

- 19 pages -

Corporate Design

2016

Astar dApp staking version 3:
Baseline Security Assurance
Threat model and hacking assessment report

V1.0, 31 January 2024

Audited by: Regina Bíró regina@srlabs.de

 Rachna Shriwas rachna@srlabs.de

 Haroon Basheer haroon@srlabs.de

Abstract. This work describes the result of the thorough and
independent security assurance audit of the Astar dApp staking logic
performed by Security Research Labs. Security Research Labs is a
consulting firm that has been providing specialized audit services in the
Polkadot ecosystem since 2019, including for the Substrate and
Polkadot projects.

During this study, the Astar team provided access to relevant
documentation, GitHub repository and supported the research team
effectively for auditing their new components, the decentralized
applications (dApps) staking mechanism version 3 and its corresponding
inflation logic. The implementation of both components was verified to
assure that the business logic of Astar network is resilient to hacking
and abuse.

The research team identified several issues ranging from critical
severity to low, many of which concerned the dApps staking and
inflation logic.

Security Research Labs recommends considering opportunistic staking
in the tokenomics model and conducting another assessment when
additional features are implemented in the future.

mailto:regina@srlabs.de
mailto:rachna@srlabs.de
mailto:haroon@srlabs.de

 Page 2 of 19

Das Logo Horizontal

— Pos / Neg

3

Content

1 Disclaimer ... 3
2 Motivation and scope ... 4
3 Methodology .. 4
4 Threat modeling and attacks ... 6
5 Findings summary ... 9
6 Detailed findings ... 10
6.1 Issue 1: Double spending of tokens via infinite staking on unlock 10
6.2 Issue 2: Payouts round down to zero for collator and treasury rewards 11
6.3 Issue 3: Unregistered dApps not removed from storage 12
6.4 Issue 4: Loyal staker status can be abused ... 14
7 Evolution suggestions ... 15
7.1 Business logic improvement suggestions ... 15
7.2 Further recommended best practices .. 15
8 Bibliography .. 18

 Page 3 of 19

Das Logo Horizontal

— Pos / Neg

3

1 Disclaimer

This report describes the findings and core conclusions derived from the audit carried out
by Security Research Labs within the agreed-on timeframe and scope as detailed in Table
1. Please note that this report does not guarantee that all existing security vulnerabilities
were discovered in the codebase exhaustively and that following all evolution suggestions
described in Chapter 7 may not ensure all future code to be bug free.

 Page 4 of 19

Das Logo Horizontal

— Pos / Neg

3

2 Motivation and scope

Blockchains evolve in a trustless and decentralized environment, which by its own nature
could lead to security issues. Ensuring availability and integrity is a priority for Astar
network to deploy the new dApp staking mechanism v3 for staking and reward
distribution to its participants. As such, a security review of the project should not only
highlight the security issues uncovered during the audit process, but also bring additional
insights from an attacker’s perspective, which the Astar network team can then integrate
into their own threat modeling and development process to enhance the security of the
product.

Astar is a blockchain network built on top of Substrate. Like other Substrate-based
blockchain networks, the Astar code is written in Rust, a memory safe programming
language. Mainly, Substrate-based chains utilize three technologies: a WebAssembly
(WASM) based runtime, decentralized communication via libp2p, and a block production
engine.

The Astar runtime consists of multiple modules compiled into a WASM Binary Large
Object (blob) that is stored on-chain. Nodes execute the runtime code either natively or
will execute the on-chain WASM blob.

The core business logic of Astar is a hub for dApps within the Polkadot Ecosystem. With
Astar Network and Shiden Network, users can stake their tokens to a smart contract to
reward projects that provide value to the network.

Security Research Labs collaborated with the Astar team to create an overview of the
audit scope containing the local runtime configuration, dApp staking v3 pallet and
precompile; and inflation model (referred together as dApp staking v3 from here on). The
in-scope components and their assigned priorities are reflected in Table 1. During the
audit, Security Research Labs used a threat model [1] to guide efforts on exploring
potential security flaws and realistic attack scenarios. Additionally, Astar network’s online
documentation [2] [3] provided the testers with a good runtime module design and
implementation overview.

Repository Priority Component(s)

https://github.com/As
tarNetwork/Astar

High pallets/dapp-staking-v3
pallets/inflation
precompiles/dapp-staking-v3

Medium runtime/local
Table 1. In-scope Astar network components with audit priority

3 Methodology

This report details the baseline security assurance results for Astar with the aim of
creating transparency in four steps, treat modeling, security design coverage checks,
implementation baseline check and finally remediation support:

Threat Modeling. The threat model is considered in terms of hacking incentives, i.e., the
motivations to achieve the goals of breaching the integrity, confidentiality, or availability
of dApp staking v3. For each hacking incentive, hacking scenarios were postulated, by
which these goals could be achieved. The threat model provides guidance for the design,

https://github.com/AstarNetwork/Astar
https://github.com/AstarNetwork/Astar

 Page 5 of 19

Das Logo Horizontal

— Pos / Neg

3

implementation, and security testing of Astar network. Our threat modeling process is
outlined in Chapter 4.

