

Corporate Design

2016

Astar lockdrop precompile review
Threat model and hacking assessment report

V1.2, June 4th, 2024

Haroon Basheer haroon@srlabs.de

Rachna Shriwas rachna@srlabs.de

Regina Biro regina@srlabs.de

Abstract. This work describes the result of a thorough and independent
security assurance audit of the performed by Security Research Labs.
Security Research Labs is a consulting firm that has been providing
specialized audit services for Substrate-based blockchains since 2019,
including in the Polkadot ecosystem.

During this study, Astar provided access to relevant GitHub repositories and
supported the research team effectively. The code of the lockdrop
precompile was verified to assure that the business logic of the product is
resilient to hacking and abuse.

The research team identified two issues: a benchmarking issue and a
memory related issue, leading to potential denial of service and heap
overflow respectively . The findings were disclosed and acknowledged with
remediations.

In addition to mitigating the issue, Security Research Labs recommends
using the runtime environment for benchmarking, utilising heap memory
safe types for handling call dispatches and regular code reviews.

mailto:haroon@srlabs.de
mailto:rachna@srlabs.de
mailto:regina@srlabs.de

SRL-Astar-lockdrop-precompile-audit-report-final Page 2 of 6

Das Logo Horizontal

— Pos / Neg

3

Content

1 Disclaimer ... 3
2 Motivation and scope ... 4
3 Baseline Assurance ... 4
3.1 Findings summary ... 4
3.2 Detailed findings ... 4
3.2.1 Missing benchmarking for the lockdrop precompile dispatch 4
3.2.2 Unbounded call length limit in lockdrop dispatch call 5
4 Evolution suggestions ... 5
5 Bibliography ... 6

SRL-Astar-lockdrop-precompile-audit-report-final Page 3 of 6

Das Logo Horizontal

— Pos / Neg

3

1 Disclaimer

This report describes the findings and core conclusions derived from the audit carried out by
Security Research Labs within the agreed-on timeframe and scope as detailed in Chapter 2.
Please note that this report does not guarantee that all existing security vulnerabilities were
discovered in the codebase exhaustively and that following all evolution suggestions described
in Chapter 4 may not ensure all future code to be bug free.

SRL-Astar-lockdrop-precompile-audit-report-final Page 4 of 6

Das Logo Horizontal

— Pos / Neg

3

2 Motivation and scope

Astar network implemented a precompile dispatch for the lockdrop feature, where users will
lock a certain amount of token in smart contracts for a predefined period. The lockdrop
mechanism rewards early adopters by paying out tokens proportional to the locked period and
the amount of locked tokens. The Astar lockdrop precompile implements the
dispatch_lockdrop_call function, that dispatches calls on behalf of the SS58 account of the
lockdrop account [1].

In this engagement, the code assurance team focused on the security of the precompile
implementation of dispatch_lockdrop_call function, ensured its logical correctness and verified
benchmarking of the dispatch extrinsic call.

During the assessment of the code, security critical parts of the code were identified and
security issues in these components were communicated to the development team in the form
of GitHub issues [2].

3 Baseline Assurance

3.1 Findings summary

During the analysis of the precompile, Security Research Labs identified two issues (1 info and
1 low severity), which are summarized in Table 1.

Issue Severity References Status

Missing benchmarking for the lockdrop
precompile dispatch

Info [2] Closed

Unbounded call length limit in lockdrop
dispatch call

Low [3] Closed

Table 1 Code audit issue summary

3.2 Detailed findings

3.2.1 Missing benchmarking for the lockdrop precompile dispatch

Attack scenario Static ref_time used for weight calculation leading to underestimation
of the weights can enable an attacker to perform denial of service

Location precompiles/dispatch-lockdrop
Tracking [2]
Attack impact An attacker may spam and conduct denial of service attacks cheaply in

comparison to the actual weight_to_gas price
Severity Info
Status Closed [4]

The precompile dispatch-lockdrop has un-benchmarked weight_to_gas estimation with
ref_time configured to 1_000_000_000 [5].

// Record a fixed amount of weight to ensure there is no free execution
handle.record_cost(Runtime::GasWeightMapping::weight_to_gas(
 Weight::from_parts(1_000_000_000u64, 0),
))?;

SRL-Astar-lockdrop-precompile-audit-report-final Page 5 of 6

Das Logo Horizontal

— Pos / Neg

3

This estimation doesn’t reflect the actual runtime environment and can aid an attacker to spam
the chain.

