

- Confidential, 20 pages -

Frequency Baseline Security Assurance
Report
Threat model and hacking assessment report

v1.0, October 7, 2024

Prepared for:
Frequency

Frequency_baseline-security-assurance-report Confidential, Page 1 of 20

Content

Disclaimer .. 2

Timeline .. 3

Integrity Notice .. 4

1 Executive summary .. 5

1.1 Engagement overview... 5

1.2 Observations and Risk ... 5

1.3 Recommendations .. 5

2 Evolution suggestions .. 6

2.1 Secure development improvement suggestions .. 6

2.2 Further recommended best practices .. 6

3 Motivation and scope .. 7

4 Methodology ... 8

4.1 Threat modeling and attacks .. 8

4.2 Security design coverage check. ... 10

4.3 Implementation check .. 10

4.4 Remediation support .. 11

5 Dynamic analysis assessment ... 12

5.1 Runtime fuzzer .. 12

6 Findings summary.. 13

6.1 Risk profile ... 13

6.2 Issue summary .. 14

7 Detailed findings ... 15

7.1 Minimum staking amount not enforced ... 15

7.2 Possible user handle confusion ... 15

7.3 Possible interoperability issue in passkey signature verification...................................... 16

8 Bibliography .. 17

Appendix A: Technical services ... 18

Appendix B: Risk and advisory services ... 20

Frequency_baseline-security-assurance-report Confidential, Page 2 of 20

Disclaimer

This report describes the findings and core conclusions derived from the audit carried out by Security
Research Labs within the agreed-on timeframe and scope as detailed in Chapter 3.

Please note that this report does not guarantee that all existing security vulnerabilities were
discovered in the codebase exhaustively and that following all evolution suggestions described in
Chapter 6 may not ensure all future code to be bug free.

Version: v1.0

Prepared For: Frequency

Date: October 7, 2024

Prepared By: Gabriel Arnautu gabriel@srlabs.de

Marc Heuse marc@srlabs.de

Nils Ollrogge nils@srlabs.de

https://url.avanan.click/v2/___mailto:gabriel@srlabs.de___.YXAzOm1hcmZpcmU6YTpvOjUzNWRiZmZhN2YzZmEwMTJhN2VjMDMwMmYwZWFlNjc2OjY6MjZmMzo0MjE5M2EyZDMzZmFmYTVlYzBkNmY0MjE1NTBkZDFkYzFjOGYyMmJlNDcxOGQ2ZjFlNTQyNmFhMWU1MWJmODRlOnA6VDpO
https://url.avanan.click/v2/___mailto:nils@srlabs.de___.YXAzOm1hcmZpcmU6YTpvOjUzNWRiZmZhN2YzZmEwMTJhN2VjMDMwMmYwZWFlNjc2OjY6NTIwZjo5NjE0ZmFlNjNlYTU5NGM0ZmM3NGYyNzY4ZTdiM2I4MDEwNmNhZmNmOTk0NzQyNzUyNmJhM2ExZjg4YWUxNzYxOnA6VDpO

Frequency_baseline-security-assurance-report Confidential, Page 3 of 20

Timeline

Table 1 shows the timeline of the Frequency source code security audit in 2024.

Date Event

August 1, 2024 Kick-off security audit

August 19, 2024 Shared draft threat model

October 7, 2024 Shared audit report
Table 1: Audit timeline

Frequency_baseline-security-assurance-report Confidential, Page 4 of 20

Integrity Notice

This document contains proprietary information belonging to Security Research Labs and Frequency.
No part of this document may be reproduced or cited separately; only the document in its entirety
may be reproduced. Any exceptions require prior written permission from Security Research Labs or
Frequency. Those granted permission must use the document solely for purposes consistent with the
authorization. Any reproduction of this document must include this notice.

Frequency_baseline-security-assurance-report Confidential, Page 5 of 20

1 Executive summary

1.1 Engagement overview

This work describes the result of the security assurance audit for the Frequency parachain performed
by Security Research Labs, covering the period from 1st of August to 27th of September 2024. Security
Research Labs is a consulting firm that has been providing specialized blockchain audit services since
2019.

During this study, the Frequency development team provided access to relevant documentation and
supported the research team effectively. The protocol design, concept documentation and relevant
available source code of Frequency was verified to assure that the Frequency protocol is resilient to
hacking and abuse.