Security design coverage check. Next, the Astar network design was reviewed for
coverage against relevant hacking scenarios. For each scenario, the following two aspects
were investigated:

a. Coverage. Is each potential security vulnerability sufficiently covered?

b. Underlying assumptions. Which assumptions must hold true for the design to
effectively reach the desired security goal?

Implementation baseline check. As a third step, the current Astar network
implementation was tested for openings whereby any of the defined hacking scenarios
could be executed.

To effectively review the Astar network codebase, we derived our code review strategy
based on the threat model that we established as the first step. For each identified threat,
hypothetical attacks were developed and mapped to their corresponding threat category.

Prioritizing by risk, the codebase was assessed for present protections against the
respective threats and attacks as well as the vulnerabilities that make these attacks
possible. For each threat, the auditors:

1. Identified the relevant parts of the codebase, for example the relevant pallets and
the runtime configuration.

2. Identified viable strategies for the code review. Manual code audits, fuzz testing,
and manual tests were performed where appropriate.

3. Ensured the code did not contain any vulnerabilities that could be used to execute
the respective attacks, otherwise, ensured that sufficient protection measures
against specific attacks were present.

4. Immediately reported any vulnerability that was discovered to the development
team along with suggestions around mitigations.

We carried out a hybrid strategy utilizing a combination of code review and dynamic tests
(e.g., fuzz testing) to assess the security of the Astar network codebase.

While fuzz testing and dynamic tests establish a baseline assurance, the focus of this audit
was a manual code review of the Astar network codebase to identify logic bugs, design
flaws, and best practice deviations. We reviewed the Astar network repository up to the
commit f9391d34926f1dbbc48e5fb537367a970f730b0f [4] in the master branch. The
approach of the review was to trace the intended functionality of the runtime modules in
scope and to assess whether an attacker can bypass/misuse/abuse these components or
trigger unexpected behavior on the blockchain due to logic bugs or missing checks. Since
the Astar network codebase is entirely open source, it is realistic that a malicious actor
would analyze the source code while preparing an attack.

Fuzz testing is a technique to identify issues in code that handles untrusted input, which
in Astar network's case is extrinsic in the runtime. (Note that the network part is handled
by Substrate, which was not in scope for this review, but is built with a strong emphasis
on security and where fuzz testing is also used). Fuzz testing works by taking some valid
input for a method under test, applying a semi-random mutation to it, and then invoking
the method under test again with this semi-valid input. Through repeating this process,

 Page 6 of 19

Das Logo Horizontal

— Pos / Neg

3

fuzz testing can unearth inputs that would cause a crash or other undefined behavior (e.g.,
integer overflows) in the method under test. The fuzz testing methods written for this
assessment utilized the test runtime Genesis configuration as well as mocked externalities
to execute the fuzz test effectively against the extrinsics in scope.

Remediation support. The final step was supporting Astar network with the remediation
process of the identified issues. Each finding was documented and published with
mitigation recommendations. Once the mitigation solution is implemented, the fix is
verified by the auditors to ensure that it mitigates the issue and does not introduce other
bugs.

During the audit, findings were shared via a private GitHub repository [5]. We also used a
private Slack channel for asynchronous communication and weekly status updates – in
addition, weekly meetings were held to provide detailed updates and to address open
questions.

4 Threat modeling and attacks

The goal of the threat model framework is to be able to determine specific areas of risk in
Astar network’s blockchain system. Familiarity with these risk areas can provide guidance
for the design of the implementation stack, the actual implementation of the stack, as
well as the security testing. This section introduces how risk is defined and provides an
overview of the identified threat scenarios. The Hacking Value, categorized into low,
medium, and high, considers the incentive of an attacker, as well as the effort required by
an attacker to successfully execute the attack. The hacking value is calculated as:

𝐻𝑎𝑐𝑘𝑖𝑛𝑔	𝑉𝑎𝑙𝑢𝑒 = 	
𝐼𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒
𝐸𝑓𝑓𝑜𝑟𝑡

While incentive describes what an attacker might gain from performing an attack
successfully, effort estimates the complexity of this same attack. The degrees of incentive
and effort are defined as follows:

Incentive:

• Low: Attacks offer the hacker little to no gain from executing the threat.

• Medium: Attacks offer the hacker considerable gains from executing the threat.

• High: Attacks offer the hacker high gains by executing this threat.

Effort:

• Low: Attacks are easy to execute. They require neither elaborate technical
knowledge nor considerable amounts of resources.

