Medium Medium

Medium Easiness Medium Medium High

High Easiness Medium High High

Table 3: Hacking value measurement scale

Hacking scenarios are classified by the risk they pose to the system. Conversely, the Damage
describes the negative impact that a given attack, if performed successfully, would have on the
victim. The degrees of damage are defined as follows:

Damage:

• Low: Risk scenarios would cause negligible damage to the Frontier network

• Medium: Risk scenarios pose a considerable threat to Frontier‘s functionality as a network

• High: Risk scenarios pose an existential threat to Frontier network functionality

Damage and Hacking Value are divided according to Table 4.

Risk Low hacking value Medium hacking value High hacking value

Low damage Low Medium Medium

Medium damage Medium Medium High

High damage Medium High High

Table 4: Risk measurement scale

After applying the framework to the Frontier system, different threat scenarios according to the CIA
triad were identified.

The CIA triad describes three security promises that can be violated by a hacking attack, namely
confidentiality, integrity, and availability.

Confidentiality:

Confidentiality threat scenarios concern sensitive information regarding the blockchain network and
its users. Confidentiality threat scenarios include, for example, attackers abusing information leaks
to steal native tokens from nodes participating in a Frontier reliant project and claiming the assets
for themselves.

Integrity:

Integrity threat scenarios aim to disrupt the functionality of a Frontier dependent project by
undermining or bypassing the rules that ensure that Frontier operations are fair and equal for each
participant. Undermining Frontier‘s low-level integrity often comes with a high monetary incentive.
For example, an attacker may abuse double-spend bugs or precompile logic to enact unique
monetary exploits. Other threat scenarios that do not yield an immediate monetary reward could
rather damage Frontier‘s functionality and, in turn, its reputation. For example, manipulating fee
calculation or abusing low-level inconsistencies within Frontier’s Ethereum-virtual-machine.

SRL-Frontier_baseline_assurance-report.docx Page 11 of 27

Das Logo Horizontal

— Pos / Neg

3

Availability:

Availability threat scenarios refer to compromising the availability of data stored by the Frontier
network as well as the availability of the network itself to process normal transactions. Important
threat scenarios regarding the availability for blockchain systems include denial-of-service (DoS),
stalling the transaction queue, and storage bloating.

Table 5 provides a high-level overview of the hacking risks concerning Frontier with the identified
example threat scenarios and attacks, as well as their respective hacking value and effort. The
complete list of threat scenarios identified along with attacks that enable them is provided in the
threat model deliverable. This list can serve as a starting point for the Frontier developers to guide
their security outlook for future feature implementations. By thinking in terms of threat scenarios
and attacks during code review or feature ideation, many issues can be caught or even avoided
altogether.

The threats were classified using the CIA security triad model, mapping threats to the areas: (1)
Confidentiality, (2) Integrity, and (3) Availability.

Security
promise

Hacking
value

Example threat scenarios Hacking
effort

Example attack ideas

Confidentiality Medium An attacker is able to
compromise a user's
private key

High

A node's private key is
leaked through an
insecure RPC call

Integrity High A malicious node is able to
manipulate the storage of
a specific smart contract

Medium SSTORE is able to write
into the context of other
smart contracts due to a
collision, potentially
leading to the
manipulation of a smart
contract state that is not
owned by the user,
resulting in adverse side
effects

Availability High An attacker is able to
execute transactions on
the chain without paying
adequate fees

Low

Certain opcodes in the
EVM are undervalued,
allowing an attacker to
execute these opcodes
many times at minimal
cost but with significant
resource consumption

Table 5: Risk overview

4.2 Security design coverage check.

Next, we reviewed the Frontier design for coverage against relevant hacking scenarios. For each
scenario, we have investigated the following two aspects:

a. Coverage. Is each potential security vulnerability sufficiently covered by our audit?

SRL-Frontier_baseline_assurance-report.docx Page 12 of 27

Das Logo Horizontal

— Pos / Neg

3

b. Underlying assumptions. Which assumptions must hold true for the design to effectively
reach the desired security goal?

4.3 Implementation check

As a third step, we tested the current Frontier implementation for openings whereby any of the
defined hacking scenarios could be executed.

To effectively review the Frontier codebase, we derived our code review strategy based on the
threat model that we established as the first step. For each identified threat, hypothetical attacks
were developed and mapped to their corresponding threat category, as outlined in Chapter 4.1.

