
Bifrost (vtoken-minting && slp-v2)

Smart Contract Security Audit

No. 202509251121

Sep 25th, 2025

SECURING BLOCKCHAIN ECOSYSTEM


```

Bifrost (vtoken-minting && slp-v2) Security Audit

Page 2 of 21

Contents

1 Overview ........................................................................................................................................................... 5

1.1 Project Overview .................................................................................................................................... 5

1.2 Audit Overview ....................................................................................................................................... 5

1.3 Audit Method .......................................................................................................................................... 5

2 Findings ............................................................................................................................................................ 7

[Bifrost-01] Inaccurate Transfer Amount in Function Logic ..................................................................8

[Bifrost-02] Potential Saturating Operation Logic Deviation .............................................................. 10

[Bifrost-03] InaccurateWeight Calculation ...........................................................................................11

[Bifrost-04] Incorrect Event Emission for Invalid Ledger Types .........................................................12

3 Appendix ........................................................................................................................................................ 14

3.1 Vulnerability Assessment Metrics and Status in Smart Contracts .................................................14

3.2 Audit Categories ................................................................................................................................. 17

3.3 Disclaimer ............................................................................................................................................ 19

3.4 About Beosin ....................................................................................................................................... 20



```

Bifrost (vtoken-minting && slp-v2) Security Audit

Page 3 of 21

Summary of Audit Results

After auditing, 1 Medium-risk, 1 Low-risk and 2 Info items were identified in the Bifrost (vtoken-minting

&& slp-v2) project. Specific audit details will be presented in the Findings section. Users should pay

attention to the following aspects when interacting with this project:

Medium
Fixed:1

Low
Fixed:1

Info
Fixed:2


```

Bifrost (vtoken-minting && slp-v2) Security Audit

Page 4 of 21

Project Description:

This audit covered the vtoken-minting and slp-v2 pallets of the Bifrost project. Bifrost’s non-custodial

staking liquidity solution allows users to stake their tokens in exchange for vTokens (voucher tokens).

The vtoken-minting pallet implements the minting, redemption, and locking logic for vTokens on the

Bifrost platform. It manages users’ asset flows and locks through multiple ledgers, including

TokenPool, TokenUnlockLedger, TimeUnitUnlockLedger, and UserUnlockLedger, supporting both

vToken minting and redemption while handling fee calculation, pool balances, and issuance updates. It

also supports cross-chain and HyperBridge transfers. For ETH-type assets, unlock IDs are maintained

separately, and redemption is processed according to time units to ensure assets are gradually

released as planned.

The pallet also implements an incentive mechanism, minting rewards by locking users’ vTokens and

calculating rewards based on users’ holdings of BbBNC tokens. The overall logic covers cross-chain

operations, time locks, ledger management, and fee handling, ensuring asset security, proper locking,

and accurate reward calculation, while providing events for on-chain monitoring and interaction with

other modules.

The slp-v2 pallet is the upgraded version of Bifrost’s Staking Liquidity Pool (SLP), supporting multiple

staking protocols including Ethereum Staking and Astar Dapp Staking. It manages delegators,

validators, and their ledgers through multi-layer storage structures, such as

ConfigurationByStakingProtocol, DelegatorByStakingProtocolAndDelegatorIndex, and

LedgerByStakingProtocolAndDelegator, recording staked assets, lock information, and reward status.

The pallet provides functions for setting protocol configurations, adding/removing delegators and

validators, updating ledgers, transferring assets cross-chain, handling XCM messages, and updating

time units and token exchange rates, with an event system to record on-chain operations.

The code strictly enforces access control, allowing only governance or authorized staking protocol

operators to perform critical actions such as asset transfers, time unit and exchange rate updates, and

cross-chain staking tasks. It also handles protocol fee calculation, token pool management, and

interaction with the vToken module, ensuring asset security, proper locking, and correct reward

calculations, while supportingmulti-chain and cross-module asset operations and event notifications.