• Medium: Attacks are difficult to execute. They might require bypassing
countermeasures, the use of expensive resources or a considerable amount of
technical knowledge.

• High: Attacks are difficult to execute. The attacks might require in-depth technical
knowledge, vast amounts of expensive resources, bypassing countermeasures, or
any combination of these factors.

Incentive and Effort are divided according to Table 2.

 Page 7 of 19

Das Logo Horizontal

— Pos / Neg

3

Hacking Value Low incentive Medium Incentive High Incentive

High effort Low Medium Medium

Medium effort Medium Medium High

Low effort Medium High High

Table 2. Hacking value measurement scale.

Hacking scenarios are classified by the risk they pose to the system. The risk level, also
categorized into low, medium, and high, considers the hacking value, as well as the
damage that could result from successful exploitation. The risk of a threat scenario is
calculated by the following formula:

𝑅𝑖𝑠𝑘 = 𝐷𝑎𝑚𝑎𝑔𝑒 × 𝐻𝑎𝑐𝑘𝑖𝑛𝑔	𝑉𝑎𝑙𝑢𝑒 =
𝐷𝑎𝑚𝑎𝑔𝑒 × 𝐼𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒

𝐸𝑓𝑓𝑜𝑟𝑡

Damage describes the negative impact that a given attack, performed successfully, would
have on the victim. The degrees of damage are defined as follows:

Damage:

• Low: Risk scenarios would cause negligible damage to the Astar network

• Medium: Risk scenarios pose a considerable threat to Astar network’s
functionality as a network.

• High: Risk scenarios pose an existential threat to Astar network’s network
functionality.

Damage and Hacking Value are divided according to Table 3.

Risk Low hacking value Medium hacking
value

High hacking
value Low damage Low Medium Medium

Medium damage Medium Medium High

High damage Medium High High

Table 3. Risk measurement scale.

After applying the framework to the Astar network system, different threat scenarios
according to the CIA triad were identified.

The CIA triad describes three security promises that can be violated by a hacking attack,
namely confidentiality, integrity, availability.

Confidentiality:

Confidentiality threat scenarios concern sensitive information regarding the blockchain
network and its users. Native tokens are units of value that exist on the blockchain -
confidentiality threat scenarios include for example attackers abusing information leaks
to steal native tokens from nodes participating in the Astar network ecosystem and
claiming the assets (represented in the token) for themselves.

Integrity:

 Page 8 of 19

Das Logo Horizontal

— Pos / Neg

3

Integrity threat scenarios threaten to disrupt the functionality of the entire network by
undermining or bypassing the rules that ensure that Astar network
transactions/operations are fair and equal for each participant. Undermining Astar
network’s integrity often comes with a high monetary incentive, like for example, if an
attacker can double spend or mint tokens for themselves. Other threat scenarios do not
yield an immediate monetary reward, but rather, could threaten to damage Astar
network’s functionality and, in turn, its reputation. For example, tampering the new
inflation model either by exploiting rounding or arithmetic bugs to earn extra tokens.

Availability:

Availability threat scenarios refer to compromising the availability of data stored by the
Astar network as well as the availability of the network itself to process normal
transactions. Important threat scenarios regarding availability for blockchain systems
include Denial of Service (DoS) attacks on the staking mechanism by stalling or halting
block production, stalling the transaction queue, and spamming.

Table 4 provides a high-level overview of the hacking risks concerning dApp staking with
identified example threat scenarios and attacks, as well as their respective hacking value
and effort. The complete list of threat scenarios identified along with attacks that enable
them are described in the threat model deliverable [1]. This list can serve as a starting
point to the Astar network developers to guide their security outlook for future feature
implementations. By thinking in terms of threat scenarios and attacks during code review
or feature ideation, many issues can be caught or even avoided altogether.

For dApp staking v3, the auditors attributed the most hacking value to the integrity class
of threats. Since the efforts required to exploit this kind of issue is considered lower, we
identified threat scenarios to the integrity of the staking mechanism of the highest risk
category. Undermining the integrity of the dynamic inflation models of the Astar network
means exploiting the rewards implementation to remove or claim free tokens. Some of
the scenarios can have a direct effect on the financial model of the system. This can
include market manipulation, gaining tokens for free or artificially manipulating the
inflation to gain bonus rewards without repercussions.