Security Research Labs conducted a comprehensive security assurance audit of the Frequency
blockchain’s code, reviewing critical components. This audit focused on assessing Frequency‘s
codebase for resilience against hacking and abuse scenarios. The testing approach combined static
and dynamic analysis techniques, leveraging both automated tools and manual inspection. Security
Research Labs prioritized reviewing critical functionalities and conducting thorough security tests to
ensure the robustness of Frequency’s platform.

This report focuses on our assessment results concerning the Frequency runtime.

1.2 Observations and Risk

The research team identified several issues ranging from low to informational level severity. The
Frequency team, in cooperation with the auditors, already remediated most of the identified issues.

1.3 Recommendations

Security Research Labs recommends integrating more comprehensive security tests. Additionally,
conducting thorough threat modeling, further secure development best-practices and economic
audits will identify potential risks and ensure the economic integrity of the system.

Frequency_baseline-security-assurance-report Confidential, Page 6 of 20

2 Evolution suggestions

The overall impression of the auditors is that Frequency follows strong security practices and has made
efforts to build a secure codebase. To further enhance Frequency's defenses against potential
unknown or emerging threats, we recommend considering the evolution suggestions and best
practices described in this section.

2.1 Secure development improvement suggestions

We recommend to further strengthen the security of the blockchain by implementing the following
recommendations:

Perform threat modeling. Performing threat modeling for all new features and major updates before
coding is crucial for better code security. This practice allows developers to identify potential security
threats and vulnerabilities early in the design phase, enabling them to implement appropriate
mitigations from the outset. Including the threat model in the pull request description ensures that
the entire team is aware of the identified risks and the measures taken to address them, promoting a
proactive security culture and enhancing the overall robustness of the codebase. Additionally, it helps
the audit team to identify gaps in the threat model and focus their assessment.

Use static analysis. Using static analysis tools to detect security flaws in the codebase is essential for
improving code security. These tools, such as Dylint [1] and Semgrep [2] for the Rust ecosystem,
analyze the code without executing it, identifying vulnerabilities, coding errors, and compliance issues
early in the development process. This proactive approach helps developers address potential security
issues before they reach production, ensuring a more secure and reliable codebase.

Perform dynamic analysis. Developing fuzzing harnesses for critical components is essential for
identifying security vulnerabilities and business logic issues. By employing invariants, these fuzzing
tests can effectively uncover subtle flaws that might otherwise go unnoticed. The Polkadot codebase
exemplifies this approach, utilizing multiple fuzzing harnesses based on the substrate-runtime-fuzzer,
demonstrating how comprehensive and targeted fuzz testing can significantly enhance the security
and reliability of complex systems; see the substrate-runtime-fuzzer [3].

Launch a bounty program. Establishing a bounty program to encourage the external discovery and
reporting of security vulnerabilities is crucial for enhancing code security. By offering monetary
incentives, such programs motivate individuals to responsibly report vulnerabilities to Frequency
rather than exploiting them. This approach not only broadens the pool of people actively searching
for security flaws but also fosters a collaborative security environment, helping to identify and address
issues more quickly and effectively.

2.2 Further recommended best practices

Regular updates. New releases of Polkadot-SDK may contain fixes for critical security issues. Since
Frequency is a product that heavily relies on Polkadot-SDK, updating to the latest version as soon as
possible whenever a new release is available is recommended.

Frequency_baseline-security-assurance-report Confidential, Page 7 of 20

3 Motivation and scope

Blockchains evolve in a trustless and decentralized environment, which by their very nature can lead
to security issues. Ensuring confidentiality and integrity is a priority for Frequency as it aims to provide
a platform for scalable, data-focused messaging as a backbone for new data distribution protocols,
empowering users with greater transparency, authenticity, and control over their privacy and data. As
such, a security review of the project should not only highlight any security issues uncovered during
the audit, but also bring additional insights from an attacker’s perspective, which the Frequency team
can then integrate into their threat modeling and development process to enhance the security of the
platform.

The core business logic of Frequency is to provide scalable, data-focused messaging as a backbone for
new data distribution protocols such as the Decentralized Social Networking Protocol (DSNP). By
introducing a different class of blockchain transactions that are not financial in nature, Frequency
distinguishes between financial transactions and data-focused transactions. Data-focused
transactions have reduced requirements—like the need to defend against double-spend attacks—
while retaining blockchain guarantees such as authenticity and data validation.

