
···

Bifrost (veth-3.0 && slpx-v2)

Smart Contract Security Audit

No. 202509251035

Sep 25th, 2025

SECURING BLOCKCHAIN ECOSYSTEM

WWW.BEOSIN.COM


```··

veth-3.0 && slpx-v2 Security Audit

Page 2 of 19

Contents

1 Overview ........................................................................................................................................................... 6

1.1 Project Overview ................................................................................................................................... 6

1.2 Audit Overview ......................................................................................................................................6

1.3 Audit Method ......................................................................................................................................... 6

2 Findings ............................................................................................................................................................ 8

[Bifrost-01] The asyncMint Function Sets the redeem Parameter to true ........................................9

[Bifrost-02] Compilation issueswith the test script ......................................................................... 10

[Bifrost-03] Missing Function in the Called Contract .........................................................................11

3 Appendix ........................................................................................................................................................ 12

3.1 Vulnerability Assessment Metrics and Status in Smart Contracts ............................................. 12

3.2 Audit Categories ................................................................................................................................ 15

3.3 Disclaimer ........................................................................................................................................... 17

3.4 About Beosin ...................................................................................................................................... 18



```··

veth-3.0 && slpx-v2 Security Audit

Page 3 of 19

Summary of Audit Results

After auditing, 1 low-risk and 2 Info items were identified in the Bifrost (veth-3.0 && slpx-v2).

Specific audit details will be presented in the Findings section. Users should pay attention to the

following aspects when interacting with this project:

Low
Fixed : 1

Info
Fixed : 2


```··

veth-3.0 && slpx-v2 Security Audit

Page 4 of 19

Project Description:

Business overview

The Solidity audit in this review covers the following contracts under the vETH-3.0 module:

HyperbridgeHandler, LayerZeroHandler, SnowbridgeHandler, SlpForward, SlpProxy, SlpSsvManager,

SlpVault, SlpWithdrawalVault, andWhitelistBytes32.

For slpx v2, the audit includes the following contracts: BridgeVault, Oracle, VTokenBase, VToken, and

VETH. All other contracts are outside the scope of this audit.

vETH-3.0 Module Overview

Bridges Contracts：All contracts under the bridges folder use a whitelist for access control. Their

primary role is to facilitate cross-chain transfers across three different bridging protocols.

SlpForward：This contract distributes assets to different bridges. It supports cross-chain transfers of

either the stored WETHwithin the contract or the amount sent by the user in the current transaction.

SlpProxy：Acts as a central management contract with the following responsibilities,Handling staking

(bond/unbond) with the ETH → ETH2.0 DepositContract,Registering and removing validators on the

SSV Network. Interacting with cross-chain bridges (Snowbridge, Hyperbridge, LayerZero, etc.) to

return ETH to Bifrost or L2. Managing fund vaults, which are categorized into bond, bridge, and

withdrawal vaults.

SlpSsvManager: Provides the interface for registering and removing validators in the _ssvNetwork. It

also handles staking and withdrawal operations, and includes liquidation functionality for clusters in

order to retrieve _ssvToken.

SlpVault: Implements access-controlled storage and retrieval of the platform token.

ValidatorManager: A batch management tool for Ethereum validators. It is designed around EIP-7002

and EIP-7251, providing functionality for batch consolidation, switching, and exiting of validators. The

contract also includes built-in permission control and error handlingmechanisms.

WhitelistBytes32: Implements whitelist management logic to enforce access restrictions.

slpx v2 Module Overview

VToken Suite:This module consists of three contracts in sequential inheritance: VTokenBase, VToken,

and VETH. VTokenBase implements the core logic, modifying the ERC4626 standard for asset-to-share

conversion. The conversion ratio is provided by the Oracle rather than reflecting the actual on-chain

balance. Each conversion is subject to a fee.



```··

veth-3.0 && slpx-v2 Security Audit

Page 5 of 19

Functions asyncMint and asyncRedeem send the updated token amounts from the current cycle

across chains to Bifrost. Functions withdrawComplete and withdrawCompleteTo allow users to claim

withdrawals based on queued and pending amounts, determining the redeemable and requested

quantities.

Oracle:The contract owner can adjust the conversion fee ratio.The contract supports a pause

mechanism: when paused, conversions are disabled.Price updates are applied only after the contract

receives an onAccept callback.