Security
promise

Hacking
value

Example threat
scenarios

Hacking
effort

Example attack ideas

Confidentiality High N/A High N/A

Integrity High - Attackers could
stake or transfer
the same token to
multiple dApps
during the staking
period causing
reputation damage
and unfair reward
distribution
- Attacker could
abuse the loyalty
status of an honest
staker

Low -Exploit weakness in
dApp staking
implementation to
claim or spend the
same token twice
-Exploit a bug in the
code to gain loyal
staker status
-Exploit bugs in the
rewards
implementation to
remove or claim free
tokens

 Page 9 of 19

Das Logo Horizontal

— Pos / Neg

3

Availability Medium - Attackers could
try to sabotage the
staking mechanism
by stalling or
halting block
production
- Attacker could
DoS the dApp
staking
functionality to
affect reward
processing

Low

-Exploit arithmetic
bugs in the reward or
inflation calculation
-Transaction
spamming via
underpriced extrinsics
-Crash the chain by
abusing reachable
panic conditions in
the configs during
block initialization and
finalization

Table 4. Risk overview. The threats for Astar network’s blockchain were classified using
the CIA security triad model, mapping threats to the areas: (1) Confidentiality, (2)
Integrity, and (3) Availability.

5 Findings summary

We identified 4 issues - summarized in Table 5 - during our analysis of the local runtime
modules in scope in the Astar codebase that enable some of the attacks outlined above.
In summary, 2 critical severity, 1 high severity and 1 low severity issues were found.

Please note that in our methodology, critical severity issues refer to high severity issues
that could be exploited immediately by an attacker on already deployed infrastructure,
including a parachain or a non-incentivized testnet.

Issue Severity References Status

The unlocking logic in dapp-
staking-v3 allows attackers to
double spend tokens via
infinitely staking them on
different accounts

Critical [6] Mitigated [7]

Collator and Treasury reward
payout can round down to
zero in the new inflation,
thereby tampering with
Astar's economic model

High [8] Mitigated [9] and [10]

Unregistered dApps prevent
new dApps from registration
when the
MaxNumberOfContracts limit
is reached

Medium [11] Mitigated [12]

A loyal staker will maintain
their loyalty status after they
unstake all their balance
within the Voting sub-period,
thereby remaining loyal

Low [13] Mitigated [14]

 Page 10 of 19

Das Logo Horizontal

— Pos / Neg

3

staker in the Build and Earn
(B&E) sub period

Table 5 Issue summary

6 Detailed findings

6.1 Issue 1: Double spending of tokens via infinite staking on unlock

Attack scenario The unlocking logic in dapp-staking-v3 allows attackers to
double spend tokens via infinitely staking them on different
accounts

Location pallets/dapp-staking-v3
Tracking [6]
Attack impact The attacker can stake the same tokens multiple times and

gain rewards for the staked amount.
Severity Critical
Status Mitigated [7]

To stake an amount for a dApp, a user needs to first lock the amount and then stake.
When a user wants to unstake from a dApp, the amount first needs to be unstaked and
then unlocked. The unlocking logic in dapp-staking-v3 marks the unlocked amount as free
balance which can then be transferred to another account. The logic for relock_unlocking
however, still considers the unlocked amount as unlocked_chunks and doesn’t verify if the
amount exists in the ledger or not. An attacker can exploit this by unlocking tokens,
transferring them to another account, relock again and stake the non-existent tokens in
the original account.

Please consider the following test as a PoC.

 1. #[test]
 2. fn lock_relock_unlocking_iter() {
 3. ExtBuilder::build().execute_with(|| {
 4. let account = 2;
 5.
 6. // We have 1000
 7. let free_balance = Balances::free_balance(&account);
 8. assert_eq!(free_balance, 1000);
 9.
10. // Lock some amount
11. let lock_amount = 500;
12. assert_lock(account, lock_amount);
13.
14. // Start unlocking
15. assert_unlock(account, lock_amount);
16.
17. // We transfer all of the free balance to another account
18. let other_account = 42;
19. assert_ok!(Balances::transfer_all(RuntimeOrigin::signed(account),
other_account, true));
20.
21. // Relock_unlocking will "relock" the 500, even though they have already
been transfered
22. assert_relock_unlocking(account);
23.
24. // Account only has the existential deposit
25. assert_eq!(Balances::free_balance(&account), EXISTENTIAL_DEPOSIT);
26. assert_eq!(Balances::reserved_balance(&account), 0);
27. assert_eq!(frame_system::Account::<Test>::get(&account).data.frozen,
500);
28. // The other account has the remaining 998
29. assert_eq!(Balances::free_balance(&other_account), 998);

 Page 11 of 19

Das Logo Horizontal

— Pos / Neg

3

30. // Dapp_staking_v3::Ledger still thinks there is 500 locked!
31. assert_eq!(Ledger::<Test>::get(&account).locked, 500);
32.
33. // We can do that over and over again, re-locking the same balance on
different accounts
34. for iter_account in 42..142 {
35. assert_lock(iter_account, lock_amount);
36. assert_unlock(iter_account, lock_amount);
37.
assert_ok!(Balances::transfer_all(RuntimeOrigin::signed(iter_account), iter_account
+ 1, true));
38. assert_relock_unlocking(iter_account);
39. assert_eq!(Balances::free_balance(&iter_account), 2);
40. assert!(Balances::free_balance(&iter_account + 1) > 500);
41. assert_eq!(Ledger::<Test>::get(&iter_account).locked, 500);
42. }
43. })
44. }

As a result, the attacker can stake the same tokens multiple times on a dApp, resulting in
a higher staking score for the dApp and the attacker gaining more rewards. This can also
potentially tamper with the inflation scheme of Astar.

