
Exploiting aToken liquidity addition
in stableswap - post mortem

 Updated July 7, 2025 •  7 min read

Jakub Panik

Summary

On June 18th 2025 at 2:48 PM CEST, the Intergalactic team received a report via the Hydration Immunefi

bug bounty programme, disclosing a critical vulnerability in the transfer function of aTokens, which could

have potentially enabled holders of aTokens (i.e. tokens deposited on the Hydration Money Market) to mint

more stablepool shares than they would have been entitled to.

Within 2 hours after the submission, the Intergalactic team managed to evaluate the report, having

acknowledged the severity of the vulnerability, the Technical committee performed liquidity addition

pause for GDOT pool, which was the only affected pool in question. Securing the funds at risk.

Immediately after this, an emergency runtime upgrade was proposed on Hydration OpenGov. Due to the

sensitive nature of the issue, the upgrade was proposed in “stealth”, i.e. the code changes were not

published on GitHub until its enactment at the same time as the liquidity add pause was proposed. (you

can see them now here). Approximately 7 hours after the report, the fixed Hydration runtime was applied

on the mainnet, and the transaction pause was removed by the Technical committee.

Given the severity of this vulnerability, the IGL team has prepared a list of measures which will help

improve the security posture of the development process, with the goal of minimizing the probability that

similar vulnerabilities get introduced in the future.

According to our estimates, the impact of the vulnerability - which remained unexploited - could have led

to up to a $22M loss for the Protocol and LPs in Stablepools with aTokens. In accordance with the rules of

the Hydration Immunefi bug bounty programme, this is a Critical issue and the whitehat is entitled to the

maximum payout of $500,000 in HDX.

To avoid sudden price pressure on HDX, it was negotiated with the whitehat, that the payout is done in 2

parts: $250,000 in HDX vested for 20 months, and $250,000 in a stablecoins. This is still subject to

ratification by Hydration OpenGov.

The vulnerability

Hydration uses EVM version of AAVE money market integrated into its Substrate chain allowing users to

lend and borrow tokens across both ERC-20 and Substrate-native assets. AAVE introduces the concept of

aTokens, yield-bearing assets which are rebasing (The token amount in wallets change over time). This

 Hyperspace  

Contents

https://hashnode.com/@jakpan
https://hashnode.com/@jakpan
https://hydration.subsquare.io/referenda/99
https://hydration.subsquare.io/referenda/99
https://github.com/galacticcouncil/hydration-node/commit/fee33a6de4a54ba6044149743a608b49afea5374
https://hashnode.com/?utm_source=https%3A%2F%2Fjakpan.hashnode.dev&utm_medium=referral&utm_campaign=blog_header_logo&utm_content=logo
https://jakpan.hashnode.dev/

behavior led to errors in calculation in some scenarios on Hydration, such as when converting between

native tokens and aTokens, or when transferring aTokens from one account to another. As a result, for

some cases the Runtime was unable to transfer the full aToken balance of a user, leaving behind small

residual amounts ("dust").

Since ERC20 has no concept of existential deposit (ED), this dust is never automatically cleaned up. Over

time, this could lead to increased gas usage, performance degradation, and confusing balance displays.

To address this, following issue was opened:

https://github.com/galacticcouncil/hydration-node/issues/1092

Initially, the plan was to fix the issue within the Hydration route executor implementation, but later the

decision was made to solve it in the Currencies pallet’s transfer function instead, providing a generic

solution for all aToken transfers.

The implemented solution was the following: when transferring aTokens, if the remaining balance after the

transfer is less than the ED, the Runtime would perform an AAVE withdraw all on behalf of the

recipient, ensuring that all aTokens are withdrawn, sent to the recipient, and no dust remains on the origin

account. To calculate whether the remaining balance was below ED and trigger a transfer including AAVE

withdraw all , the following line was introduced to the Runtime (among others):

Source code: hydration-node/runtime/hydradx/src/evm/aave_trade_executor.rs at c16eeb7c

The problem is that this line uses saturating math, meaning even if the user’s balance is lower than the

transfer amount, the subtraction does not panic or fail, it just returns zero. As a result, the system would

execute an AAVE withdraw all on behalf of the recipient even when the sender had insufficient

balance, leading to a successful call regardless.

On its own, this might not have posed a critical risk, however, since this change was made at the generic

transfer level, it caused unintended side effects across all parts of the system that rely on Hydration’s

transfer logic, resulting in a scope creep.

The most critical affected component was the Stableswap::add_liquidity_shares extrinsic, which

mints liquidity shares for the user in exchange for a user-provided asset. At the end of this extrinsic, two

key actions take place: minting the user-specified amount of shares and transferring the correspondin

g amount of the asset.

In a potential exploit scenario, a user could call the extrinsic with an aToken amount greater than their

actual balance. Because the transfer logic no longer failed when the user had insufficient funds, the

extrinsic executed successfully: it minted the user-specified number of shares and attempted to transfer

the asset. Since we had a missing balance check in aToken transfer logic, the transfer did not fail,

resulting in an invalid share minting that was not backed by real assets.

Mitigation

To mitigate the vulnerability described above, we disabled the fix for the aToken rounding issue. We will be

further working on proper fix of the rounding issue that will be audited.