BridgeVault: Serves as storage for assets exchanged via VToken. Assets are withdrawn from the vault

during redemption operations.


```··

veth-3.0 && slpx-v2 Security Audit

Page 6 of 19

1 Overview

1.1 Project Overview

Project Name Bifrost (veth-3.0 && slpx-v2)

Project Language Solidity

Platform Ethereum, Base

Code Base
https://github.com/bifrost-io/vETH-3.0-contract/tree/audit-1.0.0

https://github.com/bifrost-io/slpx-contracts-v2/releases/tag/audit-1.0.0

Commit Hash

vETH-3.0:

4cfd6de9fe2a02730284c5f404ef5648654c29ae

a61c2cbc027cbdd695f274bd7739bfc10f6ce40d

45f215b4936d95f43ec2715b2983ed6595db8c93

Slpx v2:

3f88e1d77c45da5953b032e2a14cf314d3b3733f

9a546046806e3b15526401a7e93013e32d303cfe

1.2 Audit Overview

Audit work duration: Sep 5, 2025 – Sep 19, 2025

Update time: Sep 25, 2025

Audit team: Beosin Security Team

1.3 Audit Method

The audit methods are as follows:

1. Formal Verification

Formal verification is a technique that uses property-based approaches for testing and verification.

Property specifications define a set of rules using Beosin's library of security expert rules. These rules

call into the contracts under analysis and make various assertions about their behavior. The rules of

the specification play a crucial role in the analysis. If the rule is violated, a concrete test case is

provided to demonstrate the violation.

2. Manual Review



```··

veth-3.0 && slpx-v2 Security Audit

Page 7 of 19

Using manual auditing methods, the code is read line by line to identify potential security issues. This

ensures that the contract's execution logic aligns with the client's specifications and intentions,

thereby safeguarding the accuracy of the contract's business logic.

Themanual audit is divided into three groups to cover the entire auditing process:

The Basic Testing Group is primarily responsible for interpreting the project's code and conducting

comprehensive functional testing.

The Simulated Attack Group is responsible for analyzing the audited project based on the collected

historical audit vulnerability database and security incident attack models. They identify potential

attack vectors and collaborate with the Basic Testing Group to conduct simulated attack tests.

The Expert Analysis Group is responsible for analyzing the overall project design, interactions with third

parties, and security risks in the on-chain operational environment. They also conduct a review of the

entire audit findings.

3. Static Analysis

Static analysis is a function of examining code during compilation or static analysis to detect issues.

Beosin-VaaS can detect more than 100 common smart contract vulnerabilities through static analysis,

such as reentrancy and block parameter dependency. It allows early and efficient discovery of

problems to improve code quality and security.


```··

veth-3.0 && slpx-v2 Security Audit

Page 8 of 19

2 Findings

Index Risk description Severity level Status

Bifrost-01 The asyncMint function sets the redeem parameter
to true

Low Fixed

Bifrost-02 Compilation issues with the test script Info Fixed

Bifrost-03 Missing function in the called contract Info Fixed



```··

veth-3.0 && slpx-v2 Security Audit

Page 9 of 19

Finding Details:

[Bifrost-01] The asyncMint Function Sets the redeem Parameter to
true

Severity Level Low

Lines ValidatorManager.sol #L 82

Type Business Security

Description The batchConsolidation function validates whether the provided msg.value

meets the required cost; however, any excess amount is not refunded and

remains locked in the contract. This results in users’ overpaid funds being

stranded and irretrievable, leading to potential value loss.

function batchConsolidation(bytes[] calldata sourcePubkeys, bytes

calldata targetPubkey)

external

payable

onlyAuthority(msg.sender)

{

uint256 batchSize = sourcePubkeys.length;

Recommendation

It is recommended to enforce that the amount of msg.value provided in the

batchConsolidation function must exactly match the required fee, thereby

preventing excess funds. Alternatively, consider implementing a withdrawal

function that allows the admin or users to reclaim any excess funds, ensuring

they are not permanently locked in the contract.

Status Fixed.

uint256 exitFee = getExitFee();

require(msg.value == batchSize * exitFee,

InsufficientFeePerValidator());


```··

veth-3.0 && slpx-v2 Security Audit

Page 10 of 19

[Bifrost-02] Compilation issues with the test script

Severity Level Info

Lines foundry.toml #L 10

Type Business Security

Description In the remappings section of foundry.toml, if the mapping for

@polytope-labs/ismp-solidity does not end with a /, it will cause compilation

errors.

remappings = [

"@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts",

"@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upg

radeable/contracts/",

"@polytope-labs/ismp-solidity/=node_modules/@polytope-labs/ismp-soli

dity",

Recommendation
It is recommended to append a / to the @polytope-labs/ismp-solidity mapping

to ensure successful compilation.

Status Fixed.

"@polytope-labs/ismp-solidity/=node_modules/@polytope-labs/ismp-

solidity/",

"@polytope-labs/solidity-merkle-trees/=node_modules/@polytope-la

bs/solidity-merkle-trees/"

]