The attack doesn't require deep technical knowledge about the Astar, regular users might
also exploit it unknowingly, thinking that they can use the unlocked tokens immediately
after calling unlock.

We suggest two alternatives to mitigate this issue:

• Implement a custom lock for the UnlockingChunk that doesn't allow them to be
transferred/used.

• Do not lift the DAppStaking lock, until the unlocking has finished. Track the
difference between locked tokens and UnlockingChunk in the ledger info.

The issue was mitigated [7] by Astar team by setting the freeze lock for
total_locked_amount instead of active_locked_amount in update_ledger which would
treat the unlocked chunks as frozen and not as free balance.

6.2 Issue 2: Payouts round down to zero for collator and treasury rewards

Attack scenario Collator and Treasury reward payout can round down to
zero in the new inflation, thereby tampering with Astar's
economic model

Location pallets/inflation
Tracking [8]
Attack impact The reward per block for collators can round down to zero,

deterring non-Astar collators from participating in the
block production.

Severity High
Status Mitigated [9] and [10]

The inflation recalculation can result in collator_reward_per_block and
treasury_reward_per_block to be zero when the condition blocks per cycle >
collator_emission & treasury_emission is true.

let collator_reward_per_block = collators_emission / blocks_per_cycle;
let treasury_reward_per_block = treasury_emission / blocks_per_cycle;

 Page 12 of 19

Das Logo Horizontal

— Pos / Neg

3

Consider for instance:

let collators_emission = params.collators_part * max_emission;

where params.collators_part is configured to be 3%, as in the mock similar to Tokenomics
2.0 specs. This results in collators_emission being smaller than the blocks_per_cycle
causing collator_reward_per_block as 0.

The following UT confirms the assertion with similar configuration to UT
inflation_recalculation_works:

 1. #[test]
 2. fn srl_test_collator_treasury_payouts() {
 3. ExternalityBuilder::build().execute_with(|| {
 4. //1. Initial parameters used as same in the UT
inflation_recalculation_works
 5. let total_issuance = Balances::total_issuance();
 6. let params = InflationParams::<Test>::get();
 7. let now = System::block_number();
 8.
 9. //2. Calculate new config
10. let new_config = Inflation::recalculate_inflation(now);
11. let max_emission = params.max_inflation_rate * total_issuance;
12.
13. //3. Assert the payout config
14. //BUG: both reward reaches zero
15. assert_eq!(new_config.collator_reward_per_block,0);
16. assert_eq!(new_config.treasury_reward_per_block,0);
17.
18. //4.Do the payout using the new_config
19. let collator_amount = <mock::Test as
pallet::Config>::Currency::issue(new_config.collator_reward_per_block);
20. let treasury_amount = <mock::Test as
pallet::Config>::Currency::issue(new_config.treasury_reward_per_block);
21. //Payouts to Zero
22. println!("{:?},{:?}",collator_amount,treasury_amount);
23. <mock::Test as
pallet::Config>::PayoutPerBlock::collators(collator_amount);
24. <mock::Test as
pallet::Config>::PayoutPerBlock::treasury(treasury_amount);
25.
26. })
27. }

As collators receive zero rewards for block production, it could deter non-Astar collators
from participating in block production and disrupt the staking mechanism. In addition,
this could also lead to free balances and extra rewards floating in the system, breaking
the economic model.

We recommend mitigating the issue by ensuring that collator and treasury rewards don’t
result in incorrect payouts, and InflationConfiguration payouts are distributed to all actors
in the network in a way that ensures max_emission is fully burned within the cycle.

The issue was mitigated by Astar team by changing the total issuance and init inflation
configuration in the pallet-inflation mock to be more realistic [9] and adding log messages
in case collator rewards become zero [10].

6.3 Issue 3: Unregistered dApps not removed from storage

Attack scenario Unregistered dApps prevent new dApps from registration
when the MaxNumberOfContracts limit is reached

Location pallets/dapp-staking-v3

 Page 13 of 19

Das Logo Horizontal

— Pos / Neg

3

Tracking [11]
Attack impact dApp developers are prevented from registering and

marketing their dApp during the voting sub-period,
subsequently affecting stakers from bidding on these
dApps for bonus reward.

