
Audit Report

Bifrost Finance Leveraged
Staking

v1.0

March 11, 2024

1



Table of Contents
Table of Contents 2

License 3

Disclaimer 3

Introduction 5

Purpose of This Report 5

Codebase Submitted for the Audit 5

Methodology 7

Functionality Overview 7

How to Read This Report 8

Code Quality Criteria 9

Summary of Findings 10

Detailed Findings 12

1. Static calculation of weights for the claim_reward extrinsic enables DoS attack
vector 12

2. Price feeder centralization risks 12

3. Multiple foreign_asset_id can be mapped to the same asset_id 13

4. Missing check that foreign_asset_id is specifically of the ForeignAsset type 14

5. Default mantissa precision can lead to an incorrect price 14

6. Missing validation for the lend_token_id 15

7. The force_update_market extrinsic could break existing markets 15

8. Static calculation of weights for the update_liquidation_fee_collateral extrinsic 16

9. Missing validation of liquidate_incentive_reserved_factor during market update 17

10. Incorrect interest is calculated if requested before market initialization 17

11. Inefficient active markets search 18

12. Inefficient market data aggregation 18

13. Redundant storage queries 19

14. Code duplication 19

15. The get_special_asset_price function consistently returns None 20

16. Inefficient reduce_reserves extrinsic execution in case of reduce_reserves
parameter equal to zero 20

17. Use of magic numbers decreases maintainability 21

18. State change events are emitted even if no change has occurred 21

19. Miscellaneous comments 22

2



License

THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION-NODERIVATIVES
4.0 INTERNATIONAL LICENSE.

3

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/


Disclaimer
THE CONTENT OF THIS AUDIT REPORT IS PROVIDED “AS IS”, WITHOUT REPRESENTATIONS
AND WARRANTIES OF ANY KIND.

THE AUTHOR AND HIS EMPLOYER DISCLAIM ANY LIABILITY FOR DAMAGE ARISING OUT
OF, OR IN CONNECTION WITH, THIS AUDIT REPORT.

THIS AUDIT REPORT WAS PREPARED EXCLUSIVELY FOR AND IN THE INTEREST OF THE
CLIENT AND SHALL NOT CONSTRUE ANY LEGAL RELATIONSHIP TOWARDS THIRD
PARTIES. IN PARTICULAR, THE AUTHOR AND HIS EMPLOYER UNDERTAKE NO LIABILITY OR
RESPONSIBILITY TOWARDS THIRD PARTIES AND PROVIDE NO WARRANTIES REGARDING
THE FACTUAL ACCURACY OR COMPLETENESS OF THE AUDIT REPORT.

FOR THE AVOIDANCE OF DOUBT, NOTHING CONTAINED IN THIS AUDIT REPORT SHALL BE
CONSTRUED TO IMPOSE ADDITIONAL OBLIGATIONS ON COMPANY, INCLUDING WITHOUT
LIMITATION WARRANTIES OR LIABILITIES.

COPYRIGHT OF THIS REPORT REMAINS WITH THE AUTHOR.

This audit has been performed by

Oak Security

https://oaksecurity.io/
info@oaksecurity.io

4

https://oaksecurity.io/
mailto:info@oaksecurity.io


Introduction

Purpose of This Report

Oak Security has been engaged by BIFROST FOUNDATION (BIFROST GLOBAL LTD.) to
perform a security audit of Bifrost Finance Leveraged Staking.

The objectives of the audit are as follows:

1. Determine the correct functioning of the protocol, in accordance with the project
specification.

2. Determine possible vulnerabilities, which could be exploited by an attacker.

3. Determine smart contract bugs, which might lead to unexpected behavior.

4. Analyze whether best practices have been applied during development.

5. Make recommendations to improve code safety and readability.

This report represents a summary of the findings.

As with any code audit, there is a limit to which vulnerabilities can be found, and unexpected
execution paths may still be possible. The author of this report does not guarantee complete
coverage (see disclaimer).

Codebase Submitted for the Audit
The audit has been performed on the following target:

Repository https://github.com/bifrost-finance/bifrost

Commit fcf0acbaa93b631a3618af07e986c5c9c1c4ed38

Scope The following pallets and all the inherent imports from same the repository
i.e. are in scope:

.
└── pallets

├── lend-market
├── leverage-staking
└── prices

5

https://github.com/bifrost-finance/bifrost


Fixes verified
at commit

a0aef4bb83bab000cb99b8fb96e38b58afce432d

Note that changes to the codebase beyond fixes after the initial audit
have not been in scope of our fixes review.

