5t (vtoken-minting && slp-v2)

art Contract Security Audit

N0. 202509251121

Sep 25™, 2025

SECURING BLOCKCHAIN ECOSYSTEM
HEER ol

Bifrost (vtoken-minting && slp-v2) Security Audit

Contents

10verview 5
T T PIrOJECT DVEIVIBW ..ttt ettt b ettt b et b ettt ettt ettt ebe e 5
1.2 AUGIT OVEIVIBW ..ttt sttt ettt ettt b e bttt e bbb et eae b ee 5
1.3 AUAIE METNOM ...ttt bbb st b et b bt ee s benens 5

2 Findings 7
[Bifrost-01] Inaccurate Transfer Amount in FUNCLION LOGICovouioveviieeiieieeceeeceeeeeeeeeeee e, 8
[Bifrost-02] Potential Saturating Operation Logic Deviationcccoceeveveieeeeeeeeeeceeeeeeee e 10
[Bifrost-03] Inaccurate Weight CalCUulationc.oveveuieeeeiieeeeeeeeee et 11
[Bifrost-04]Incorrect Event Emission for Invalid Ledger TYPeSocieveueeveuieeereeeieeeeeeveeeeeeevee 12

3 Appendix 14
3.1Vulnerability Assessment Metrics and Status in Smart Contracts........cccceevvevevereieivenciece, 14
3.2 AUAIT CATBYOTIES ..vieuiiiieeieeieete ettt ettt ettt et sttt et e st e e teeteesb e beeseesbabeeseessesbesteessesseseessessessenseaseas 17
B8 DISCIAIMET ...ttt sttt b e s bttt be sttt eae s nee 19
St ADOUT BROSIN .ottt ettt et et ettt ettt bt bbbt bt et enae e 20

Page 2 of 21

Bifrost (vtoken-minting && slp-v2) Security Audit

Summary of Audit Results

After auditing, 1 Medium-risk, 1 Low-risk and 2 Info items were identified in the Bifrost (vtoken-minting
&& slp-v2) project. Specific audit details will be presented in the Findings section. Users should pay

attention to the following aspects when interacting with this project:

Fixed:1

Fixed:1

Info
Fixed:2

Page 3 of 21

Bifrost (vtoken-minting && slp-v2) Security Audit

Project Description:

This audit covered the vtoken-minting and slp-v2 pallets of the Bifrost project. Bifrost's non-custodial
staking liquidity solution allows users to stake their tokens in exchange for vTokens (voucher tokens).
The vtoken-minting pallet implements the minting, redemption, and locking logic for vTokens on the
Bifrost platform. It manages users’ asset flows and locks through multiple ledgers, including
TokenPool, TokenUnlockLedger, TimeUnitUnlockLedger, and UserUnlocklLedger, supporting both
vToken minting and redemption while handling fee calculation, pool balances, and issuance updates. It
also supports cross-chain and HyperBridge transfers. For ETH-type assets, unlock IDs are maintained
separately, and redemption is processed according to time units to ensure assets are gradually
released as planned.

The pallet also implements an incentive mechanism, minting rewards by locking users’ vTokens and
calculating rewards based on users’ holdings of BbBNC tokens. The overall logic covers cross-chain
operations, time locks, ledger management, and fee handling, ensuring asset security, proper locking,
and accurate reward calculation, while providing events for on-chain monitoring and interaction with
other modules.

The slp-v2 pallet is the upgraded version of Bifrost's Staking Liquidity Pool (SLP), supporting multiple
staking protocols including Ethereum Staking and Astar Dapp Staking. It manages delegators,
validators, and their ledgers through multi-layer storage structures, such as
ConfigurationByStakingProtocol, DelegatorByStakingProtocolAndDelegatorindex, and
LedgerByStakingProtocolAndDelegator, recording staked assets, lock information, and reward status.
The pallet provides functions for setting protocol configurations, adding/removing delegators and
validators, updating ledgers, transferring assets cross-chain, handling XCM messages, and updating
time units and token exchange rates, with an event system to record on-chain operations.

The code strictly enforces access control, allowing only governance or authorized staking protocol
operators to perform critical actions such as asset transfers, time unit and exchange rate updates, and
cross-chain staking tasks. It also handles protocol fee calculation, token pool management, and
interaction with the vToken module, ensuring asset security, proper locking, and correct reward

calculations, while supporting multi-chain and cross-module asset operations and event notifications.