Prioritizing risk, the code was assessed for present protection against the respective threats and
attacks as well as the vulnerabilities that make these attacks possible. For each threat, we:

1. Identified the relevant parts of the codebase, for example, relevant pallets and the
Ethereum virtual machine

2. Identified viable strategies for the code review. We performed manual code audits, fuzz
testing, and manual where appropriate

3. Ensured the code did not contain any vulnerabilities that could be used to execute the
respective attacks. Otherwise, we ensured that sufficient protection measures against
specific attacks were present

4. Immediately reported any vulnerability that was discovered to the development team along
with suggestions around mitigations

We carried out a hybrid strategy combining code review, static tests, and dynamic tests (e.g., fuzz
testing) to assess the security of the Frontier codebase.

While static and dynamic testing establishes a baseline assurance, the focus of this audit was on
manual code review of the Frontier codebase to identify logic bugs, design flaws, and best practice
deviations. We reviewed the Frontier and EVM repositories which contain changes up to commit
4dddde8 from the 20s of February 2025 for Frontier and the EVM up to commit 6d86fe2 from the 18s
of January 2025. We aimed to trace the intended functionality of the modules in scope and to assess
whether an attacker can bypass/misuse/abuse these components or trigger unexpected behavior on
the blockchain due to logic bugs or missing checks. Since the Frontier codebase is entirely open
source, it is realistic that an adversary could analyze the source code while preparing an attack.

Fuzz testing is a technique to identify issues in code that handles untrusted input. In Frontier‘s case
these are extrinsics in the runtime and smart contracts deployed on Frontier’s EVM. Fuzz testing
works by taking some valid input for a method under test, applying a semi-random mutation to it,
and then invoking the method under test again with this semi-valid input. Through repeating this
process, fuzz testing can unearth inputs that would cause a crash or other undefined behavior (e.g.,
integer overflows) in the method under test. SRLabs implemented two fuzzing harnesses to test both
the EVM and its integration into Frontier through pallet-evm. The fuzzing harnesses utilized several
invariants to thoroughly verify that the intended functionality is accurately implemented.

4.4 Remediation support

The final step is supporting Frontier with the remediation process of the identified issues. Each
finding was documented and published with mitigation recommendations. Once the mitigation

SRL-Frontier_baseline_assurance-report.docx Page 13 of 27

Das Logo Horizontal

— Pos / Neg

3

solution is implemented, the fix is verified by us to ensure that it mitigates the issue and does not
introduce other bugs.

During the audit, findings were shared via a private GitHub repository. We also used a private Slack
channel for asynchronous communication and status updates. In addition, biweekly jour fixe
meetings were held to provide detailed updates and address open questions.

SRL-Frontier_baseline_assurance-report.docx Page 14 of 27

Das Logo Horizontal

— Pos / Neg

3

5 Static analysis assessment

Throughout our auditing process, we utilized static analysis in our workflow to identify rule-based
vulnerabilities in the EVM and Frontier codebase. Semgrep [4] and Dylint [5] were the primary tools
utilized; with general rules for Rust such as unsafe arithmetic and integer truncation. Our static
analysis yielded several findings.

We found 77 potential panic locations in Frontier, 21 integer coercions, and 20 unsafe math
operations. In the EVM, we found 25 integer coercions and 86 unsafe math operations. There are
seldom if any scenarios where blind unwraps, as coercions and unsafe math are encouraged, and we
strongly recommend migrating to safer primitives such as checked or saturating math and error
propagation.

We additionally ran cargo-audit for Frontier, an automated method to detect dependencies with
known vulnerabilities, which yielded 16 results, including 6 vulnerabilities and 8 warnings. The
results are shown in Table 6. Based on our assessment, these findings do not affect Frontier directly.
Nonetheless, we advise applying the most recent update to guarantee comprehensive protection.

Dependency Version Description Type

curve25519-dalek 3.2.0, Timing variability in curve25519-dalek's
Scalar29::sub/Scalar52::sub.

Vulnerability

Rustls 0.20.9 rustls::ConnectionCommon::complete_io could
fall into an infinite loop based on network input.

Vulnerability

Idna 0.2.3,
0.4.0

Idna accepts Punycode labels that do not produce
any non-ASCII when decoded.