6



Methodology
The audit has been performed in the following steps:

1. Gaining an understanding of the code base’s intended purpose by reading the
available documentation if applicable.

2. Automated source code and dependency analysis.
3. Manual line-by-line analysis of the source code for security vulnerabilities and use of

best practice guidelines, including but not limited to:
a. Race condition analysis
b. Under-/overflow issues
c. Key management vulnerabilities

4. Report preparation

Functionality Overview
Bifrost is a multi-chain liquidity derivatives platform in the Polkadot ecosystem. It offers
standardized interest-bearing assets across the Web3 space through the use of
Cross-Consensus Messaging (XCM), with the vision of seamless liquidity of staking derivatives
(LSD) across any blockchain network.

As a DeFi protocol, Bifrost facilitates connections between Polkadot and various Proof of
Stake (PoS) blockchains, enabling the creation, exchange, lending, and borrowing of staking
derivatives.

The audit scope is limited to the lend-market, leverage-staking and prices pallets.

7



How to Read This Report
This report classifies the issues found into the following severity categories:

Severity Description

Critical A serious and exploitable vulnerability that can lead to loss of funds,
unrecoverable locked funds, or catastrophic denial of service.

Major A vulnerability or bug that can affect the correct functioning of the
system, lead to incorrect states or denial of service.

Minor A violation of common best practices or incorrect usage of primitives,
which may not currently have a major impact on security, but may do so
in the future or introduce inefficiencies.

Informational Comments and recommendations of design decisions or potential
optimizations, that are not relevant to security. Their application may
improve aspects, such as user experience or readability, but is not strictly
necessary. This category may also include opinionated
recommendations that the project team might not share.

The status of an issue can be one of the following: Pending, Acknowledged, or Resolved.

Note that audits are an important step to improving the security of smart contracts and can
find many issues. However, auditing complex codebases has its limits and a remaining risk is
present (see disclaimer).

Users of the system should exercise caution. In order to help with the evaluation of the
remaining risk, we provide a measure of the following key indicators: code complexity, code
readability, level of documentation, and test coverage. We include a table with these criteria
below.

Note that high complexity or low test coverage does not necessarily equate to a higher risk,
although certain bugs are more easily detected in unit testing than in a security audit and vice
versa.

8



Code Quality Criteria
The auditor team assesses the codebase’s code quality criteria as follows:

Criteria Status Comment

Code complexity Medium -

Code readability and clarity Low-Medium The comments in the codebase
were not sufficient to describe
functionalities and the transaction
flow.

Level of documentation Low The client did not provide any
documentation.

Test coverage Medium The test coverage for the audited
pallets is:

● leverage-staking:
35.76%

● lend-market: 67.44%
● prices: 51.25%

9



Summary of Findings

No Description Severity Status

1 Static calculation of weights for the
claim_reward extrinsic enables DoS attack
vector

Major Resolved

2 Price feeder centralization risks Minor Acknowledged

3 Multiple foreign_asset_id can be mapped to
the same asset_id

Minor Resolved

4 Missing check that foreign_asset_id is
specifically of the ForeignAsset type

Minor Resolved

5 Default mantissa precision can lead to an incorrect
price

Minor Acknowledged

6 Missing validation for the lend_token_id Minor Resolved

7 The force_update_market extrinsic could
break existing markets

Minor Resolved

8 Static calculation of weights for the
update_liquidation_fee_collateral
extrinsic

Minor Resolved

9 Missing validation of
liquidate_incentive_reserved_factor
during market update

Minor Resolved

10 Incorrect interest is calculated if requested before
market initialization

Minor Resolved

11 Inefficient active markets search Informational Resolved

12 Inefficient market data aggregation Informational Acknowledged

13 Redundant storage queries Informational Acknowledged

14 Code duplication Informational Acknowledged

15 The get_special_asset_price function
consistently returns None

Informational Resolved

16 Inefficient reduce_reserves extrinsic execution
in case of reduce_reserves parameter equal to
zero

Informational Resolved

10



17 Use of magic numbers decreases maintainability Informational Acknowledged

18 State change events are emitted even if no change
has occurred

Informational Acknowledged

19 Miscellaneous comments Informational Resolved

11



Detailed Findings
1. Static calculation of weights for the claim_reward extrinsic

enables DoS attack vector

Severity: Major

The claim_reward function, defined in
pallets/lend-market/src/lib.rs:782-800, iterates over all the existing markets to
collect rewards from each of them.