Frequency emphasizes broadcast messaging to allow information to be discovered by anyone, shifting
control of data discovery from centralized authorities, as seen in traditional systems, to the users
themselves. This empowers users to choose their preferred tools and consume only the data they
want.

Extending its belief in user ownership to the relationship between users and decentralized applications
(dApps), Frequency allows users to trust dApps in limited ways through user delegation. This
delegation functionality further enables the option of coinless users, enabling dApps to cover
blockchain costs on behalf of users and construct the economic structures they believe are best for
their user base.

To address economic challenges like transaction cost volatility, Frequency introduces a staking system
called Capacity for sending messages. This system aims to provide better cost predictability for
businesses trying to build products on a blockchain.

Frequency is a blockchain network built on top of the Polkadot-SDK. Like other Polkadot-SDK-based
blockchain networks, the Frequency code is written in Rust, a memory safe programming language.
Polkadot-SDK-based chains utilize three technologies: a WebAssembly (WASM) based runtime,
decentralized communication via libp2p, and a block production engine.

Frequency’s runtime consists of multiple modules compiled into a WASM Binary Large Object (blob)
that is stored on-chain. Nodes execute the runtime code either natively or will execute the on-chain
WASM blob.

Security Research Labs collaborated with the Frequency team to create an overview containing the
runtime modules in scope and their audit priority. The in-scope components and their assigned
priorities are reflected in Table . During the audit, Security Research Labs used a threat model to guide
efforts on exploring potential security flaws and realistic attack scenarios. Additionally, Frequency‘s
online documentations and specification provided the auditors with a good runtime module design
and implementation overview.

Repository Priority Component(s) Reference

Frequency High pallet-capacity

pallet-frequency-tx-payment

pallet-handles

Frequency_baseline-security-assurance-report Confidential, Page 8 of 20

pallet-messages

pallet-msa

pallet-schemas

pallet-stateful-storage

pallet-time-release

Table 2: In-scope Frequency components with audit priority

4 Methodology

This report details the continuous security assurance results for the Frequency network with the aim
of creating transparency in four steps: threat modeling, security design coverage checks,
implementation baseline check and finally remediation support. We applied the following four steps
methodology when performing feature reviews.

4.1 Threat modeling and attacks

The goal of the threat model framework is to be able to determine specific areas of risk in Frequency
network. Familiarity with these risk areas can provide guidance for the design of the implementation
stack, the actual implementation of the stack, as well as the security testing. This section introduces
how risk is defined and provides an overview of the identified threat scenarios. The Hacking Value,
categorized into low, medium, and high, considers the incentive of an attacker, as well as the effort
required by an attacker to successfully execute the attack. The hacking value is calculated as:

𝐻𝑎𝑐𝑘𝑖𝑛𝑔 𝑉𝑎𝑙𝑢𝑒 =
𝐼𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒

𝐸𝑓𝑓𝑜𝑟𝑡

While incentive describes what an attacker might gain from performing an attack successfully, effort
estimates the complexity of this same attack. The degrees of incentive and effort are defined as
follows:

Incentive:

• Low: Attacks offer the hacker little to no gain from executing the threat.

• Medium: Attacks offer the hacker considerable gains from executing the threat.

• High: Attacks offer the hacker high gains by executing this threat.

Effort:

• Low: Attacks are easy to execute. They require neither elaborate technical knowledge nor
considerable amounts of resources.

• Medium: Attacks are difficult to execute. They might require bypassing countermeasures, the
use of expensive resources or a considerable amount of technical knowledge.

• High: Attacks are difficult to execute. The attacks might require in-depth technical knowledge,
vast amounts of expensive resources, bypassing countermeasures, or any combination of
these factors.

Incentive and Effort are divided according to Table .