Vulnerability

Openssl 0.10.71 Use-After-Free in Md::fetch and Cipher::fetch Vulnerability

Sqlx 0.7.4 Binary protocol misinterpretation caused by
overflowing casts

Vulnerability

Ring 0.16.20,
0.17.8

Some AES functions may panic when overflow
checking is enabled

Vulnerability

Derivative 2.2.0 derivative is unmaintained. Warning

Instant 0.1.13 instant is unmaintained. Warning

Mach 0.3.2 mach is unmaintained. Warning

parity-wasm 0.45.0 Crate parity-wasm is deprecated by the author. Warning

proc-macro-error 1.0.4 proc-macro-error is unmaintained. Warning

ring 0.16.20 Versions of ring prior to 0.17 are unmaintained. Warning

trust-dns-proto 0.23.2 trust-dns-proto is unmaintained. Warning

Paste 1.0.15 Paste is unmaintained. Warning

Table 6: Cargo Audit findings for Frontier

SRL-Frontier_baseline_assurance-report.docx Page 15 of 27

Das Logo Horizontal

— Pos / Neg

3

6 Dynamic analysis assessment

During the audit, we utilized fuzz testing to identify bugs in Frontier and EVM. By applying fuzz
testing, we aim to uncover issues that may go undetected through manual code review. For this
purpose, we created two harnesses. One for the frontier template and one for the EVM
implementation. The frontier template harness targeted the integration of the EVM into polkadot-
sdk and the EVM harness focused on the EVM interpreter. The fuzzing campaign utilized a grammar-
aware approach, where the fuzzer semantically mutated and generated EVM bytecode and contract
call data.

Both harnesses were equipped with a variety of invariants, considering PoV (Proof of Validity) size,
storage growth ratios, gas limits, gas consumption and bounded execution times.

To extend our dynamic analysis assessment, we thoroughly evaluated individual EVM opcodes and
fuzzer generated sequences of EVM opcodes for any pricing concerns, factoring in memory usage,
execution time and gas consumption.

Fuzzing campaign orchestration: We chose Ziggy [6], an open-source tool developed in-house, as
our fuzzing orchestration tool. Ziggy uses two state of the art fuzzers, AFL++ [7] and honggfuzz [8]
under the hood.

Coverage analysis and optimization: Although modern fuzzers can achieve good coverage by
utilizing various techniques, we manually generated some seeds to target specific functionalities that
were not covered by the fuzzer after a certain period. This approach assisted the fuzzer and
optimized the overall coverage, ensuring more comprehensive testing.

Our dynamic analysis assessment yielded no findings.

6.1 Fuzzing Campaign Coverage

In our coverage analysis in Table 7, we only measure the Frontier codebase coverage that the
harness is targeting.

Component Repository Coverage achieved
EVM EVM [3] 92%

pallet-evm Frontier [2] 75%

Table 7: Coverage analysis

Despite high coverage, there were no findings. SRLabs is in talks to integrate the harnesses in the
Frontier and EVM repositories to allow for continuous fuzzing of both codebases.

SRL-Frontier_baseline_assurance-report.docx Page 16 of 27

Das Logo Horizontal

— Pos / Neg

3

7 Findings summary

We identified 5 issues during our analysis of the various modules in scope in the Frontier codebase
that enabled some of the attacks outlined above. In summary, we found 1 high-severity, 3 medium-
severity and 1 information-level issues. An overview of all findings can be found in Table 8.

7.1 Risk profile

The chart below summarizes vulnerabilities according to business impact and likelihood of
exploitation, increasing to the top right. The red margin separates the high-critical issues from
medium/low/informational ones.