```··

veth-3.0 && slpx-v2 Security Audit

Page 11 of 19

[Bifrost-03] Missing Function in the Called Contract

Severity Level Info

Lines LayerZeroHandler.t.sol #L 141

Type Business Security

Description In the tests for the LayerZeroHandler contract, vm.mockCall was used on the

stargateRouter to simulate the swapETH function. However, the actual

deployed address (0x2836045A50744FB50D3d04a9C8D18aD7B5012102) does

not contain an implementation of swapETH. Before going live, the project must

ensure that the stargateRouter contract includes the proper implementation of

swapETH.

vm.mockCall(

address(stargateRouter),

abi.encodeWithSignature("swapETH(uint16,address,bytes,uin

t256,uint256)"),

abi.encode()

);

uint256 initialBalance = SENDER.balance;

vm.prank(SENDER);

uint256 result = handler.sendToken{value: AMOUNT +

lzFee}(address(0), TO_ADDRESS, AMOUNT, data);

Recommendation
It is recommended that the project ensures the stargateRouter contract

includes the correct implementation of swapETH.

Status Fixed.

address public constant SEPOLIA_STARGATE_ROUTER =

0x676Fa8D37B948236aAcE03A0b34fc0Bc37FABA8D;


```··

veth-3.0 && slpx-v2 Security Audit

Page 12 of 19

3 Appendix

3.1 Vulnerability Assessment Metrics and Status in Smart Contracts

3.1.1 Metrics

In order to objectively assess the severity level of vulnerabilities in blockchain systems, this report

provides detailed assessment metrics for security vulnerabilities in smart contracts with reference to

CVSS 3.1 (Common Vulnerability Scoring System Ver 3.1).

According to the severity level of vulnerability, the vulnerabilities are classified into four levels:

"critical", "high", "medium" and "low". It mainly relies on the degree of impact and likelihood of

exploitation of the vulnerability, supplemented by other comprehensive factors to determine of the

severity level.

Impact

Likelihood
Severe High Medium Low

Probable Critical High Medium Low

Possible High Medium Medium Low

Unlikely Medium Medium Low Info

Rare Low Low Info Info



```··

veth-3.0 && slpx-v2 Security Audit

Page 13 of 19

3.1.2 Degree of impact

 Critical

Critical impact generally refers to the vulnerability can have a serious impact on the confidentiality,

integrity, availability of smart contracts or their economic model, which can cause substantial

economic losses to the contract business system, large-scale data disruption, loss of authority

management, failure of key functions, loss of credibility, or indirectly affect the operation of other

smart contracts associated with it and cause substantial losses, as well as other severe and mostly

irreversible harm.

 High

High impact generally refers to the vulnerability can have a relatively serious impact on the

confidentiality, integrity, availability of the smart contract or its economic model, which can cause a

greater economic loss, local functional unavailability, loss of credibility and other impact to the

contract business system.

 Medium

Medium impact generally refers to the vulnerability can have a relatively minor impact on the

confidentiality, integrity, availability of the smart contract or its economic model, which can cause a

small amount of economic loss to the contract business system, individual business unavailability and

other impact.

 Low

Low impact generally refers to the vulnerability can have a minor impact on the smart contract, which

can pose certain security threat to the contract business system and needs to be improved.

3.1.3 Likelihood of Exploitation

 Probable

Probable likelihood generally means that the cost required to exploit the vulnerability is low, with no

special exploitation threshold, and the vulnerability can be triggered consistently.

 Possible

Possible likelihood generally means that exploiting such vulnerability requires a certain cost, or there

are certain conditions for exploitation, and the vulnerability is not easily and consistently triggered.


```··

veth-3.0 && slpx-v2 Security Audit

Page 14 of 19

 Unlikely

Unlikely likelihood generally means that the vulnerability requires a high cost, or the exploitation

conditions are very demanding and the vulnerability is highly difficult to trigger.

 Rare

Rare likelihood generally means that the vulnerability requires an extremely high cost or the conditions

for exploitation are extremely difficult to achieve.

3.1.4 Fix Results Status

Status Description

Fixed The project party fully fixes a vulnerability.

Partially Fixed The project party did not fully fix the issue, but only mitigated the
issue.

Acknowledged The project party confirms and chooses to ignore the issue.