Hacking Value Low incentive Medium Incentive High Incentive

Frequency_baseline-security-assurance-report Confidential, Page 9 of 20

High effort Low Medium Medium

Medium effort Medium Medium High

Low effort Medium High High

Table 3: Hacking value measurement scale

Hacking scenarios are classified by the risk they pose to the system. The risk level, also categorized
into low, medium, and high, considers the hacking value, as well as the damage that could result from
successful exploitation. The risk of a threat scenario is calculated by the following formula:

𝑅𝑖𝑠𝑘 = 𝐷𝑎𝑚𝑎𝑔𝑒 × 𝐻𝑎𝑐𝑘𝑖𝑛𝑔 𝑉𝑎𝑙𝑢𝑒 =
𝐷𝑎𝑚𝑎𝑔𝑒 × 𝐼𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒

𝐸𝑓𝑓𝑜𝑟𝑡

Damage describes the negative impact that a given attack, performed successfully, would have on the
victim. The degrees of damage are defined as follows:

Damage:

• Low: Risk scenarios would cause negligible damage to the Frequency network.

• Medium: Risk scenarios pose a considerable threat to Frequency‘s functionality as a network.

• High: Risk scenarios pose an existential threat to Frequency network functionality.

Damage and Hacking Value are divided according to Table .

Risk Low hacking value Medium hacking value High hacking value

Low damage Low Medium Medium

Medium damage Medium Medium High

High damage Medium High High

Table 4: Risk measurement scale

After applying the framework to the Frequency system, different threat scenarios according to the CIA
triad were identified.

The CIA triad describes three security promises that can be violated by a hacking attack, namely
confidentiality, integrity, availability.

Confidentiality:

Confidentiality threat scenarios concern sensitive information regarding the blockchain network and
its users. Native tokens are units of value that exist on the blockchain—confidentiality threat scenarios
include, for example, attackers abusing information leaks to steal native tokens from nodes
participating in the Frequency ecosystem and claiming the assets for themselves. As a social network
protocol, Frequency also needs to ensure user privacy; an attacker who compromises this could
damage the reputation of victims by exposing sensitive information or impersonating them.

Integrity:

Integrity threat scenarios threaten to disrupt the functionality of the entire network by undermining
or bypassing the rules that ensure that Frequency transactions/operations are fair and equal for each

Frequency_baseline-security-assurance-report Confidential, Page 10 of 20

participant. Undermining Frequency‘s integrity often comes with a high monetary incentive, such as
when an attacker can double spend or mint tokens for themselves. Other threat scenarios may not
offer immediate monetary rewards but could damage Frequency’s functionality and, consequently, its
reputation.

Availability:

Availability threat scenarios refer to compromising the availability of data stored by the Frequency
network as well as the availability of the network itself to process normal transactions. Important
threat scenarios regarding availability for blockchain systems include Denial of Service (DoS) attacks
on participating nodes, stalling the transaction queue, and spamming.

Table provides a high-level overview of the hacking risks concerning Frequency with identified
example threat scenarios and attacks, as well as their respective hacking value and effort. The
complete list of threat scenarios identified along with attacks that enable them are described in the
threat model deliverable. This list can serve as a starting point for the Frequency developers to guide
their security outlook for future feature implementations. By thinking in terms of threat scenarios and
attacks during code review or feature ideation, many issues can be caught or even avoided altogether.

Security
promise

Hacking
value

Example threat scenarios Hacking
effort

Example attack ideas

Confidentiality High - Compromise a user's
private key
- Impersonating a user

High - Create similar service to
Frequency Access which
manages user’s keys
- Use a similar user handle

Integrity High - Affect economical model
of the network
- Manipulate the
blockchain’s history

High - Redirect Capacity to
another provider
- Exploit rounding issues

Availability High - Spam the blockchain
with bogus transactions
- Make the network
harder to operate

Medium

- Cheaply bloat blockchain
storage
- Exhaust Capacity tokens
of a provider

Table 5: Risk overview. The threats for Frequency’ blockchain were classified using the CIA security
triad model, mapping threats to the areas: (1) Confidentiality, (2) Integrity, and (3) Availability.

4.2 Security design coverage check.

Next, the Frequency design was reviewed for coverage against relevant hacking scenarios. For each
scenario, the following two aspects were investigated:

a. Coverage. Is each potential security vulnerability sufficiently covered?

b. Underlying assumptions. Which assumptions must hold true for the design to effectively
reach the desired security goal?

4.3 Implementation check

As a third step, the current Frequency implementation was tested for openings whereby any of the
defined hacking scenarios could be executed.

Frequency_baseline-security-assurance-report Confidential, Page 11 of 20

To effectively review the Frequency codebase, we derived our code review strategy based on the
threat model that we established as the first step. For each identified threat, hypothetical attacks were
developed and mapped to their corresponding threat category, as outlined in Chapter 4.1.