However, since the number of registered markets is not bounded, the execution could exceed
the computation limit if too many markets are registered.

Since the calculation of the extrinsic weights does not take into account the cardinality of the
markets, the fee charged to the origin will be uncorrelated with the actual computational
resource usage. This leads to a situation where the execution of multiple claims within the
claim_reward extrinsic will cost the same as a single claim done with the
claim_reward_for_market extrinsic.

Consequently, attackers could leverage this behavior to overload chain nodes by executing
claim_reward on multiple markets paying a smaller fee, potentially allowing a
denial-of-service attack.

Recommendation

We recommend implementing a pagination pattern, or storing an index of pending rewards as
StorageDoubleMap<AccountId, AssetId>, to improve the performance of iterating
through all markets’ rewards.

Status: Resolved

2. Price feeder centralization risks

Severity: Minor

In the prices pallet, the FeederOrigin can set arbitrary emergency prices by executing
the set_price and reset_price extrinsics defined in
pallets/prices/src/lib.rs:120-143.

However, prices are not validated before being stored and every value is accepted.

As a consequence, this could lead to the following scenarios:

1. Privilege abuse: An attacker may get access to the private key of the FeederOrigin.
He can then use the account to manipulate prices, for example by setting the price for

12



all assets to a small value, which would allow the attacker to liquidate all users at their
loss.

2. Input error: Since the provided Price is not validated, incorrect values could be
provided as input and stored in the contract. Even a Price equal to zero is allowed.

We classify this issue as minor since only a privileged account can perform the
aforementioned operations.

Recommendation

We recommend performing validation on the provided prices. For instance, there could be a
maximum allowed delta per time unit, such that a price of zero would not be accepted.

While this does not fully resolve the centralization issue, privilege abuse would be more
involved and require multiple transactions over a longer time span. This would allow
operators and users to react.

Status: Acknowledged

The client states that they use multi-signature accounts for privileged roles to reduce
centralization risks.

3. Multiple foreign_asset_id can be mapped to the same
asset_id

Severity: Minor

In pallets/prices/src/lib.rs:149-157, the set_foreign_asset extrinsic
permits the UpdateOrigin origin to establish a mapping within the pallet, associating a
foreign_asset_id with an asset_id.

However, it lacks a verification mechanism to ensure that the given asset_id is not already
linked to a different foreign_asset_id.

As a result, an asset_id can be associated with multiple foreign assets which would lead to
market misconfigurations.

We classify this issue with minor severity since only a privileged account can perform the
aforementioned operation.

13



Recommendation

We recommend introducing a verification mechanism checking that the asset_id is not
already linked to a different foreign_asset_id.

Status: Resolved

The client removed set_foreign_asset and get_special_asset_price from the
codebase.

4. Missing check that foreign_asset_id is specifically of the
ForeignAsset type

Severity: Minor

In pallets/prices/src/lib.rs:149-157, the set_foreign_asset extrinsic
enables the UpdateOrigin origin to establish a mapping within the pallet that associates a
foreign_asset_id with an asset_id.

However, it does not verify that the provided foreign_asset_id is specifically of the
ForeignAsset type; it is only identified as a CurrencyId.

As a result, the UpdateOrigin can map any asset type, not just foreign assets.

We classify this issue with minor severity since only a privileged account can perform the
aforementioned operation.

Recommendation

We recommend verifying that the provided foreign_asset_id is specifically of the
ForeignAsset type.

Status: Resolved

The client removed set_foreign_asset and get_special_asset_price from the
codebase.

5. Default mantissa precision can lead to an incorrect price

Severity: Minor

In pallets/prices/src/lib.rs:179-186, the get_asset_mantissa function is
designed to calculate the mantissa for a given asset by attempting to retrieve the asset's
decimal precision from multiple sources.

However, if it fails to find any decimal information for the specified asset_id, it automatically
assumes a default precision of 12 decimals.

14



As a result, this approach poses a risk, as the function plays a crucial role in asset valuation,
and an incorrect mantissa calculation would lead to the determination of an erroneous price.

Recommendation

We recommend returning an error if the decimal precision for a particular asset cannot be
retrieved.

Status: Acknowledged

The client states that a misconfiguration of the decimal precision is unlikely since it is set
during the asset registration in the bifrost-asset-registry pallet.