 Impact to Business (Hacking value)

S2-59

S3-55

S2-58

S2-57

S0-56

 Likelihood (Ease) of Exploitation

 High 1
 Medium 3
 Low 0
 Informational 1
 Total Issues 5

SRL-Frontier_baseline_assurance-report.docx Page 17 of 27

Das Logo Horizontal

— Pos / Neg

3

7.2 Issue summary

ID Issue Severity Status

S3-55 [9] Constructing smart contract can bypass precompile checks High Mitigated [10]

S2-59 [11] Missing inherent check can cause artificial gas price
inflation

Medium Acknowledged

S2-58 [12] Silent failure in Curve25519 arithmetic precompiles Medium Acknowledged

S2-57 [13] Various underpriced precompiles can lead to DoS attack Medium Acknowledged

S0-56 [14] FeeMultiplierUpdate not set to a TargetedFeeAdjustment
type

Info Acknowledged

Table 8: Findings overview

SRL-Frontier_baseline_assurance-report.docx Page 18 of 27

Das Logo Horizontal

— Pos / Neg

3

8 Detailed findings

8.1 S3-55: Constructing smart contract can bypass precompile address bounding

Attack scenario The attack bypasses precompile call filtering by performing calls from a
constructing smart contract

Component /precompiles/src/precompile_set.rs
Tracking https://github.com/moonbeam-foundation/sr-moonbeam/issues/55
Attack impact Attackers may execute complex logic-based attacks involving multiple calls,

if the precompile is assumed to be safe from contract calls
Severity High
Status Mitigated [10]

Background
There are various account address types in Frontier, e.g. precompiled contracts, smart contracts, and
externally owned accounts. Some EVM mechanisms should be unreachable by certain types of
accounts for safety.

For precompiles to be callable by smart contracts they must be explicitly configured as
CallableByContract (for example here in the Moonbeam configuration [15]). If this configuration is
absent, then the precompile should be unreachable via smart contract accounts.

Issue description
To implement caller bounding, in precompile_set.rs the type of calling address is calculated by
is_address_eoa_or_precompile() [16] which calls into get_address_type() matching the returned
account type.

In get_address_type() [17] the following check is performed:

if code_len == 0 {
 return Ok(AddressType::EOA);
}

This check falsely assumes it is impossible for a smart contract account to have a code_len of zero.
This assumption does not hold true for contracts under construction, since the runtime bytecode in
the create transaction is not fully loaded into storage.

Smart contract bytecode for create transactions are separated into initialization bytecode and
runtime bytecode. The initialization bytecode is responsible for handling constructor logic and
loading the runtime bytecode into storage, during this process external calls within the constructor
will result in msg.sender having a code_len of zero.

If the check is bypassed, common_checks() [18] will fail to revert with a check against the config
(CallableByContract) and the address type is returned.

We compiled a moonbeam collator node, with CallableByContract disabled on the author mapping
precompile. This means that all calls from a smart contract should be filtered by AuthorMapping.

We then deployed a smart contract and executed a call to the address of the AuthorMapping preco
mpile 0x00...807 within the constructor. This call succeeded because at construction the contract
has a zero code size.

https://github.com/moonbeam-foundation/sr-moonbeam/issues/55

SRL-Frontier_baseline_assurance-report.docx Page 19 of 27

Das Logo Horizontal

— Pos / Neg

3

Finally, to test that we actually revert in a normal call from a fully initialized contract: we executed a
secondary call, this time from the fully deployed smart contract's function to the same precompile.

As expected the secondary call failed since the smart contract was fully deployed, the following
reversion message was returned indicating the exact check that the first call bypassed.

VM Exception while processing transaction: revert Function not callable
by smart contract

This error message indicates that under conventional circumstances the call is correctly reverted,
however from constructing smart contracts, it may be bypassed.

Risk
This is an incomplete or inadequate core security feature that fails to properly handle all circumstances
where the calling account is a smart contract.

This risk, in isolation, to Frontier or Moonbeam is very low, since there are no precompiles that
currently rely on not being reachable by smart contracts, however for third-party developers the risk
may be substantially higher.

Developers may place too much trust on the correctness of this call filter, and as a result open
themselves to unique abuse cases originating from smart contracts.

Mitigation
We recommend performing this check based on transaction properties. For example, if the origin of
a transaction tx.origin is equal to the caller (msg.sender) the call will never have originated from
a smart contract.

SRL-Frontier_baseline_assurance-report.docx Page 20 of 27

Das Logo Horizontal

— Pos / Neg

3

8.2 S2-59: Missing check_inherent for note_min_gas_price_target inflates gas price

Attack scenario Block authors can dishonestly raise gas prices at block production with
zero disincentives

Component /frame/dynamic-fee/src/lib.rs
Tracking https://github.com/moonbeam-foundation/sr-moonbeam/issues/59
Attack impact The gas price will be artificially inflated for all users irrespective of genuine

network usage, potentially causing a denial-of-service attack
Severity Medium
Status Acknowledged

Background
In the Polkadot-SDK, inherent extrinsics are unsigned transactions added by block producers to
include local, node-specific data directly into blocks. Furthermore, gas is the price paid in the native
currency for each unit of gas used.