Prioritizing by risk, the code was assessed for present protections against the respective threats and
attacks as well as the vulnerabilities that make these attacks possible. For each threat, the auditors:

1. Identified the relevant parts of the codebase, for example the relevant pallets and the runtime
configuration.

2. Identified viable strategies for the code review. Manual code audits, fuzz testing, and manual
tests were performed where appropriate.

3. Ensured the code did not contain any vulnerabilities that could be used to execute the
respective attacks, otherwise, ensured that sufficient protection measures against specific
attacks were present.

4. Immediately reported any vulnerability that was discovered to the development team along
with suggestions around mitigations.

We carried out a hybrid strategy utilizing a combination of code review, static test is and dynamic tests
(e.g., fuzz testing) to assess the security of the Frequency codebase.

While static testing, fuzz testing and dynamic tests establish a baseline assurance, the focus of this
audit was a manual code review of the Frequency codebase to identify logic bugs, design flaws, and
best practice deviations. We reviewed the audit-2024 branch of the Frequency repository which
contains the Frequency runtime implementation up to commit 9ef5818 from the 7th of August 2024.
The approach of the review was to trace the intended functionality of the runtime modules in scope
and to assess whether an attacker can bypass/misuse/abuse these components or trigger unexpected
behavior on the blockchain due to logic bugs or missing checks. Since the Frequency codebase is
entirely open source, it is realistic that a malicious actor would analyze the source code while
preparing an attack.

Fuzz testing is a technique to identify issues in code that handles untrusted input, which in Frequency‘s
case are extrinsics in the runtime. (Note that the network layer is handled by Polkadot-SDK, which was
not in scope for this review, but is built with a strong emphasis on security and where fuzz testing is
also used). Fuzz testing works by taking some valid input for a method under test, applying a semi-
random mutation to it, and then invoking the method under test again with this semi-valid input.
Through repeating this process, fuzz testing can unearth inputs that would cause a crash or other
undefined behavior (e.g., integer overflows) in the method under test. The fuzz testing methods
written for this assessment utilized the test runtime Genesis configuration as well as mocked
externalities to execute the fuzz test effectively against the extrinsics in scope.

4.4 Remediation support

The final step is supporting Frequency with the remediation process of the identified issues. Each
finding was documented and published with mitigation recommendations. Once the mitigation
solution is implemented, the fix is verified by the auditors to ensure that it mitigates the issue and
does not introduce other bugs.

During the audit, findings were shared via their GitHub repository [4]. We also used a private slack
channel for asynchronous communication and status updates – in addition, bi-weekly jour fixe
meetings were held to provide detailed updates and address open questions.

Frequency_baseline-security-assurance-report Confidential, Page 12 of 20

5 Dynamic analysis assessment

During the audit, we utilized fuzz testing to identify bugs in the runtime of Frequency. By applying fuzz
testing, we are aiming to uncover issues that may not have been detected through manual code
review. The fuzzing campaign was continuously updated as our understanding of the Frequency
runtime evolved. Ultimately, the campaign did not reveal any issues, providing assurance that
common programming errors, such as unsafe math operations, were absent from the code.

Fuzz harness creation: We chose our in-house developed and opensource tool Ziggy [5] as our fuzzing
orchestration tool. As for the harness, we used a customized harness for the runtime which is
comparable to our substrate runtime fuzzing harness that is also available on GitHub [3].

Coverage analysis and optimization: Although modern fuzzers can achieve good coverage by utilizing
various techniques, we manually generated some seeds to target specific functionalities that were not
covered by the fuzzer after a certain period. This approach assisted the fuzzer and optimized the
overall coverage, ensuring more comprehensive testing.

In our coverage analysis below, we only measure the Frequency codebase coverage that the harness
is targeting.

5.1 Runtime fuzzer

Component Code path Coverage achieved

Frequency Runtime /runtime/frequency 68.61%

The coverage for the Frequency runtime fuzzer stands at 68.61%, with most lines not covered being
either inherent or only root callable extrinsics, for example set_epoch_length. There remains room
for improvement, particularly in testing passkey related extrinsics, which require additional
configuration and setup adjustments in the fuzzing harness.