Page 4 of 21

Bifrost (vtoken-minting && slp-v2) Security Audit

10verview

1.1Project Overview

Project Name Bifrost (vtoken-minting && slp-v2)
Project Language Rust
Platform Polkadot

https://github.com/bifrost-io/bifrost/tree/bifrost-v0.21.0
https://github.com/bifrost-io/bifrost/tree/audit-v2-vtoken-minting-1
Code Base
https://github.com/bifrost-io/bifrost/tree/audit-vi-slp-1

https://github.com/bifrost-io/bifrost/tree/audit-v2-slp-1

/pallets/vtoken-minting/src/lib.rs#L1201-11281
/pallets/vtoken-minting/src/impls.rs
. /pallets/slp-v2/src/lib.rs#1.382-1.854
Audit Scope .
/pallets/slp-v2/src/common/impls.rs#L124-L198
/pallets/slp-v2/src/ethereum_staking/types.rs

/pallets/slp-v2/src/ethereum_staking/impls.rs

bifrost-v0.21.0
9de153188edac72ec4b6f815007b62012fadf205
audit-v2-vtoken-minting-1
806651cd16f2102alcdbf2d4ca730358d088b8f1
944c7bfb50d51e7f71c90b272b3a3afe88037dca
Commit Hash 4b3f86a61d6420a2affacabb23cb753a80e48d09
audit-v1-slp-1
5d54d969a685f8260323904119752e8dazb202a
475660bad9b059cd5db4ac0f32776990b7232ee?
audit-v2-slp-1
bc068b1c06c824bcfdd662c63e2a3faef370856a

1.2 Audit Overview

Audit work duration: Sep 5, 2025 - Sep 19, 2025, Sep 25, 2025

Audit team: Beosin Security Team

1.3 Audit Method

The audit methods are as follows:

Page 5 of 21

https://github.com/bifrost-io/bifrost/tree/bifrost-v0.21.0
https://github.com/bifrost-io/bifrost/tree/audit-v2-vtoken-minting-1
https://github.com/bifrost-io/bifrost/tree/audit-v1-slp-1

Bifrost (vtoken-minting && slp-v2) Security Audit

1. Formal Verification

Formal verification is a technique that uses property-based approaches for testing and verification.
Property specifications define a set of rules using Beosin's library of security expert rules. These rules
call into the contracts under analysis and make various assertions about their behavior. The rules of
the specification play a crucial role in the analysis. If the rule is violated, a concrete test case is

provided to demonstrate the violation.
2. Manual Review

Using manual auditing methods, the code is read line by line to identify potential security issues. This
ensures that the contract's execution logic aligns with the client's specifications and intentions,

thereby safequarding the accuracy of the contract's Business logic.
The manual audit is divided into three groups to cover the entire auditing process:

The Basic Testing Group is primarily responsible for interpreting the project's code and conducting

comprehensive functional testing.

The Simulated Attack Group is responsible for analyzing the audited project based on the collected
historical audit vulnerability database and security incident attack models. They identify potential

attack vectors and collaborate with the Basic Testing Group to conduct simulated attack tests.

The Expert Analysis Group is responsible for analyzing the overall project design, interactions with third
parties, and security risks in the on-chain operational environment. They also conduct a review of the

entire audit findings.
3. Static Analysis

Static analysis is a method of examining code during compilation or static analysis to detect issues.
Beosin-VaaS can detect more than 100 common smart contract vulnerabilities through static analysis,
such as reentrancy and block parameter dependency. It allows early and efficient discovery of

problems to improve code quality and security.

Page 6 of 21

Bifrost (vtoken-minting && slp-v2) Security Audit

2 Findings

Index Risk description Severity level Status
Bifrost-01 Inaccurate Transfer Amount in Function Logic Fixed
Bifrost-02 Potential Saturating Operation Logic Deviation Fixed
Bifrost-03 Inaccurate Weight Calculation Info Fixed

Incorrect Event Emission for Invalid Ledger

Bifrost-04
Types

Info Fixed

Page 7 of 21

Bifrost (vtoken-minting && slp-v2) Security Audit

Finding Details:

[Bifrost-01] Inaccurate Transfer Amount in Function Logic

Severity Level

Type Business Security

Lines pallets/slp-v2/src/common/impls.rs #L149, 195

Description In the do_transfer_to function, if the StakingProtocol is AstarDappStaking, the

function uses the entire balance of the entrance account as the transfer
amount instead of the amount specified in the parameter. This behavior

appears to be incorrect.
entrance_account_free_balance =
T::MultiCurrency: :free_balance(currency_id, &entrance_account);
match staking protocol {
StakingProtocol: :AstarDappStaking => {
dest_beneficiary location = staking_protocol
.get_dest_beneficiary location::<T>(delegator.clone())
.ok_or(Error::<T>::UnsupportedStakingProtocol)?;
T::XcmTransfer: :transfer(
entrance_account.clone(),
currency_id,
entrance_account_free_balance,
dest_beneficiary_location,
WeightLimit::Unlimited,
)