```··

veth-3.0 && slpx-v2 Security Audit

Page 15 of 19

3.2 Audit Categories

No. Categories Subitems

1 Coding Conventions

Compiler Version Security

Deprecated Items

Redundant Code

require/assert Usage

Gas Consumption

2 General Vulnerability

Integer Overflow/Underflow

Reentrancy

Pseudo-randomNumber Generator (PRNG)

Transaction-Ordering Dependence

DoS (Denial of Service)

Function Call Permissions

call/delegatecall Security

Returned Value Security

tx.origin Usage

Replay Attack

Overriding Variables

Third-party Protocol Interface Consistency

3 Business Security

Business Logics

Business Implementations

Manipulable Token Price

Centralized Asset Control

Asset Tradability

Arbitrage Attack

Beosin classified the security issues of smart contracts into three categories: Coding Conventions,

General Vulnerability, Business Security. Their specific definitions are as follows:

 Coding Conventions


```··

veth-3.0 && slpx-v2 Security Audit

Page 16 of 19

Audit whether smart contracts follow recommended language security coding practices. For example,

smart contracts developed in Solidity language should fix the compiler version and do not use

deprecated keywords.

 General Vulnerability

General Vulnerability include some common vulnerabilities that may appear in smart contract projects.

These vulnerabilities are mainly related to the characteristics of the smart contract itself, such as

integer overflow/underflow and denial of service attacks.

 Business Security

Business security is mainly related to some issues related to the business realized by each project, and

has a relatively strong pertinence. For example, whether the lock-up plan in the code match the white

paper, or the flash loan attack caused by the incorrect setting of the price acquisition oracle.

*Note that the project may suffer stake losses due to the integrated third-party protocol. This is not something

Beosin can control. Business security requires the participation of the project party. The project party and users

need to stay vigilant at all times.



```··

veth-3.0 && slpx-v2 Security Audit

Page 17 of 19

3.3 Disclaimer

The Audit Report issued by Beosin is related to the services agreed in the relevant service agreement.

The Project Party or the Served Party (hereinafter referred to as the "Served Party") can only be used

within the conditions and scope agreed in the service agreement. Other third parties shall not transmit,

disclose, quote, rely on or tamper with the Audit Report issued for any purpose.

The Audit Report issued by Beosin is made solely for the code, and any description, expression or

wording contained therein shall not be interpreted as affirmation or confirmation of the project, nor

shall any warranty or guarantee be given as to the absolute flawlessness of the code analyzed, the code

team, the business model or legal compliance.

The Audit Report issued by Beosin is only based on the code provided by the Served Party and the

technology currently available to Beosin. However, due to the technical limitations of any organization,

and in the event that the code provided by the Served Party is missing information, tampered with,

deleted, hidden or subsequently altered, the audit report may still fail to fully enumerate all the risks.

The Audit Report issued by Beosin in no way provides investment advice on any project, nor should it be

utilized as investment suggestions of any type. This report represents an extensive evaluation process

designed to help our customers improve code quality while mitigating the high risks in blockchain.


```··

veth-3.0 && slpx-v2 Security Audit

Page 18 of 19

3.4 About Beosin

Beosin is the first institution in the world specializing in the construction of blockchain

security ecosystem. The core team members are all professors, postdocs, PhDs, and Internet

elites from world-renowned academic institutions. Beosin has more than 20 years of research

in formal verification technology, trusted computing, mobile security and kernel security, with

overseas experience in studying and collaborating in project research at well-known

universities. Through the security audit and defense deployment of more than 2,000 smart

contracts, over 50 public blockchains and wallets, and nearly 100 exchanges worldwide,

Beosin has accumulated rich experience in security attack and defense of the blockchain field,

and has developed several security products specifically for blockchain.



Official Website
https://www.beosin.com

Telegram
https://t.me/beosin

X
https://x.com/Beosin_com

Email
service@beosin.com

LinkedIn
https://www.linkedin.com/company/beosin/

https://www.beosin.com
https://t.me/beosin

	1 Overview
	1.1 Project Overview
	1.2 Audit Overview
	1.3 Audit Method

	2 Findings
	[Bifrost-01] The asyncMint Function Sets the redee
	[Bifrost-02] Compilation issues with the test scri
	[Bifrost-03] Missing Function in the Called Contra

	3 Appendix
	3.1 Vulnerability Assessment Metrics and Status in
	3.2 Audit Categories
	3.3 Disclaimer
	3.4 About Beosin