Frequency_baseline-security-assurance-report Confidential, Page 13 of 20

6 Findings summary

We identified 3 issues during our analysis of the runtime modules in scope in the Frequency codebase
that enabled some of the attacks outlined below. In summary, 2 low severity and 1 info level issues
were found. An overview of all findings can be found in Table .

6.1 Risk profile

The chart below summarizes vulnerabilities according to business impact and likelihood of
exploitation, increasing to the top right.

 Impact to Business (Hacking value)

S1-2147

S1-2135

S0-2134

 Likelihood (Ease) of Exploitation

 High 0
 Medium 0
 Low 2
 Informational 1
 Total Issues 3

Frequency_baseline-security-assurance-report Confidential, Page 14 of 20

6.2 Issue summary

ID Issue Severity Status

S1-2135 [6] Minimum staking amount not enforced Low Mitigated [7]

S1-2147 [8] Possible user handle confusion Low Mitigated [9]

S0-2134 [10] Possible interoperability issue in passkey signature
verification

Info Mitigated [11]

Table 6: Findings overview

Frequency_baseline-security-assurance-report Confidential, Page 15 of 20

7 Detailed findings

7.1 Minimum staking amount not enforced

Attack scenario Minimum staking amount is not enforced if a stake already exists for a
different provider

Component Frequency-capacity-pallet

Tracking https://github.com/frequency-chain/frequency/issues/2135

Attack impact Potential storage bloating

Severity Low

Status Mitigated [7]

Context
Providers in the Frequency blockchain are special accounts owned by applications and services. To
express or withdraw support for these providers, Frequency allows users to stake FRQCY tokens to
them. In return, the system rewards users with tokens and providers with capacity. This process is
called provider boosting.

Issue description
The ensure_can_stake function is supposed to verify that that the amount the account is staking to a
provider exceeds the minimum required staking amount. To do this, the function checks whether the
sum of current active staking amount and the new staking amount is bigger than
MinimumStakingAmount. Since the current active staking amount is accounted for in the check, this
implies that a user must only stake the MinimumStakingAmount when they initially submit a stake for
a provider. All subsequent staking requests will be accepted, even with a staking amount of 1.

Risk
This allows an attacker to stake the minimum required amount only once to a provider and then
repeatedly stake just 1 token in subsequent staking request. As a result, the attacker underpays for
their storage usage, potentially leading to storage bloating and slowing down the network in the long
run.

Mitigation
To mitigate this issue, the ensure_can_stake function should verify that the new staking amount
exceeds the MinimumStakingAmount, independent of the current active staking amount. This ensures
that every staking request meets the minimum requirement and prevents misuse of the system.

7.2 Possible user handle confusion

Attack scenario A user chooses a username very similar to a reserved one by exploiting
Unicode characters.

Component Frequency-handles-pallet

Tracking https://github.com/frequency-chain/frequency/issues/2147

Attack impact Possible user handle confusion

Severity Low

Status Mitigated [9]

Context
The Frequency blockchain allows users to register handles—unique and user-friendly names—to make
it easier to identify and interact with their accounts. Each handle is uniquely mapped to a Message
Source Account (MSA) ID. To ensure the uniqueness of handles, a numeric suffix is appended to the
chosen handle, separated by a delimiter [.].

Frequency_baseline-security-assurance-report Confidential, Page 16 of 20

Issue description
When a user tries to claim a handle, checks are performed to ensure its validity and prevent misuse.
The is_reserved_handle check compares the requested handle against a list of reserved words, such
as “admin” or “moderator”, to prevent users from claiming handles that might carry special meaning.
However, this check does not consider the canonical representation of the handle. As a result, users
can exploit Unicode characters that resemble Latin alphabet letters to create handles that appear
similar reserved words.
On the other hand, the functionality in Frequency that generates numeric suffixes for handles does
account for the canonical representation. Consequently, there won’t exist two handles that differ only
by similar-looking Unicode characters. This makes the issue low in severity.

Risk
A user could claim a handle with a prefix that closely resemble a reserved handle, potentially
misleading others into believing the user holds a special status.

Mitigation
We recommend adjusting the is_reserved_handle check to compare against the canonicalized
representation of reserved handles. This will ensure that users cannot bypass restrictions by using
visually similar Unicode characters.