```

Bifrost (vtoken-minting && slp-v2) Security Audit

Page 5 of 21

1 Overview

1.1 Project Overview

Project Name Bifrost (vtoken-minting && slp-v2)

Project Language Rust

Platform Polkadot

Code Base

https://github.com/bifrost-io/bifrost/tree/bifrost-v0.21.0

https://github.com/bifrost-io/bifrost/tree/audit-v2-vtoken-minting-1

https://github.com/bifrost-io/bifrost/tree/audit-v1-slp-1

https://github.com/bifrost-io/bifrost/tree/audit-v2-slp-1

Audit Scope

/pallets/vtoken-minting/src/lib.rs#L1201-L1281

/pallets/vtoken-minting/src/impls.rs

/pallets/slp-v2/src/lib.rs#L382-L854

/pallets/slp-v2/src/common/impls.rs#L124-L198

/pallets/slp-v2/src/ethereum_staking/types.rs

/pallets/slp-v2/src/ethereum_staking/impls.rs

Commit Hash

bifrost-v0.21.0

9de153188edac72ec4b6f815007b62012fadf205

audit-v2-vtoken-minting-1

806651cd16f2102a1cdbf2d4ca730358d088b8f1

944c7bfb50d51e7f71c90b272b3a3afe88037dca

4b3f86a61d6420a2affacabb23cb753a80e48d09

audit-v1-slp-1

5d54d969a685f8260323904119752e8da2b202a1

475660bad9b059cd5db4ac0f32776990b7232ee2

audit-v2-slp-1

bc068b1c06c824bcfdd662c63e2a3faef370856a

1.2 Audit Overview

Audit work duration: Sep 5, 2025 – Sep 19, 2025, Sep 25, 2025

Audit team: Beosin Security Team

1.3 Audit Method

The audit methods are as follows:

https://github.com/bifrost-io/bifrost/tree/bifrost-v0.21.0
https://github.com/bifrost-io/bifrost/tree/audit-v2-vtoken-minting-1
https://github.com/bifrost-io/bifrost/tree/audit-v1-slp-1


```

Bifrost (vtoken-minting && slp-v2) Security Audit

Page 6 of 21

1. Formal Verification

Formal verification is a technique that uses property-based approaches for testing and verification.

Property specifications define a set of rules using Beosin's library of security expert rules. These rules

call into the contracts under analysis and make various assertions about their behavior. The rules of

the specification play a crucial role in the analysis. If the rule is violated, a concrete test case is

provided to demonstrate the violation.

2. Manual Review

Using manual auditing methods, the code is read line by line to identify potential security issues. This

ensures that the contract's execution logic aligns with the client's specifications and intentions,

thereby safeguarding the accuracy of the contract's Business logic.

Themanual audit is divided into three groups to cover the entire auditing process:

The Basic Testing Group is primarily responsible for interpreting the project's code and conducting

comprehensive functional testing.

The Simulated Attack Group is responsible for analyzing the audited project based on the collected

historical audit vulnerability database and security incident attack models. They identify potential

attack vectors and collaborate with the Basic Testing Group to conduct simulated attack tests.

The Expert Analysis Group is responsible for analyzing the overall project design, interactions with third

parties, and security risks in the on-chain operational environment. They also conduct a review of the

entire audit findings.

3. Static Analysis

Static analysis is a method of examining code during compilation or static analysis to detect issues.

Beosin-VaaS can detect more than 100 common smart contract vulnerabilities through static analysis,

such as reentrancy and block parameter dependency. It allows early and efficient discovery of

problems to improve code quality and security.



```

Bifrost (vtoken-minting && slp-v2) Security Audit

Page 7 of 21

2 Findings

Index Risk description Severity level Status

Bifrost-01 Inaccurate Transfer Amount in Function Logic Medium Fixed

Bifrost-02 Potential Saturating Operation Logic Deviation Low Fixed

Bifrost-03 InaccurateWeight Calculation Info Fixed

Bifrost-04 Incorrect Event Emission for Invalid Ledger
Types

Info Fixed


```

Bifrost (vtoken-minting && slp-v2) Security Audit

Page 8 of 21

Finding Details:

[Bifrost-01] Inaccurate Transfer Amount in Function Logic

Severity Level Medium

Type Business Security

Lines pallets/slp-v2/src/common/impls.rs #L149, 195

Description In the do_transfer_to function, if the StakingProtocol is AstarDappStaking, the

function uses the entire balance of the entrance account as the transfer

amount instead of the amount specified in the parameter. This behavior

appears to be incorrect.

let entrance_account_free_balance =

T::MultiCurrency::free_balance(currency_id, &entrance_account);

match staking_protocol {

StakingProtocol::AstarDappStaking => {

let dest_beneficiary_location = staking_protocol

.get_dest_beneficiary_location::<T>(delegator.clone())

.ok_or(Error::<T>::UnsupportedStakingProtocol)?;

T::XcmTransfer::transfer(

entrance_account.clone(),

currency_id,

entrance_account_free_balance,

dest_beneficiary_location,

WeightLimit::Unlimited,

)

.map_err(|_| Error::<T>::DerivativeAccountIdFailed)?;

}

Additionally, the event should record amount rather than the full balance.

Self::deposit_event(Event::TransferTo {

staking_protocol,

from: entrance_account,

to: delegator,

amount: entrance_account_free_balance,

});

Recommendation

For the branch where the StakingProtocol is AstarDappStaking, it is

recommended to first check whether the entrance_account balance is

sufficient, requiring that entrance_account_free_balance is not less than



```

Bifrost (vtoken-minting && slp-v2) Security Audit

Page 9 of 21

amount, and then use amount for both the transfer amount and the event.