Severity Medium
Status Mitigated [12]

New dApps will not be allowed to register over time, when the MaxNumberOfContracts
[15] count is reached. This is due to the register extrinsic logic counting all the
IntegratedDApps including the unregistered dApps towards MaxNumberOfContracts, not
because of malicious behaviour of the Manager origin.

During dApps’ registration, the register extrinsic checks for:

• IntegratedDApps [16] count is within the range of MaxNumberOfContracts as
follows: (say [A1])

ensure!(IntegratedDApps::<T>::count() < T::MaxNumberOfContracts::get().into(),
 Error::<T>::ExceededMaxNumberOfContracts);

Once the [A1] conditions holds, the dApp is inserted into the storage [17] using the same
extrinsic, firing successful deposit event for dApp registration.

However, when the unregister extrinsic is called, the de-registered dApp is not removed
from the IntegratedDApps storage. Rather it is updated with DAppState set to
Unregistered [18]. This implies that the IntegratedDApps::<T>::count() will always be
incremented, as more and more dApps are registered.

When [A1] doesn't hold during registration, no additional dApp will be allowed to register,
throwing an ExceededMaxNumberOfContracts Error.

As the register is called using root call/Manager origin, this forces to perform runtime
upgrade to increase the MaxNumberOfContracts or manually removing the unregistered
dApps from the storage. Both these operations are expensive during dApp staking and
may result in moving the chain to maintenance mode.

This may cause knock on effects on the new dApp developers from failing to register or
participate in marketing during the voting sub-period, subsequently affecting stakers
bidding on these dApps for bonus rewards.

Increasing the MaxNumberOfContracts in the runtime to a higher value is not an ideal
solution (currently set to 100 in local runtime and 500 in shibuya runtime), as the ceiling
(u32 MAX) will be reached at some point. The ideal mitigation will be:

1. Remove the de-registered dApps from the IntegratedDapps storage as proposed
here when the unregister extrinsic is called (similar to removing the ContractStake
for de-registered dApps)

2. If mitigation 1 is not feasible, in favor of keeping the historical records of the
dApps registered. Consider:

 Page 14 of 19

Das Logo Horizontal

— Pos / Neg

3

Ensure by counting the DAppState::Registered state in the DAppInfo stays within
the range of MaxNumberOfContracts during register instead of [A1]. This helper
function may be useful to keep count of the currently registered dApps.

The issue was mitigated by Astar team by removing the unregistered dApps from
IntegratedDApps storage and replacing NotOperatedDApp error with ContractNotFound
error. The dApp Id cleanup will be addressed later in the PR 1152 [19].

6.4 Issue 4: Loyal staker status can be abused

Attack scenario A loyal staker will maintain their loyalty status even after
they unstake all their balance in the Voting sub-period

Location pallets/dapp-staking-v3
Tracking [13]
Attack impact The loyalty status may be exploited by any staker for dApps

if the developer relies on this status for additional payouts
or specific privileges within their implementation.

Severity Low
Status Mitigated [14]

By staking at least once during a voting sub period, a staker will be loyal. If they are able
to unstake all their balance before the end of same sub-period, they remain a loyal staker
for the dApp in the B&E sub period.

The following UT confirms the assertion:

 1. //Execute inside test_types.rs
 2. fn srl_check_loyal_staker_during_BE(){
 3. //1. Stake some amount during voting sub period
 4. let period_number = 1;
 5. let subperiod = Subperiod::Voting;
 6. let mut staking_info = SingularStakingInfo::new(period_number, subperiod);
 7. let mut era_1 = 2;
 8. let vote_stake_amount_1 = 100;
 9. staking_info.stake(vote_stake_amount_1, era_1, Subperiod::Voting);
10. assert!(staking_info.is_loyal());
11.
12. //2. lets unstake everything during Voting period, voting balance is zero
13. let unstake_amount_1 = 100;
14. assert_eq!(
15. staking_info.unstake(unstake_amount_1, era_1, Subperiod::Voting),
16. (unstake_amount_1, Balance::zero())
17.);
18. assert!(staking_info.is_loyal()); //its a feature, because its voting sub
period
19.
20. // 3. B&E sub-period, stake and unstake
21. let bep_stake_amount_1 = 23;
22. staking_info.stake(bep_stake_amount_1, era_1+1, Subperiod::BuildAndEarn);
23. staking_info.unstake(23, era_1+2, Subperiod::BuildAndEarn);
24. let remaining_stake = staking_info.total_staked_amount();
25. assert_eq!(remaining_stake,Balance::zero());
26. // BUG: Cant be loyal staker??
27. assert!(staking_info.is_loyal());
28. }

The potential risks associated are:
• The loyalty status may be exploited by any staker for dApps if the developer relies

on this status for additional payouts or specific privileges within their
implementation.