.map_err(|_| Error::<T>::DerivativeAccountIdFailed)?;

Additionally, the event should record amount rather than the full balance.
::deposit_event(Event::TransferTo {
staking_protocol,

from: entrance_account,

to: delegator,

amount: entrance_account_free_balance,

For the branch where the StakingProtocol is AstarDappStaking, it is

Recommendation recommended to first check whether the entrance_account balance is

sufficient, requiring that entrance_account_free_balance is not less than

Page 8 of 21

Bifrost (vtoken-minting && slp-v2) Security Audit

amount, and then use amount for both the transfer amount and the event.

Status Fixed. This issue has been fixed in commit a9e80047. The event is now

triggered based on the actual transferred amount.

Page 9 of 21

https://github.com/bifrost-io/bifrost/pull/1874/commits/a9e8004774f6c1071c40f02b4ed2091bc7d2e151

Bifrost (vtoken-minting && slp-v2) Security Audit

[Bifrost-02] Potential Saturating Operation Logic Deviation

Severity Level
Type Business Security

Lines pallets/slp-v2/src/ethereum_staking/types.rs #L62-72
Description In the ethereum_staking module, functions use saturating_accrue and

saturating_reduce to update the total locked amount. While these saturating
operations help prevent traditional overflow or underflow errors, they “silently”
handle boundary cases (e.g., when reaching Balance::MAX or zero) by halting
further increments or decrements instead of throwing an error. This behavior
may cause inconsistencies between the locked amount and the intended
business logic, potentially leading to ledger state deviations or increasing the

complexity of auditing and traceability.
add_lock_amount (& , amount: Balance) {

.locked.saturating_accrue(amount);

subtract_lock _amount(& , amount: Balance) {

.locked.saturating_reduce(amount);

To prevent discrepancies between the locked amount and business logic, it is

recommended to add explicit boundary checks before critical updates. For

) instance, prior to calling saturating_accrue or saturating_reduce, verify that the
Recommendation resulting value will not exceed Balance::MAX or drop below zero, and trigger an
error or exception handling if it does. Additionally, recording events after ledger

updates can facilitate on-chain auditing and traceability.

Status Fixed. This issue has been fixed by adding overflow checks to ensure security.

Page 10 of 21

Bifrost (vtoken-minting && slp-v2) Security Audit

[Bifrost-03] Inaccurate Weight Calculation

Severity Level

Type

Lines

Description

Recommendation

Status

General Vulnerability

pallets/vtoken-minting/src/lib.rs #L1226

pallets/slp-v2/src/lib.rs #1844

The weight calculation for the set_v_currency_issuance function is inaccurate.
The code currently specifies reads = 1, writes = 1, but in reality,
Vtokenlssuance::<T>::mutate performs one read and one write, and the
subsequent call to Vtokenlssuance::<T>::get adds an additional read.
Therefore, the correct storage operations should be reads = 2, writes = 1. The
current annotation underestimates the number of reads, which may lead to
inaccurate on-chain resource consumption assessment.

Additionally, the current ethereum_staking function incorrectly uses
astar_dapp_staking() to estimate weight, which is unreasonable. Weight should
instead be computed dynamically based on the actual operations or using a
parameterized Weightinfo function.

#[pallet: :weight (<T Config>::WeightInfo::astar_dapp_staking())]

ethereum_staking(

For the set_v_currency_issuance function, it is recommended to update the
weight annotation to #[pallet::weight(T::DbWeight::get().reads_writes(2, 1))] to
accurately reflect the actual storage operations. For the ethereum_staking
function, it is advised to implement a corresponding method in Weightinfo and
use itin the call, ensuring the weight reflects the true operational cost.

Fixed. This issue has been resolved. In the latest version of the code, a

corresponding weight calculation has been added for the function to ensure

accurate resource consumption estimation.