Status Fixed. This issue has been fixed in commit a9e80047. The event is now

triggered based on the actual transferred amount.

https://github.com/bifrost-io/bifrost/pull/1874/commits/a9e8004774f6c1071c40f02b4ed2091bc7d2e151


```

Bifrost (vtoken-minting && slp-v2) Security Audit

Page 10 of 21

[Bifrost-02] Potential Saturating Operation Logic Deviation

Severity Level Low

Type Business Security

Lines pallets/slp-v2/src/ethereum_staking/types.rs #L62-72

Description In the ethereum_staking module, functions use saturating_accrue and

saturating_reduce to update the total locked amount. While these saturating

operations help prevent traditional overflow or underflow errors, they “silently”

handle boundary cases (e.g., when reaching Balance::MAX or zero) by halting

further increments or decrements instead of throwing an error. This behavior

may cause inconsistencies between the locked amount and the intended

business logic, potentially leading to ledger state deviations or increasing the

complexity of auditing and traceability.

pub fn add_lock_amount(&mut self, amount: Balance) {

self.locked.saturating_accrue(amount);

}

/// Subtracts the specified amount of the total locked amount.

pub fn subtract_lock_amount(&mut self, amount: Balance) {

self.locked.saturating_reduce(amount);

}

Recommendation

To prevent discrepancies between the locked amount and business logic, it is

recommended to add explicit boundary checks before critical updates. For

instance, prior to calling saturating_accrue or saturating_reduce, verify that the

resulting value will not exceed Balance::MAX or drop below zero, and trigger an

error or exception handling if it does. Additionally, recording events after ledger

updates can facilitate on-chain auditing and traceability.

Status Fixed. This issue has been fixed by adding overflow checks to ensure security.



```

Bifrost (vtoken-minting && slp-v2) Security Audit

Page 11 of 21

[Bifrost-03] Inaccurate Weight Calculation

Severity Level Info

Type General Vulnerability

Lines pallets/vtoken-minting/src/lib.rs #L1226

pallets/slp-v2/src/lib.rs #L844

Description The weight calculation for the set_v_currency_issuance function is inaccurate.

The code currently specifies reads = 1, writes = 1, but in reality,

VtokenIssuance::<T>::mutate performs one read and one write, and the

subsequent call to VtokenIssuance::<T>::get adds an additional read.

Therefore, the correct storage operations should be reads = 2, writes = 1. The

current annotation underestimates the number of reads, which may lead to

inaccurate on-chain resource consumption assessment.

Additionally, the current ethereum_staking function incorrectly uses

astar_dapp_staking() to estimate weight, which is unreasonable. Weight should

instead be computed dynamically based on the actual operations or using a

parameterized WeightInfo function.

#[pallet::weight(<T as Config>::WeightInfo::astar_dapp_staking())]

pub fn ethereum_staking(

Recommendation

For the set_v_currency_issuance function, it is recommended to update the

weight annotation to #[pallet::weight(T::DbWeight::get().reads_writes(2, 1))] to

accurately reflect the actual storage operations. For the ethereum_staking

function, it is advised to implement a corresponding method in WeightInfo and

use it in the call, ensuring the weight reflects the true operational cost.