 Page 15 of 19

Das Logo Horizontal

— Pos / Neg

3

• This disrupts the concept of maintaining loyalty status, as a staker with zero
balance during the Voting sub-period still retains their loyal status.

• While the incorrect loyalty status presently does not lead to an additional bonus
reward payout, it has the potential to cause user inconvenience when claiming
bonus rewards in the extrinsic claim_bonus_reward, resulting in
InternalClaimBonusError.

We suggest to reset the loyalty flag when the staking balance reaches zero during the
voting sub-period to avoid incorrect state transitions into the B&E sub-period. Fix the
unstake as:

self.loyal_staker = self.loyal_staker
 && (self.staked.voting != zero()
 || subperiod == Subperiod::BuildAndEarn
 && self.staked.voting == snapshot.voting);

The issue was fixed by Astar team by resetting the loyal_staker flag to false if the staked
amount in Voting period becomes zero [14].

7 Evolution suggestions

The overall impression of the auditors was that Astar’s dApp Staking as a product is
designed and written with security in mind. To ensure that Astar network is secure against
unknown or yet undiscovered threats, we recommend considering the evolution
suggestions and best practices described in this section.

7.1 Business logic improvement suggestions

To enhance the security and robustness of the dApp staking and inflation design, we
recommend considering the following suggestions:

Ensure fair bonus reward for early stakers at the start of an era during voting sub-period.
To promote equitable bonus payouts for stakers at the onset of a new era during the
voting against staking towards the end of the last era, the calculation for bonus rewards
may incorporate the era number in the formula. This also prevents stakers from
influencing the tier level of a dApp from promotion or demotion through opportunistic
last-minute staking. This scenario should be considered when a new economic audit is
performed to update the Tokenomics report v2.0 [2] and its implementation in the
inflation pallet.

Periodically audit currently registered dApps’ performance and business logic to
prevent them from becoming rogue/malicious. Implement a regular security audit
program for the deployed dApps within the Astar ecosystem. This program should
encompass a thorough examination of the dApps' business and implementation to
guarantee their validity and security of its intended functionality. Additionally, it is
recommended to periodically involve external security experts for impartial evaluations.
To maintain transparency and keep all stakeholders informed, ensure the publication of
the audit reports and assessments detailing the progress and outcomes of the security
audits for the dApps.

7.2 Further recommended best practices

Regular code review and continuous fuzz testing. Regular code reviews are
recommended to avoid introducing new logic or arithmetic bugs, while continuous fuzz
testing can identify potential vulnerabilities early in the development process. Ideally,

 Page 16 of 19

Das Logo Horizontal

— Pos / Neg

3

Astar should continuously fuzz their code on each commit made to the codebase. The
substrate-runtime-fuzzer [20] (which uses Ziggy [21], a fuzzer management tool) can be a
good starting point.

Regular updates. New releases of Substrate may contain fixes for critical security issues.
Since Astar network is a product that heavily relies on Substrate, updating to the latest
version as soon as possible whenever a new release is available is recommended.

Appropriate benchmarking. Inappropriate benchmarking can lead to
overestimation/underestimation of weights which can be exploited by an attacker for
their advantage. One such case of overestimation was found during the audit:

• In the function get_dapp_tier_assignment, the counter is incremented at line
1604 [22], even if the dApp has zero stake. This counter is used for benchmarking
and thus could result in a slight overestimation of the weight.

The issue was acknowledged by the Astar team, and the code would be optimized
in the future.

Miscellaneous best practices and recommendations. During the audit, a few code
discrepancies and missing best practices were reported to the Astar team which are
detailed below:

1. The dApp sorting into tiers is done using sort_unstable_by which will give lower
position to the dApp with lower dApp ID in case two dApps have same staking
score. So, the dApps that were registered first, will get the priority in the list. The
comments in the source code [23] and the README [24] give the impression to
the users that the sorting behavior is undefined. It was recommended to update
the comments to reflect the current behavior.

The suggestion was acknowledged, and the source code comments [25] and
README [26] were modified to remove the confusion in sorting behavior.

2. The pub maintenance: bool [27] visibility for the ProtocolState struct should be
set to a private for maintenance mode to prevent overriding of the default
implementation [28]. Although setting the maintenance mode requires
root/manager origin, making the fields private enforces an additional security
guarantee to the ProtocolState. It was recommended to remove the pub identifier
from the struct fields.

The recommendation was acknowledged, and it was discussed that the pallet-
dapp-staking-migration manipulates the maintenance mode when doing the
migration, so it needs access to it. The suggested change can be applied once
dApp staking v3 has been deployed on all the networks and the migration pallet
can be removed.

3. Set safe maximum for InflationParameters (probably in fn is_valid()) and
InflationConfiguration

The function is_valid() [29] checks if the sum of all inflation parameters is one
whole, but there is no maximum limit for individual parameters. For example, one
of the parameters could be 80% and others summed together 20%. This would be
mathematically valid but could harm the inflation model.