Issue description
The extrinsic note_min_gas_price_target is an inherent extrinsic, meaning only the block producer
can call it. To ensure correctness, the ProvideInherent trait should be implemented for each
inherent, which includes the check_inherent call. This allows other nodes to verify if the input (in
this case, the target value) is correct.

However, the check_inherent function has not been implemented for note_min_gas_price_target.
This lets the block producer set the target value without verification. The target is then used to set
the MinGasPrice, which has an upper and lower bound defined in the on_initialize hook. The
block producer can set the target to the upper bound. Which also increases the upper and lower
bounds for the next block. Over time, this could result in continuously raising the gas price, making
contract execution too expensive and ineffective for users.

Risk
An attacker could use this flaw to manipulate the gas price, potentially leading to significantly
inflated transaction fees. Such manipulation could render contract execution prohibitively expensive
for users, effectively resulting in a denial-of-service condition for the network.

Mitigation
Implement the check_inherent function to verify that the target price is agreed upon by all the
nodes in the network.

https://github.com/moonbeam-foundation/sr-moonbeam/issues/59

SRL-Frontier_baseline_assurance-report.docx Page 21 of 27

Das Logo Horizontal

— Pos / Neg

3

8.3 S2-58: Silent failure in Curve25519 arithmetic precompiles with malformed points

Attack scenario An attacker submits an invalid Ristretto point causing the contract to treat
it as the identity element

Component /frame/evm/precompile/curve25519/src/lib.rs
Tracking https://github.com/moonbeam-foundation/sr-moonbeam/issues/58
Attack impact An attacker may abuse this to bypasses cryptographic checks, enabling

signature forgery or compromising key exchanges
Severity Medium
Status Acknowledged

Background
The Curve25519 arithmetic precompiles allow smart contract developers to cheaply utilize these
curve operations in their smart contracts.

Issue description
The Curve25519Add and Curve25519ScalarMul precompiles incorrectly handle invalid Ristretto point
representations. Instead of returning an error, they silently treat invalid input bytes as the Ristretto
identity element, leading to potentially incorrect cryptographic results.

In /frame/evm/precompile/curve25519/src/lib.rs, when processing input points for both addition
and scalar multiplication, in the execute function, the code attempts to decompress the 32-byte
input using point.decompress().

If the input bytes do not represent a valid compressed Ristretto point, decompress() returns None.
However, the code uses unwrap_or_else(RistrettoPoint::identity), which replaces this None
result with the RistrettoPoint::identity() element without signalling any error to the caller.

Risk
Silently treating invalid cryptographic points as the identity element could introduce critical
vulnerabilities in smart contracts. This behavior could compromise confidentiality in key exchanges
or allow threshold signature requirements to be bypassed. For example, in a multi-signature scheme,
an attacker could submit an invalid compressed Ristretto point as a public key. Treated as the
identity element, it would be incorrectly counted toward the signing threshold, enabling signature
forgery with fewer valid participants.

Mitigation
We recommend modifying the execute function in both Curve25519Add and Curve25519ScalarMul.
Instead of using unwrap_or_else(RistrettoPoint::identity), check the result
of point.decompress(). If it returns None, the function should immediately return
a PrecompileFailure::Error indicating invalid point data, rather than proceeding with the identity
element.

https://github.com/moonbeam-foundation/sr-moonbeam/issues/58

SRL-Frontier_baseline_assurance-report.docx Page 22 of 27

Das Logo Horizontal

— Pos / Neg

3

8.4 S2-57: Various underpriced precompiles can lead to DoS attack

Attack scenario An attacker may exploit underpriced precompiles to consume excessive
CPU resources on the network

Component /frame/evm/precompile/*
Tracking https://github.com/moonbeam-foundation/sr-moonbeam/issues/57
Attack impact An attacker may halt or delay block production while paying minimal fees
Severity Medium
Status Acknowledged

Background
Both Curve25519Add and Sha3FIPS512 precompiles implement the LinearCostPrecompile, which
means that their gas usage is dependent on the input data size, a factor rounded up to the nearest
number of words – as stated in the Ethereum yellow paper [19] for SHA2-256 and RIPEMD-160.