Status Fixed. This issue has been resolved. In the latest version of the code, a

corresponding weight calculation has been added for the function to ensure

accurate resource consumption estimation.


```

Bifrost (vtoken-minting && slp-v2) Security Audit

Page 12 of 21

[Bifrost-04] Incorrect Event Emission for Invalid Ledger Types

Severity Level Info

Type Business Security

Lines pallets/slp-v2/src/ethereum_staking/impls.rs #L29-56

Description In the do_ethereum_staking function, ledgers that are not of the

EthereumStaking type currently trigger the EthereumStaking event without

raising an error. This behavior can create a mismatch between emitted events

and the actual ledger state, potentially misleading front-end clients, monitoring

tools, or on-chain observers. Such inconsistencies may result in incorrect UI

displays, erroneous analytics, or misinterpreted on-chain data.

pub fn do_ethereum_staking(

delegator: Delegator<T::AccountId>,

task: EthereumStaking,

) -> DispatchResultWithPostInfo {

Self::ensure_delegator_exist(&ETHEREUM_STAKING, &delegator)?;

LedgerByStakingProtocolAndDelegator::<T>::mutate(

ETHEREUM_STAKING,

delegator.clone(),

|ledger| -> Result<(), Error<T>> {

if let Some(Ledger::EthereumStaking(mut

pending_ledger)) = ledger.clone() {

match task {

EthereumStaking::Stake(amount) => {

pending_ledger.add_lock_amount(amount);

}

EthereumStaking::Unstake(amount) => {

if pending_ledger.locked < amount {

return

Err(Error::<T>::InvalidParameter);

}

pending_ledger.subtract_lock_amount(amount

);

}

}

*ledger =

Some(Ledger::EthereumStaking(pending_ledger));

};



```

Bifrost (vtoken-minting && slp-v2) Security Audit

Page 13 of 21

Ok(())

},

)?;

Self::deposit_event(Event::EthereumStaking { delegator,

task });

Ok(().into())

}

Recommendation

Ensure that the event is only emitted when the ledger is confirmed to be of the

EthereumStaking type, and consider raising an error or skipping the operation

otherwise. This will maintain consistency between ledger state and emitted

events.

Status Fixed.


```

Bifrost (vtoken-minting && slp-v2) Security Audit

Page 14 of 21

3 Appendix

3.1 Vulnerability Assessment Metrics and Status in Smart Contracts

3.1.1 Metrics

In order to objectively assess the severity level of vulnerabilities in blockchain systems, this report

provides detailed assessment metrics for security vulnerabilities in smart contracts with reference to

CVSS 3.1 (Common Vulnerability Scoring System Ver 3.1).

According to the severity level of vulnerability, the vulnerabilities are classified into four levels:

"critical", "high", "medium" and "low". It mainly relies on the degree of impact and likelihood of

exploitation of the vulnerability, supplemented by other comprehensive factors to determine of the

severity level.

Impact

Likelihood
Severe High Medium Low

Probable Critical High Medium Low

Possible High Medium Medium Low

Unlikely Medium Medium Low Info

Rare Low Low Info Info



```

Bifrost (vtoken-minting && slp-v2) Security Audit

Page 15 of 21

3.1.2 Degree of impact

 Severe

Severe impact generally refers to the vulnerability can have a serious impact on the confidentiality,

integrity, availability of smart contracts or their economic model, which can cause substantial

economic losses to the contract Business system, large-scale data disruption, loss of authority

management, failure of key functions, loss of credibility, or indirectly affect the operation of other

smart contracts associated with it and cause substantial losses, as well as other severe and mostly

irreversible harm.

 High

High impact generally refers to the vulnerability can have a relatively serious impact on the

confidentiality, integrity, availability of the smart contract or its economic model, which can cause a

greater economic loss, local functional unavailability, loss of credibility and other impact to the

contract Business system.

 Medium

Medium impact generally refers to the vulnerability can have a relatively minor impact on the

confidentiality, integrity, availability of the smart contract or its economic model, which can cause a

small amount of economic loss to the contract Business system, individual Business unavailability and

other impact.

 Low

Low impact generally refers to the vulnerability can have a minor impact on the smart contract, which

can pose certain security threat to the contract Business system and needs to be improved.

3.1.4 Likelihood of Exploitation

 Probable

Probable likelihood generally means that the cost required to exploit the vulnerability is low, with no

special exploitation threshold, and the vulnerability can be triggered consistently.

 Possible

Possible likelihood generally means that exploiting such vulnerability requires a certain cost, or there

are certain conditions for exploitation, and the vulnerability is not easily and consistently triggered.


```

Bifrost (vtoken-minting && slp-v2) Security Audit

Page 16 of 21

 Unlikely

Unlikely likelihood generally means that the vulnerability requires a high cost, or the exploitation

conditions are very demanding and the vulnerability is highly difficult to trigger.

 Rare

Rare likelihood generally means that the vulnerability requires an extremely high cost or the conditions

for exploitation are extremely difficult to achieve.

3.1.5 Fix Results Status

Status Description

Fixed The project party fully fixes a vulnerability.

Partially Fixed The project party did not fully fix the issue, but only mitigated the
issue.

Acknowledged The project party confirms and chooses to ignore the issue.