We suggest to appropriately benchmark the precompile dispatch to reflect the accurate
weight_to_gas estimation for ref_time and POV_size.

The issue was acknowledged by the Astar team and remediation is currently in progress
through collaboration with the Frontier team [6]

3.2.2 Unbounded call length limit in lockdrop dispatch call

Attack scenario An attacker may create multiple nested calls bloating the call_length
before call decoding

Location precompiles/dispatch-lockdrop
Tracking [3]
Attack impact Unbounded call length can aid an attacker to cause heap overflow when

call data is moved to the vector
Severity Low
Status Closed [7]

The precompile dispatch call uses the UnboundedBytes [8] type without any call_length being
set for the call object parameter. During runtime-call decoding, a stack overflow is prevented
through usage of DecodeLimit [9] however, a heap overflow might occur even before decoding
if an unbounded call with large call_length is moved into the u8 vector.

An attacker can use this to create multiple nested calls bloating the call_length and cause heap
overflow even before call decoding.

We recommend using BoundedBytes<call_length> instead of UnboundedBytes. A best practice
implementation from Moonbeam may be adopted for setting CallLengthLimit similar to
GetProposalLimit [10] and implementing additional guard condition for call_length validity
similar to proposal_length [11] before decoding the call for additional safety.

4 Evolution suggestions

To ensure that precompiles are secure against known and yet undiscovered threats alike, the
auditors recommend considering the evolution suggestions and best practices described in this
section.

Fix the reported vulnerabilities in a timely manner. Ensure that the reported vulnerabilities
from this audit are addressed promptly. Astar has acknowledged these issues, and remediation
efforts are currently underway. Given that the lockdrop precompiles have already been
merged into the Astar master branch, it's crucial to emphasize the importance of timely
resolution. Thereby, it mitigates the risks posed by the reported issues but also prevents the
exposure of Astar’s broader codebase to potential attack vectors.

Regular code review and continuous fuzz testing. Regular code reviews are recommended to
avoid introducing new logic or arithmetic bugs, while continuous fuzz testing can identify
potential vulnerabilities early in the development process. Ideally, Astar should continuously
fuzz their code on each commit made to the codebase. The substrate-runtime-fuzzer [12]
(which uses Ziggy [13], a fuzzer management tool) can be a good starting point.

SRL-Astar-lockdrop-precompile-audit-report-final Page 6 of 6

Das Logo Horizontal

— Pos / Neg

3

5 Bibliography

[1] [Online].Available: https://github.com/AstarNetwork/Astar/pull/1142.

[2] [Online].Available: https://github.com/AstarNetwork/dappstaking-v3-audit/issues/7.

[3] [Online].Available: https://github.com/AstarNetwork/dappstaking-v3-audit/issues/8.

[4] [Online].Available: https://github.com/AstarNetwork/dappstaking-v3-audit/issues

/7#issuecomment-2034174383.

[5] [Online].Available:https://github.com/AstarNetwork/Astar/blob/

282485aa2d50f12f42463bba1d393fce4c57c2a3/precompiles/dispatch-
lockdrop/src/lib.rs#L88-L90.

[6] [Online].Available: https://github.com/polkadot-evm/frontier/issues/1348.

[7] [Online].Available: https://github.com/AstarNetwork/Astar/pull/1208.

[8] [Online].Available:https://github.com/AstarNetwork/Astar/blob/

282485aa2d50f12f42463bba1d393fce4c57c2a3/precompiles/dispatch-
lockdrop/src/lib.rs#L74.

[9] [Online].Available:https://github.com/AstarNetwork/Astar/blob/

282485aa2d50f12f42463bba1d393fce4c57c2a3/precompiles/dispatch-
lockdrop/src/lib.rs#L104C8-L104C84.

[10] [Online].Available:https://github.com/moonbeamfoundation/moonbeam/blob/

7f77c13bd20d33da1fabfe55acef75797f5369f1/precompiles/collective/src/lib.rs#L88.

[11] [Online].Available:https://github.com/moonbeamfoundation/moonbeam/blob/

7f77c13bd20d33da1fabfe55acef75797f5369f1/precompiles/collective/src/lib.rs#L117.

[12] [Online].Available: https://github.com/srlabs/substrate-runtime-fuzzer.

[13] [Online].Available: https://github.com/srlabs/ziggy.