Issue description
The gas cost for the Curve25519Add precompile is under-priced relative to its compute, specifically
when compared to the Sha3FIPS512 precompile. Both use the same gas calculation constants (see
here [20] [21]), but Curve25519Add requires significantly more computation.

We designed several test cases, detailed directly to the Frontier development team, which is out-of-
scope in this report. During these benchmarks, we noticed a discrepancy between the gas-cost and
CPU-cost ratio of Sha3FIPS512 and Curve25519Add.

The test results demonstrate a significant disparity in execution time:

• Sha3FIPS512: gas = 84, time = 1.333µs
• Curve25519Add: gas = 84, time = 12.416µs

Both precompiles consume the same amount of gas, but one requires around ten times higher
amount of compute.

Since both use the same parameters for the linear cost calculation (BASE=60 and WORD=10), for the
same input length, the gas record should be identical.

Furthermore, we identified that the Curve25519ScalarMul was also underpriced. The following are
our results from this additional analysis:

• Sha3FIPS512: gas = 84, time = 2.041µs
• Curve25519Add: gas = 84, time = 10.333µs
• Curve25519ScalarMul: gas = 84, time = 37.75µs

Risk
Attackers can craft transactions calling the underpriced precompile, consuming substantial node
resources (CPU time) while paying relatively little gas, potentially leading to availability and denial-
of-service issues which slows down block processing.

Mitigation
We recommend reviewing and improving the benchmarking process of every precompile that is a
LinearCostPrecompile. Especially, for precompiles that are not native to Ethereum such as
Curve25519Add, the BASE and WORD variables should be benchmarked appropriately.

https://github.com/moonbeam-foundation/sr-moonbeam/issues/57

SRL-Frontier_baseline_assurance-report.docx Page 23 of 27

Das Logo Horizontal

— Pos / Neg

3

8.5 S0-56: FeeMultiplierUpdate not set to a TargetedFeeAdjustment type

Attack scenario Developers building based on the template my not understand the
security implications of this configuration

Component /template/runtime/src/lib.rs
Tracking https://github.com/moonbeam-foundation/sr-moonbeam/issues/56
Attack impact Attackers may abuse constant target fees to censor zero-tip transactions

while paying only the regular transaction fee
Severity Info
Status Acknowledged

Background
Frontier provides a template for developers to get started using Frontier. In that template, the
network fees will not automatically adjust if the network becomes overloaded with transactions,
because the runtime does not set FeeMultiplierUpdate to a TargetedFeeAdjustment.

Issue description
The runtime configuration sets FeeMultiplierUpdate to ConstFeeMultiplier [22] which does not
take into consideration the current usage of the network.

parameter_types! {
 pub FeeMultiplier: Multiplier = Multiplier::one();
}

impl pallet_transaction_payment::Config for Runtime {

… … …
type FeeMultiplierUpdate = ConstFeeMultiplier<FeeMultiplier>;

}

Risk
Since the fees do not reflect congestion, an attacker could cause a denial-of-service against all zero-
tip transactions for an extended period by just paying the regular transaction fees (and not
exponentially raising fees, which would at least limit the duration of that attack).

Mitigation
We recommended setting FeeMultiplierUpdate to a TargetedFeeAdjustment type, an example of
such implementation may be found in following configuration [23], where SlowAdjustingFeeUpdate
is used.

https://github.com/moonbeam-foundation/sr-moonbeam/issues/56

SRL-Frontier_baseline_assurance-report.docx Page 24 of 27

Das Logo Horizontal

— Pos / Neg

3

9 Bibliography

[1] [Online]. Available: https://github.com/srlabs/substrate-runtime-fuzzer.

[2] [Online]. Available: https://github.com/polkadot-evm/frontier.

[3] [Online]. Available: https://github.com/rust-ethereum/evm.

[4] [Online]. Available: https://semgrep.dev/.

[5] [Online]. Available: https://github.com/trailofbits/dylint.

[6] [Online]. Available: https://github.com/srlabs/ziggy.

[7] [Online]. Available: https://github.com/AFLplusplus/AFLplusplus.

[8] [Online]. Available: https://github.com/google/honggfuzz.