Follow-up Measures

 ...

 let diff = atoken_balance.saturating_sub(amount);

 ...

https://github.com/galacticcouncil/hydration-node/issues/1092
https://github.com/galacticcouncil/hydration-node/blob/master/pallets/route-executor/src/lib.rs
https://github.com/galacticcouncil/hydration-node/blob/c16eeb7c9d787dad1cad2c69903e014f1bfa7ea5/pallets/currencies/src/lib.rs#L293
https://github.com/galacticcouncil/hydration-node/blob/c16eeb7c9d787dad1cad2c69903e014f1bfa7ea5/runtime/hydradx/src/evm/aave_trade_executor.rs#L154
https://github.com/galacticcouncil/hydration-node/blob/c16eeb7c9d787dad1cad2c69903e014f1bfa7ea5/pallets/stableswap/src/lib.rs#L562
https://github.com/galacticcouncil/hydration-node/blob/c16eeb7c9d787dad1cad2c69903e014f1bfa7ea5/pallets/stableswap/src/lib.rs#L1651-L1652
https://github.com/galacticcouncil/hydration-node/blob/c16eeb7c9d787dad1cad2c69903e014f1bfa7ea5/pallets/stableswap/src/lib.rs#L1651-L1652
https://github.com/galacticcouncil/hydration-node/commit/fee33a6de4a54ba6044149743a608b49afea5374

1. Avoid Saturating Math by Default

Saturating arithmetic (e.g. saturating_sub) should not be used by default, as it can silently hide

critical errors like underflows.

In this incident, the use of saturating_sub allowed a transfer to proceed even when the sender had

insufficient balance, leading to unintended consequences.

Actions: Default to checked_* math operations, use saturating math only when explicitly required and

accompanied by comments explaining the rationale.

We will be implementing a code watcher that will automatically check for the usage of this math in the

proposed PRs.

2. Improve Property-Based and Edge Case Testing

The modified transfer logic lacked rigorous property tests covering edge conditions.

Original unit tests were not properly adapted to cover changes introduced by the new transfer

behavior.

Actions: We will be Implementing property-based tests and ensure that our tests explicitly differentiate

between saturating and checked math behaviour.

3. Strengthen Integration Tests

Current integration tests are too far from real-world mainnet scenarios.

Actions: Improve test environments to more closely reflect mainnet dynamics, and create testing

guidelines that enforce this.

4. Stricter Asset Balance Checks

Internal logic trusts other pallets (e.g. EVM subsystem, aTokens) too much, without validating

balances.

Actions: Be less trusting of external pallet behaviour. Introduce explicit sanity checks and asserts for

balances and asset movements in high-impact logic.

5. Circuit Breakers

Implementing a token minting limit per asset to enable automatic timed asset lockdown functionality

in case of critical scenario.

Actions: Add safeguards that limit minting and burning of excessive amount of tokens per time period.

Limit thresholds should be calibrated based normal chain actions and on bug the bounty, making it

always more plausible for a hacker to report the issue than to exploit it.

6. Better Pull Request Classification

This issue stemmed from a seemingly small change with wide-ranging consequences.

Action: Label PRs based on their potential scope and subsystem integrations (e.g. AAVE, EVM,

Stableswap). Assign security audit or extra review automatically based on label and require impact

analysis and mitigation plan for PRs affecting shared or critical components.

7. Extra Caution Around EVM Subsystem

EVM-related integrations and contracts carry higher risks.

Actions: Introduce stricter review and testing requirements for any code interacting with the EVM,

including multi-system transfer logic.

8. Fuzz Testing with Mainnet-Like Setup

Fuzzing was missing or insufficient for the affected feature.

Actions: Integrate fuzzing as part of the dev and testnet lifecycle of every new feature, ensure fuzzing

covers realistic state and liquidity levels, Introduce invariants into the code that validate crucial business

logic and allow the fuzzer to trigger a crash.

9. More Frequent and Continuous Audits

The fix introducing the issue was not audited as one of the few components in Hydration even though

it touched critical transfer function.

Actions: Double down on auditing and continuous audits of features

Moving forward

While the response time from receiving the bug report notification to protecting the funds was under 2

hours, whole Intergalactic team is committed to improving the internal standards and is committed to not

let this happen in the future. As such, we have implemented or started implementing all of the points

above.

Nevertheless this shows how important the Immunefi bug bounty programme is as the final line of

defence. We are grateful for the work of all of the whitehats looking at the code and reporting issues as

this, together with good security practices and continuous audits, helps keep the Hydration chain secure.

More from this blog

Hydration oracle manipulation - post mortem

On the 3rd of July 2024 we have received a report in the Immunefi platform from top hacker on the platform labeled as “Critical”

called “Risk free oracle manipulation”. and it looked as following: Hydra is an interesting substrate based protocol tha...

Mar 7, 2025  13 min read


Subscribe to the newsletter.

Get new posts in your inbox.

Snek Stall Post Mortem

How Basilisk stopped at block #2 145 599 and how we'll fix it

you@example.com Subscribe

https://jakpan.hashnode.dev/hydration-oracle-manipulation-post-mortem
https://jakpan.hashnode.dev/snek-stall-post-mortem

Nov 9, 2022  5 min read


Hyperspace

3 posts published



© 2026 Hyperspace

Members Archive Privacy Terms

 Sitemap  RSS

https://jakpan.hashnode.dev/snek-stall-post-mortem
https://hashnode.com/@jakpan
https://jakpan.hashnode.dev/members
https://jakpan.hashnode.dev/archive
https://hashnode.com/privacy
https://hashnode.com/terms
https://jakpan.hashnode.dev/sitemap.xml
https://jakpan.hashnode.dev/rss.xml
https://hashnode.com/?utm_source=https%3A%2F%2Fjakpan.hashnode.dev&utm_medium=referral&utm_campaign=blog_footer_logo&utm_content=logo