```

Bifrost (vtoken-minting && slp-v2) Security Audit

Page 17 of 21

3.2 Audit Categories

No. Categories Subitems

1 Coding Conventions

Deprecated Items

Redundant Code

Interface Specification

Function Call Permissions

Returned Value Security

2 General Vulnerability

Integer Overflow/Underflow

Transaction-Ordering Dependence

DoS (Denial of Service)

Reentrancy

Replay Attack

Storage/State Inconsistency

Upgrade & Storage Layout Risks

Cross-chain / XCM Interface Consistency

Weight / Resource Misestimation

3 Business Security

Business Logics

Business Implementations

Manipulable Token Price

Centralized Asset Control

Asset Tradability

Arbitrage Attack

Beosin classified the security issues of smart contracts into three categories: Coding Conventions,

General Vulnerability, Business Security. Their specific definitions are as follows:

 Coding Conventions

Audit whether smart contracts follow recommended language security coding practices. For example,

smart contracts developed in Solidity language should fix the compiler version and do not use

deprecated keywords.

 General Vulnerability


```

Bifrost (vtoken-minting && slp-v2) Security Audit

Page 18 of 21

General Vulnerability include some common vulnerabilities that may appear in smart contract projects.

These vulnerabilities are mainly related to the characteristics of the smart contract itself, such as

integer overflow/underflow and denial of service attacks.

 Business Security

Business security is mainly related to some issues related to the Business realized by each project, and

has a relatively strong pertinence. For example, whether the lock-up plan in the code match the white

paper, or the flash loan attack caused by the incorrect setting of the price acquisition oracle.

*Note that the project may suffer stake losses due to the integrated third-party protocol. This is not something

Beosin can control. Business security requires the participation of the project party. The project party and users

need to stay vigilant at all times.



```

Bifrost (vtoken-minting && slp-v2) Security Audit

Page 19 of 21

3.3 Disclaimer

The Audit Report issued by Beosin is related to the services agreed in the relevant service agreement.

The Project Party or the Served Party (hereinafter referred to as the "Served Party") can only be used

within the conditions and scope agreed in the service agreement. Other third parties shall not transmit,

disclose, quote, rely on or tamper with the Audit Report issued for any purpose.

The Audit Report issued by Beosin is made solely for the code, and any description, expression or

wording contained therein shall not be interpreted as affirmation or confirmation of the project, nor

shall any warranty or guarantee be given as to the absolute flawlessness of the code analyzed, the code

team, the Business model or legal compliance.

The Audit Report issued by Beosin is only based on the code provided by the Served Party and the

technology currently available to Beosin. However, due to the technical limitations of any organization,

and in the event that the code provided by the Served Party is missing information, tampered with,

deleted, hidden or subsequently altered, the audit report may still fail to fully enumerate all the risks.

The Audit Report issued by Beosin in no way provides investment advice on any project, nor should it be

utilized as investment suggestions of any type. This report represents an extensive evaluation process

designed to help our customers improve code quality while mitigating the high risks in blockchain.


```

Bifrost (vtoken-minting && slp-v2) Security Audit

Page 20 of 21

3.4 About Beosin

Beosin is the first institution in the world specializing in the construction of blockchain

security ecosystem. The core team members are all professors, postdocs, PhDs, and Internet

elites from world-renowned academic institutions. Beosin has more than 20 years of research

in formal verification technology, trusted computing, mobile security and kernel security, with

overseas experience in studying and collaborating in project research at well-known

universities. Through the security audit and defense deployment of more than 2,000 smart

contracts, over 50 public blockchains and wallets, and nearly 100 exchanges worldwide,

Beosin has accumulated rich experience in security attack and defense of the blockchain field,

and has developed several security products specifically for blockchain.



Official Website
https://www.beosin.com

Telegram
https://t.me/beosin

Twitter
https://twitter.com/Beosin_com

Email
service@beosin.com

https://www.beosin.com
https://t.me/beosin
https://twitter.com/Beosin_com

	1 Overview
	1.1 Project Overview
	1.2 Audit Overview
	1.3 Audit Method

	2 Findings
	[Bifrost-01] Inaccurate Transfer Amount in Functio
	[Bifrost-02] Potential Saturating Operation Logic 
	[Bifrost-03] Inaccurate Weight Calculation
	[Bifrost-04] Incorrect Event Emission for Invalid 

	3 Appendix
	3.1 Vulnerability Assessment Metrics and Status in
	3.2 Audit Categories
	3.3 Disclaimer
	3.4 About Beosin