[9] [Online]. Available: https://github.com/moonbeam-foundation/sr-moonbeam/issues/55.

[10] [Online]. Available: https://github.com/moonbeam-foundation/moonbeam/pull/3273.

[11] [Online]. Available: https://github.com/moonbeam-foundation/sr-moonbeam/issues/59.

[12] [Online]. Available: https://github.com/moonbeam-foundation/sr-moonbeam/issues/58.

[13] [Online]. Available: https://github.com/moonbeam-foundation/sr-moonbeam/issues/57.

[14] [Online]. Available: https://github.com/moonbeam-foundation/sr-moonbeam/issues/56.

[15] [Online]. Available: https://github.com/moonbeam-
foundation/moonbeam/blob/550a7f66351d71f3c4ec1fbc1de65545ba763cc6/runtime/moon
base/src/precompiles.rs#L114.

[16] [Online]. Available: https://github.com/polkadot-
evm/frontier/blob/c0d5cb8b08c548e747b911fdeb46e801e5aa4c04/precompiles/src/precom
pile_set.rs#L348.

[17] [Online]. Available: https://github.com/polkadot-
evm/frontier/blob/c0d5cb8b08c548e747b911fdeb46e801e5aa4c04/precompiles/src/precom
pile_set.rs#L330.

[18] [Online]. Available: https://github.com/polkadot-
evm/frontier/blob/c0d5cb8b08c548e747b911fdeb46e801e5aa4c04/precompiles/src/precom
pile_set.rs#L382.

SRL-Frontier_baseline_assurance-report.docx Page 25 of 27

Das Logo Horizontal

— Pos / Neg

3

[19] [Online]. Available: https://ethereum.github.io/yellowpaper/paper.pdf.

[20] [Online]. Available: (https://github.com/polkadot-
evm/frontier/blob/c0d5cb8b08c548e747b911fdeb46e801e5aa4c04/frame/evm/precompile/
curve25519/src/lib.rs#L35-L36.

[21] [Online]. Available: https://github.com/polkadot-
evm/frontier/blob/c0d5cb8b08c548e747b911fdeb46e801e5aa4c04/frame/evm/precompile/
sha3fips/src/lib.rs#L46-L47.

[22] [Online]. Available: https://github.com/polkadot-
evm/frontier/blob/d5755b5d0cdc84cda71bd267c761b72e54ca7650/template/runtime/src/li
b.rs#L306.

[23] [Online]. Available: https://github.com/paritytech/polkadot-
sdk/blob/18db502172bdf438f086cd5964c646b318b8ad37/polkadot/runtime/common/src/li
b.rs#L110.

[24] [Online]. Available: https://github.com/polkadot-
evm/frontier/blob/c0d5cb8b08c548e747b911fdeb46e801e5aa4c04/precompiles/src/precom
pile_set.rs#L330.

[25] [Online]. Available: https://github.com/polkadot-
evm/frontier/tree/master/template/runtime.

SRL-Frontier_baseline_assurance-report.docx Page 26 of 27

Das Logo Horizontal

— Pos / Neg

3

Appendix A: Technical services

Security Research Labs delivers extensive technical expertise to meet your security needs. Our
comprehensive services include software and hardware evaluation, penetration testing, red team
testing, incident response, and reverse engineering. We aim to equip your organization with the
security knowledge essential for achieving your objectives.

SOFTWARE EVALUATION We provide assessments of application, system, and mobile code, drawing
on our employees' decades of experience in developing and securing a wide variety of applications.
Our work includes design and architecture reviews, data flow and threat modelling, and code
analysis with targeted fuzzing to find exploitable issues.

BLOCKCHAIN SECURITY ASSESSMENTS We offer specialized security assessments for blockchain
technologies, focusing on the unique challenges posed by decentralized systems. Our services
include smart contract audits, consensus mechanism evaluations, and vulnerability assessments
specific to blockchain infrastructure. Leveraging our deep understanding of blockchain technology,
we ensure your decentralized applications and networks are secure and robust.

POLKADOT ECOSYSTEM SECURITY We provide comprehensive security services tailored to the
Polkadot ecosystem, including parachains, relay chains, and cross-chain communication protocols.
Our expertise covers runtime misconfiguration detection, benchmarking validation, cryptographic
implementation reviews, and XCM exploitation prevention. Our goal is to help you maintain a secure
and resilient Polkadot environment, safeguarding your network against potential threats.