7.3 Possible interoperability issue in passkey signature verification

Attack scenario An application submits signatures without <Byte> wrapping, causing
verification failures.

Component Frequency-pallet-passkey

Tracking https://github.com/frequency-chain/frequency/issues/2134

Attack impact Potential interoperability issues with third-party applications.

Severity Info

Status Mitigated [11]

Context
As a convention [12], the polkadot-js-extension always wraps raw data in <Byte> tags to prevent
malicious apps from tricking users into signing unintended transactions. The Frequency blockchain
ecosystem follows the same approach in both the web application for passkey registration and the
runtime code that verifies passkey signatures.

Issue description
Since any entity can develop infrastructure for passkey registration and transaction submission, there
is a risk that some implementations may fail to wrap the signature data in <Byte> tags. This poses an
issue because the check_account_signature function expects binary data to be wrapped in these
tags. If the signature data does not follow the expected format, the passkey signature verification will
fail, resulting in transaction errors.

Risk
This issue could cause interoperability problems with third-party applications that attempt to interact
with the Frequency blockchain but do not adhere to the <Byte> wrapping convention.

Mitigation
To mitigate this, the check_account_signature function should attempt to verify signatures using
both raw data and raw data wrapped in <Byte> tags, like how it is done in the Substrate NFTs pallet
[13]. This would ensure compatibility across different implementations and reduce the risk of
signature verification failures.

Frequency_baseline-security-assurance-report Confidential, Page 17 of 20

8 Bibliography

[1] [Online]. Available: https://github.com/trailofbits/dylint.

[2] [Online]. Available: https://github.com/semgrep/semgrep.

[3] [Online]. Available: https://github.com/srlabs/substrate-runtime-fuzzer.

[4] [Online]. Available: https://github.com/frequency-chain/frequency.

[5] [Online]. Available: https://github.com/srlabs/ziggy.

[6] [Online]. Available: https://github.com/frequency-chain/frequency/issues/2135.

[7] [Online]. Available: https://github.com/frequency-chain/frequency/pull/2136.

[8] [Online]. Available: https://github.com/frequency-chain/frequency/issues/2147.

[9] [Online]. Available: https://github.com/frequency-chain/frequency/pull/2161.

[10] [Online]. Available: https://github.com/frequency-chain/frequency/issues/2134.

[11] [Online]. Available: https://github.com/frequency-chain/frequency/pull/2169.

[12] [Online]. Available: https://github.com/polkadot-js/extension/pull/743.

[13] [Online]. Available: https://github.com/paritytech/polkadot-
sdk/blob/ebcbca3ff606b22b5eb81bcbfaa9309752d64dde/substrate/frame/nfts/src/common
_functions.rs#L41.

Frequency_baseline-security-assurance-report Confidential, Page 18 of 20

Appendix A: Technical services

Security Research Labs delivers extensive technical expertise to meet your security needs. Our
comprehensive services include software and hardware evaluation, penetration testing, red team
testing, incident response, and reverse engineering. We aim to equip your organization with the
security knowledge essential for achieving your objectives.

SOFTWARE EVALUATION We provide assessments of application, system, and mobile code, drawing
on our employees' decades of experience in developing and securing a wide variety of applications.
Our work includes design and architecture reviews, data flow and threat modelling, and code
analysis with targeted fuzzing to find exploitable issues.

BLOCKCHAIN SECURITY ASSESSMENTS We offer specialized security assessments for blockchain
technologies, focusing on the unique challenges posed by decentralized systems. Our services
include smart contract audits, consensus mechanism evaluations, and vulnerability assessments
specific to blockchain infrastructure. Leveraging our deep understanding of blockchain technology,
we ensure your decentralized applications and networks are secure and robust.

POLKADOT ECOSYSTEM SECURITY We provide comprehensive security services tailored to the
Polkadot ecosystem, including parachains, relay chains, and cross-chain communication protocols.
Our expertise covers runtime misconfiguration detection, benchmarking validation, cryptographic
implementation reviews, and XCM exploitation prevention. Our goal is to help you maintain a secure
and resilient Polkadot environment, safeguarding your network against potential threats.

TELCO SECURITY We deliver specialized security assessments for telecommunications networks,
addressing the unique challenges of securing large-scale and critical communication infrastructures.
Our services encompass vulnerability assessments, secure network architecture reviews, and
protocol analysis. With a deep understanding of telco environments, we ensure robust protection
against cyber threats, helping maintain the integrity and availability of your telecommunications
services.