Page 11 of 21

Bifrost (vtoken-minting && slp-v2) Security Audit

[Bifrost-04] Incorrect Event Emission for Invalid Ledger Types

Severity Level

Type Business Security

Lines pallets/slp-v2/src/ethereum_staking/impls.rs #L.29-56

Description In the do_ethereum_staking function, ledgers that are not of the

EthereumStaking type currently trigger the EthereumStaking event without

raising an error. This behavior can create a mismatch between emitted events
and the actual ledger state, potentially misleading front-end clients, monitoring
tools, or on-chain observers. Such inconsistencies may result in incorrect Ul

displays, erroneous analytics, or misinterpreted on-chain data.
do_ethereum_staking(
delegator: Delegator<T::AccountId>,
task: EthereumStaking,
) -> DispatchResultWithPostInfo {
::ensure_delegator_exist(ÐEREUM_STAKING, &delegator)?;
LedgerByStakingProtocolAndDelegator: :<T>: :mutate(
ETHEREUM_STAKING,
delegator.clone(),
| ledger| -> Result<(), Error<T>> {
if Some(Ledger: :EthereumStaking(
pending ledger)) = ledger.clone() {
match task {
EthereumStaking: :Stake(amount) => {
pending ledger.add_lock_amount(amount);
}
EthereumStaking: :Unstake(amount) => {
if pending_ledger.locked < amount {
return
Err(Error::<T>::InvalidParameter);

}

pending_ ledger.subtract_lock_amount(amount

}
*ledger =

Some(Ledger: :EthereumStaking(pending ledger));
}s

Page 12 of 21

Recommendation

Status

Bifrost (vtoken-minting && slp-v2) Security Audit

0k(())
¥
)25
::deposit_event(Event::EthereumStaking { delegator,
task });
Ok(().into())

Ensure that the event is only emitted when the ledger is confirmed to be of the
EthereumStaking type, and consider raising an error or skipping the operation
otherwise. This will maintain consistency between ledger state and emitted

events.

Fixed.

Page 13 of 21

Bifrost (vtoken-minting && slp-v2) Security Audit

3 Appendix

3.1Vulnerability Assessment Metrics and Status in Smart Contracts

3.1.1Metrics

In order to objectively assess the severity level of vulnerabilities in blockchain systems, this report
provides detailed assessment metrics for security vulnerabilities in smart contracts with reference to

CVSS 3.1(Common Vulnerability Scoring System Ver 3.1).

According to the severity level of vulnerability, the vulnerabilities are classified into four levels:
“critical”, "high", "medium" and "low". It mainly relies on the degree of impact and likelihood of
exploitation of the vulnerability, supplemented by other comprehensive factors to determine of the

severity level.

Likelihood mpact Severe High Medium Low
Probable Critical High
Possible High
Unlikely
Rare

Page 14 of 21

Bifrost (vtoken-minting && slp-v2) Security Audit

3.1.2 Degree of impact

® Severe

Severe impact generally refers to the vulnerability can have a serious impact on the confidentiality,
integrity, availability of smart contracts or their economic model, which can cause substantial
economic losses to the contract Business system, large-scale data disruption, loss of authority
management, failure of key functions, loss of credibility, or indirectly affect the operation of other
smart contracts associated with it and cause substantial losses, as well as other severe and mostly

irreversible harm.
® High

High impact generally refers to the vulnerability can have a relatively serious impact on the
confidentiality, integrity, availability of the smart contract or its economic model, which can cause a
greater economic loss, local functional unavailability, loss of credibility and other impact to the

contract Business system.
® Medium

Medium impact generally refers to the vulnerability can have a relatively minor impact on the
confidentiality, integrity, availability of the smart contract or its economic model, which can cause a
small amount of economic loss to the contract Business system, individual Business unavailability and

other impact.
® Low

Low impact generally refers to the vulnerability can have a minor impact on the smart contract, which

can pose certain security threat to the contract Business system and needs to be improved.
3.1.4 Likelihood of Exploitation
® Probable

Probable likelihood generally means that the cost required to exploit the vulnerability is low, with no

special exploitation threshold, and the vulnerability can be triggered consistently.
® Possible

Possible likelihood generally means that exploiting such vulnerability requires a certain cost, or there

are certain conditions for exploitation, and the vulnerability is not easily and consistently triggered.

Page 15 of 21

Bifrost (vtoken-minting && slp-v2) Security Audit

® Unlikely

Unlikely likelihood generally means that the vulnerability requires a high cost, or the exploitation

conditions are very demanding and the vulnerability is highly difficult to trigger.
® Rare

Rare likelihood generally means that the vulnerability requires an extremely high cost or the conditions

for exploitation are extremely difficult to achieve.

3.1.5 Fix Results Status

Status Description

Fixed The project party fully fixes a vulnerability.

The project party did not fully fix the issue, but only mitigated the

Partially Fixed .
issue.