6. Missing validation for the lend_token_id

Severity: Minor

In pallets/lend-market/src/lib.rs:656-680, the force_update_market
function enables the UpdateOrigin to assign a new lend_token_id to a specified
market.

However, it fails to verify whether the lend_token_id is not already a market, a validation
that is performed in the ensure_lend_token method in line 1843.

As a consequence, this oversight could lead to inconsistencies in market configuration since
the lend token is not designed to be used in a market.

We classify this issue with minor severity since only a privileged account can perform the
aforementioned operation.

Recommendation

We recommend verifying whether the lend_token_id is not already utilized in a market.

Status: Resolved

7. The force_update_market extrinsic could break existing
markets

Severity: Minor

In pallets/lend-market/src/lib.rs:659, the force_update_market function
permits the UpdateOrigin to forcibly replace an existing market with another, without
ensuring the coherence of the provided data.

This poses a risk since UpdateOrigin is allowed to modify markets with any data, including
malicious ones that could break invariants.

15



As a consequence, the current approach could result in the acceptance of markets with a
collateral_factor or liquidation_threshold outside of the [0,1] range, which
could break market operations and potentially cause a loss of funds.

We classify this issue as minor since only a privileged account can perform the
aforementioned operation.

Recommendation

We recommend removing the force_update_market extrinsic and utilizing the
update_market one to handle market updates.

Status: Resolved

8. Static calculation of weights for the
update_liquidation_fee_collateral extrinsic

Severity: Minor

In pallets/lend-market/src/interest.rs:1123-1130, the
update_liquidation_fee_collateral extrinsic takes a collaterals vector as a
parameter.

However, the calculation of the extrinsic weights does not take into account the length of the
collaterals vector.

As a result, the update_liquidation_fee_collateral extrinsic will charge the same
fee for vectors of different sizes leading to an uncorrelated relation between fees and
computational resource usage.

We classify this issue as minor since only a privileged account can perform the
aforementioned operation.

Recommendation

We recommend dynamically calculating the weight of the
update_liquidation_fee_collateral extrinsic based on the collaterals vector's
cardinality.

Status: Resolved

16



9. Missing validation of
liquidate_incentive_reserved_factor during market
update

Severity: Minor

In pallets/lend-market/src/lib.rs:381 the add_market function checks the
correct allowed ranges for the provided market parameters, including
liquidate_incentive_reserved_factor. This value is forced to be in the (0,1)
range.

However, in the update_market function in
pallets/lend-market/src/lib.rs:610, this validation is not performed.

As a consequence, when updating the market, it is possible to set the
liquidate_incentive_reserved_factor value outside the (0,1) range, which will
have implications in the form of incorrect calculations of incentives when liquidating positions
within the liquidated_transfer function in
pallets/lend-market/src/lib.rs:1757.

We classify this as minor since only a privileged account can perform the aforementioned
operation.

Recommendation

We recommend validating the liquidate_incentive_reserved_factor in the
update_market function.

Status: Resolved

10. Incorrect interest is calculated if requested before market
initialization

Severity: Minor

In pallets/lend-market/src/interest.rs:58, the get_market_status function
calculates and returns information about the queried market.

However, in case the market has not been used yet, the last_accrued_interest_time
variable, when retrieved in line 75 from the LastAccruedInterestTime on-chain storage,
would default to zero.

Consequently, when get_market_status is called without the market being previously
initialized, the interest accrual period is inaccurately computed from January 1, 1970, despite
the asset not being used yet leading to a wrong calculation.

17



Recommendation

We recommend handling the case of last_accrued_interest_time equal to zero in the
get_market_status function.

Status: Resolved

11. Inefficient active markets search

Severity: Informational

The ensure_active_market function, defined in
pallets/lend-market/src/lib.rs:1801-1806, searches for a market by comparing
identifiers one by one in a loop through all markets with an asymptotic complexity of O(n).

However, the same operation could be performed in constant time by using the market
method, defined in pallets/lend-market/src/lib.rs:1946.

Consequently, this would cause the execution to incur higher costs due to unnecessary
iteration.

Recommendation

We recommend replacing the iteration with a call to the market function.

Status: Resolved

12. Inefficient market data aggregation

Severity: Informational

The get_lf_base_position function, defined in
pallets/lend-market/src/lib.rs:1145-1151 iterates through all active markets,
aggregating collateral for underlying assets.

However, the markets queried are not retained, despite being re-queried later by the
current_collateral_balance function in line 1407.

Consequently, this would cause the execution to incur higher costs due to unnecessary
calculations.