TELCO SECURITY We deliver specialized security assessments for telecommunications networks,
addressing the unique challenges of securing large-scale and critical communication infrastructures.
Our services encompass vulnerability assessments, secure network architecture reviews, and
protocol analysis. With a deep understanding of telco environments, we ensure robust protection
against cyberthreats, helping maintain the integrity and availability of your telecommunications
services.

DEVICE TESTING Our comprehensive device testing services cover a wide range of hardware, from
IoT devices and embedded systems to consumer electronics and industrial controls. We perform
rigorous security evaluations, including firmware analysis, penetration testing, and hardware-level
assessments, to identify vulnerabilities and ensure your devices meet the highest security standards.
Our goal is to safeguard your hardware against potential attacks and operational failures.

CODE AUDITING We provide in-depth code auditing services to identify and mitigate security
vulnerabilities within your software. Our approach includes thorough manual reviews, automated
static analysis, and targeted fuzzing to uncover critical issues such as logic flaws, insecure coding
practices, and exploitable vulnerabilities. By leveraging our expertise in secure software
development, we help you enhance the security and reliability of your codebase, ensuring robust
protection against potential threats.

PENETRATION & RED TEAM TESTING We perform high-end penetration tests that mimic the work of
sophisticated adversaries. We follow a formal penetration testing methodology that emphasizes
repeatable, actionable results that give your team a sense of the overall security posture of your
organization.

SOURCE CODE-ASSISTED SECURITY EVALUATIONS We conduct security evaluations and penetration
tests based on our code-assisted methodology that lets us find deeper vulnerabilities, logic flaws,

SRL-Frontier_baseline_assurance-report.docx Page 27 of 27

Das Logo Horizontal

— Pos / Neg

3

and fuzzing targets than a black-box test would reveal. This gives your team a stronger assurance
that the significant security-impacting flaws have been found and corrected.

SECURITY DEVELOPMENT LIFECYCLE CONSULTING We guide organizations through the Security
Development Lifecycle to integrate security at every phase of software development. Our services
include secure coding training, threat moelling, security design reviews, and automated security
testing implementation. By embedding security practices into your development processes, we help
you proactively identify and mitigate vulnerabilities, ensuring robust and secure software delivery
from inception to deployment.

REVERSE ENGINEERING We assist clients with reverse engineering efforts that are not associated
with malware or incident response. We also provide expertise in investigations and litigation by
acting as experts in cases of suspected intellectual property theft.

HARDWARE EVALUATION We evaluate new hardware devices ranging from novel microprocessor
designs, embedded systems, mobile devices, and consumer-facing end products to core networking
equipment that powers Internet backbones.

VULNERABILITY PRIORITIZATION We streamline vulnerability information processing by
consolidating data from compliance checks, audit findings, penetration tests, and red team insights.
Our prioritization and automation strategies ensure that the most critical vulnerabilities are
addressed promptly, enhancing your organization's security posture. By systematically categorizing
and prioritizing risks, we help you focus on the most impactful threats, ensuring efficient and
effective remediation efforts.

SECURITY MATURITY REVIEW We conduct comprehensive security maturity reviews to evaluate
your organization's current security practices and identify areas for improvement. Our assessments
cover a wide range of criteria, including policy development, risk management, incident response,
and security awareness. By benchmarking against industry standards and best practices, we provide
actionable insights and recommendations to enhance your overall security posture and guide your
organization toward achieving higher levels of security maturity.

SECURITY TEAM INCUBATION We provide comprehensive support for building security teams for
new, large-scale IT ventures. From Day 1, our ramp-up program offers essential security advisory and
assurance, helping you establish a robust security foundation. With our proven track record in
securing billion-dollar investments and launching secure telco networks globally, we ensure your
new enterprise is protected against cyberthreats from the start.

HACKING INCIDENT SUPPORT We offer immediate and comprehensive support in the event of a
hacking incident, providing expert analysis, containment, and remediation. Our services include
detailed forensics, malware analysis, and root cause determination, along with actionable
recommendations to prevent future incidents. With our rapid response and deep expertise, we help
you mitigate damage, recover swiftly, and strengthen your defenses against potential threats.