Acknowledged The project party confirms and chooses to ignore the issue.

Page 16 of 21

Bifrost (vtoken-minting && slp-v2) Security Audit

3.2 Audit Categories

No. Categories Subitems

Deprecated Items

Redundant Code

1 Coding Conventions Interface Specification

Function Call Permissions

Returned Value Security

Integer Overflow/Underflow

Transaction-Ordering Dependence

DoS (Denial of Service)

Reentrancy

2 General Vulnerability Replay Attack

Storage/State Inconsistency

Upgrade & Storage Layout Risks

Cross-chain / XCM Interface Consistency

Weight / Resource Misestimation

Business Logics

Business Implementations

Manipulable Token Price

3 Business Security
Centralized Asset Control

Asset Tradability

Arbitrage Attack

Beosin classified the security issues of smart contracts into three categories: Coding Conventions,

General Vulnerability, Business Security. Their specific definitions are as follows:

® Coding Conventions

Audit whether smart contracts follow recommended language security coding practices. For example,
smart contracts developed in Solidity language should fix the compiler version and do not use
deprecated keywords.

® General Vulnerability

Page 17 of 21

Bifrost (vtoken-minting && slp-v2) Security Audit

General Vulnerability include some common vulnerabilities that may appear in smart contract projects.
These vulnerabilities are mainly related to the characteristics of the smart contract itself, such as
integer overflow/underflow and denial of service attacks.

® Business Security

Business security is mainly related to some issues related to the Business realized by each project, and
has a relatively strong pertinence. For example, whether the lock-up plan in the code match the white

paper, or the flash loan attack caused by the incorrect setting of the price acquisition oracle.

Note that the project may suffer stake losses due to the integrated third-party protocol. This is not something

Beosin can control. Business security requires the participation of the project party. The project party and users

need to stay vigilant at all times.

Page 18 of 21

Bifrost (vtoken-minting && slp-v2) Security Audit

3.3 Disclaimer

The Audit Report issued by Beosin is related to the services agreed in the relevant service agreement.
The Project Party or the Served Party (hereinafter referred to as the "Served Party") can only be used
within the conditions and scope agreed in the service agreement. Other third parties shall not transmit,

disclose, quote, rely on or tamper with the Audit Report issued for any purpose.

The Audit Report issued by Beosin is made solely for the code, and any description, expression or
wording contained therein shall not be interpreted as affirmation or confirmation of the project, nor
shall any warranty or guarantee be given as to the absolute flawlessness of the code analyzed, the code

team, the Business model or legal compliance.

The Audit Report issued by Beosin is only based on the code provided by the Served Party and the
technology currently available to Beosin. However, due to the technical limitations of any organization,
and in the event that the code provided by the Served Party is missing information, tampered with,

deleted, hidden or subsequently altered, the audit report may still fail to fully enumerate all the risks.

The Audit Report issued by Beosin in no way provides investment advice on any project, nor should it be
utilized as investment suggestions of any type. This report represents an extensive evaluation process

designed to help our customers improve code quality while mitigating the high risks in blockchain.

Page 19 of 21

Bifrost (vtoken-minting && slp-v2) Security Audit

3.4 About Beosin

Beosin is the first institution in the world specializing in the construction of blockchain
security ecosystem. The core team members are all professors, postdocs, PhDs, and Internet
elites from world-renowned academic institutions. Beosin has more than 20 years of research
in formal verification technology, trusted computing, mobile security and kernel security, with
overseas experience in studying and collaborating in project research at well-known
universities. Through the security audit and defense deployment of more than 2,000 smart
contracts, over 50 public blockchains and wallets, and nearly 100 exchanges worldwide,
Beosin has accumulated rich experience in security attack and defense of the blockchain field,

and has developed several security products specifically for blockchain.

Page 20 of 21

Official Website
https://www.beosin.com

Telegram
https://t.me/beosin

Twitter
https://twitter.com/Beosin_com

https://www.beosin.com
https://t.me/beosin
https://twitter.com/Beosin_com

	1 Overview
	1.1 Project Overview
	1.2 Audit Overview
	1.3 Audit Method

	2 Findings
	[Bifrost-01] Inaccurate Transfer Amount in Functio
	[Bifrost-02] Potential Saturating Operation Logic
	[Bifrost-03] Inaccurate Weight Calculation
	[Bifrost-04] Incorrect Event Emission for Invalid

	3 Appendix
	3.1 Vulnerability Assessment Metrics and Status in
	3.2 Audit Categories
	3.3 Disclaimer
	3.4 About Beosin