18



Recommendation

We recommend either passing the query results down to the called functions without
alteration, or redesigning the storage layout to only retrieve the necessary data at the point of
call.

Status: Acknowledged

13. Redundant storage queries

Severity: Informational

The pallets/lend-market/src/lib.rs file exhibits redundant uses of on-chain
storage.

For instance, the AccountDeposits storage, introduced at line 315, undergoes redundant
queries in lines 945-946, 1280-1283, 1312-1315, and 2105-2106. In each case, the
storage is first checked for the key's presence, followed by a separate query to fetch the key's
value.

Another example of redundant queries can be seen in line 1146, where the storage query
Self::liquidation_free_collaterals is called on every iteration of the loop
despite having the same value on each iteration.

Minimizing the number of storage queries would enhance both performance and code clarity.

Recommendation

We recommend employing the OptionQuery type for business logic that needs to check for
the existence of a key.

Additionally, duplicated queries in the same scope should be avoided.

Status: Acknowledged

14. Code duplication

Severity: Informational

The pallets/lend-market/src/lib.rs file contains multiple code duplicates:

1. The code fragments in lines 1144-1152 and 1158-1166 are nearly identical, with
the only distinction being the function called on the iterated values:
collateral_asset_value (line 1149) in one instance and
liquidation_threshold_asset_value (line 1163) in the other.

19



2. The code fragments in lines 1312-1325 and 1280-1293 are nearly identical, with
the only distinction being the type parameter: BalanceOf in one instance and
FixedU128 in the other.

Code duplication undermines maintainability, thereby expanding the potential for security
vulnerabilities.

Recommendation

We recommend refactoring the codebase to avoid duplications. Generic type parameters and
function-type parameters could be used to streamline the data flow.

Status: Acknowledged

15. The get_special_asset_price function consistently returns
None

Severity: Informational

In pallets/prices/src/lib.rs:188, the get_special_asset_price function is
designed to return a TimeStampedPrice value, but it consistently returns None instead.

As a consequence, this behavior is misleading and renders the function ineffective.

Recommendation

We recommend eliminating the function get_special_asset_price if it’s not being
utilized.

Status: Resolved

16. Inefficient reduce_reserves extrinsic execution in case of
reduce_reserves parameter equal to zero

Severity: Informational

In pallets/lend-market/src/lib.rs:1045, the reduce_reserves extrinsic takes
reduce_amount as a parameter.

However, if this amount is zero, the function will perform all operations unnecessarily, which is
inefficient and may be misleading to the function caller.

20



Recommendation

We recommend verifying whether reduce_amount is greater than zero and, if not, returning
an error that terminates the transaction.

Status: Resolved

17. Use of magic numbers decreases maintainability

Severity: Informational

Throughout the codebase, hard-coded number literals without context or a description are
used. Using such “magic numbers” goes against best practices as they reduce code
readability and maintenance as developers are unable to easily understand their use and may
make inconsistent changes across the codebase.

Instances of magic numbers are listed below:

● pallets/lend-market/src/farming.rs:28
● pallets/lend-market/src/rate_model.rs:173

Recommendation

We recommend defining magic numbers as constants with descriptive variable names and
comments, where necessary.

Status: Acknowledged

18. State change events are emitted even if no change has occurred

Severity: Informational

In pallets/lend-market/src/lib.rs:778 and
pallets/lend-market/src/lib.rs:678, when updating market parameters, the event
about success is emitted regardless of whether anything has been changed.

If none of the optional values are specified, then the function will end without changing the
state, but the MarketRewardSpeedUpdated or UpdatedMarket event will be emitted,
which is inconsistent with the function's logic.

Recommendation

We recommend emitting an event only in case the state has been updated.

Status: Acknowledged

21



19. Miscellaneous comments

Severity: Informational

Miscellaneous recommendations can be found below:

● In pallets/lend-market/src/lib.rs:1894 there should be an Overflow
error, not an Underflow one, causing exchange_rate to be between (0.02, 1)
range, so the division of amount value and exchange_rate could cause overflow
only.

● In pallets/lend-market/src/lib.rs:959, it should be used asset, instead
of assert.

● In pallets/leverage-staking/src/lib.rs:129, NotSupportTokenType
should be reworded to NotSupportedTokenType.

● In pallets/lend-market/src/interest.rs:141, the inequality should be
greater than or equal to 0.02, not only greater, based on code implementation.

Recommendation

We suggest following the aforementioned suggestions.

Status: Resolved

22