DEVICE TESTING Our comprehensive device testing services cover a wide range of hardware, from
IoT devices and embedded systems to consumer electronics and industrial controls. We perform
rigorous security evaluations, including firmware analysis, penetration testing, and hardware-level
assessments, to identify vulnerabilities and ensure your devices meet the highest security standards.
Our goal is to safeguard your hardware against potential attacks and operational failures.

CODE AUDITING We provide in-depth code auditing services to identify and mitigate security
vulnerabilities within your software. Our approach includes thorough manual reviews, automated
static analysis, and targeted fuzzing to uncover critical issues such as logic flaws, insecure coding
practices, and exploitable vulnerabilities. By leveraging our expertise in secure software
development, we help you enhance the security and reliability of your codebase, ensuring robust
protection against potential threats.

PENETRATION & RED TEAM TESTING We perform high-end penetration tests that mimic the work of
sophisticated attackers. We follow a formal penetration testing methodology that emphasizes
repeatable, actionable results that give your team a sense of the overall security posture of your
organization.

SOURCE CODE-ASSISTED SECURITY EVALUATIONS We conduct security evaluations and penetration
tests based on our code-assisted methodology, allowing us to find deeper vulnerabilities, logic flaws,
and fuzzing targets than a black-box test would reveal. This gives your team a stronger assurance
that the significant security-impacting flaws have been found and corrected.

Frequency_baseline-security-assurance-report Confidential, Page 19 of 20

SECURITY DEVELOPMENT LIFECYCLE CONSULTING We guide organizations through the Security
Development Lifecycle to integrate security at every phase of software development. Our services
include secure coding training, threat modelling, security design reviews, and automated security
testing implementation. By embedding security practices into your development processes, we help
you proactively identify and mitigate vulnerabilities, ensuring robust and secure software delivery
from inception to deployment.

REVERSE ENGINEERING We assist clients with reverse engineering efforts not associated with
malware or incident response. We also provide expertise in investigations and litigation by acting as
experts in cases of suspected intellectual property theft.

HARDWARE EVALUATION We evaluate new hardware devices ranging from novel microprocessor
designs, to embedded systems, to mobile devices, to consumer-facing end products, to core
networking equipment that powers Internet backbones.

VULNERABILITY PRIORITIZATION We streamline vulnerability information processing by
consolidating data from compliance checks, audit findings, penetration tests, and red team insights.
Our prioritization and automation strategies ensure that the most critical vulnerabilities are
addressed promptly, enhancing your organization's security posture. By systematically categorizing
and prioritizing risks, we help you focus on the most impactful threats, ensuring efficient and
effective remediation efforts.

SECURITY MATURITY REVIEW We conduct comprehensive security maturity reviews to evaluate
your organization's current security practices and identify areas for improvement. Our assessments
cover a wide range of criteria, including policy development, risk management, incident response,
and security awareness. By benchmarking against industry standards and best practices, we provide
actionable insights and recommendations to enhance your overall security posture and guide your
organization toward achieving higher levels of security maturity.

SECURITY TEAM INCUBATION We provide comprehensive support for building security teams for
new, large-scale IT ventures. From Day 1, our ramp-up program offers essential security advisory and
assurance, helping you establish a robust security foundation. With our proven track record in
securing billion-dollar investments and launching secure telco networks globally, we ensure your
new enterprise is protected against cyber threats from the start.

HACKING INCIDENT SUPPORT We offer immediate and comprehensive support in the event of a
hacking incident, providing expert analysis, containment, and remediation. Our services include
detailed forensics, malware analysis, and root cause determination, along with actionable
recommendations to prevent future incidents. With our rapid response and deep expertise, we help
you mitigate damage, recover swiftly, and strengthen your defences against potential threats.

Frequency_baseline-security-assurance-report Confidential, Page 20 of 20

Appendix B: Risk and advisory services

Security Research Labs enhances an organization's security and risk management capabilities. We
offer a practical approach to information security that aligns with our clients' tolerance for security
processes and programs. Our team of industry-leading experts brings a diverse range of security and
risk management skills, providing clients with deep technical expertise, strategic security leadership,
and effective incident response capabilities whenever needed.