Additionally, there are no bounds checks implemented for InflationConfiguration.
It is recommended to add sanity checks for expected ranges of the parameters.

 Page 17 of 19

Das Logo Horizontal

— Pos / Neg

3

It was discussed with the Astar team that in case a parameter value in
InflationParameters becomes excessively low or excessively large, it will not stop
or break the chain and is something that can be remedied quickly. For
InflationConfiguration, warnings were added in the code [10] in case any of the
reward values becomes zero.

4. We observed that safe math operations (such as saturating_mul, saturating_div)
are not used everywhere for inflation calculation [30]. It was recommended to
always use safe math operations to avoid overflow, underflow, and division by
zero errors.

The integer division issue was resolved in PR 1146 [10].

5. Remove force extrinsics from the following pallets: dApp staking and inflation
(such as force_set_inflation_config, force_set_tier_config, force_set_tier_params
and Error InvalidTierParameters). This was already noted in the ToDo code
comments and the Astar team was notified during the regular sync calls. As these
functions have security implications on the dApp staking during production, its
recommended to remove them prior to the mainnet launch. This will also improve
the codebase’s readability and ease of maintenance.

 Page 18 of 19

Das Logo Horizontal

— Pos / Neg

3

8 Bibliography

[1] [Online]. Available:
https://securityresearchlabs.sharepoint.com/:x:/s/Astar/EdyWlhEtLP5GhaaG6x55
oqEB8expHnKWp72EYLjhKVP8BQ?e=o0fwq8.

[2] [Online]. Available: https://forum.astar.network/t/astar-tokenomics-2-0-a-
dynamically-adjusted-inflation/4924.

[3] [Online]. Available: https://forum.astar.network/t/dapps-staking-v3-
proposal/4206.

[4] [Online]. Available:
https://github.com/AstarNetwork/Astar/tree/f9391d34926f1dbbc48e5fb537367
a970f730b0f.

[5] [Online]. Available: https://github.com/AstarNetwork/dappstaking-v3-
audit/issues?q=is%3Aissue+is%3Aclosed.

[6] [Online]. Available: https://github.com/AstarNetwork/dappstaking-v3-
audit/issues/1.

[7] [Online]. Available: https://github.com/AstarNetwork/Astar/pull/1111.

[8] [Online]. Available: https://github.com/AstarNetwork/dappstaking-v3-
audit/issues/5.

[9] [Online]. Available: https://github.com/AstarNetwork/Astar/pull/1144.

[10] [Online]. Available: https://github.com/AstarNetwork/Astar/pull/1146.

[11] [Online]. Available: https://github.com/AstarNetwork/dappstaking-v3-
audit/issues/6.

[12] [Online]. Available: https://github.com/AstarNetwork/Astar/pull/1153.

[13] [Online]. Available: https://github.com/AstarNetwork/dappstaking-v3-
audit/issues/4.

[14] [Online]. Available: https://github.com/AstarNetwork/Astar/pull/1136.

[15] [Online]. Available:
https://github.com/AstarNetwork/Astar/blob/0b0d082274cc735b82b1fc3996de
e9dc3eafe7b6/pallets/dapp-staking-v3/src/lib.rs#L158.

[16] [Online]. Available:
https://github.com/AstarNetwork/Astar/blob/0b0d082274cc735b82b1fc3996de
e9dc3eafe7b6/pallets/dapp-staking-v3/src/lib.rs#L626-L629.

 Page 19 of 19

Das Logo Horizontal

— Pos / Neg

3

[17] [Online]. Available:
https://github.com/AstarNetwork/Astar/blob/0b0d082274cc735b82b1fc3996de
e9dc3eafe7b6/pallets/dapp-staking-v3/src/lib.rs#L635-L643.

[18] [Online]. Available:
https://github.com/AstarNetwork/Astar/blob/0b0d082274cc735b82b1fc3996de
e9dc3eafe7b6/pallets/dapp-staking-v3/src/lib.rs#L758.

[19] [Online]. Available: https://github.com/AstarNetwork/Astar/issues/1152.

[20] [Online]. Available: https://github.com/srlabs/substrate-runtime-fuzzer.

[21] [Online]. Available: https://github.com/srlabs/ziggy.

[22] [Online]. Available:
https://github.com/AstarNetwork/Astar/blob/d9a76ff3f49b7dee423a558d4cdf7
2bfb5f99e63/pallets/dapp-staking-v3/src/lib.rs#L1604C17-L1604C17.

[23] [Online]. Available:
https://github.com/AstarNetwork/Astar/blob/d9a76ff3f49b7dee423a558d4cdf7
2bfb5f99e63/pallets/dapp-staking-v3/src/lib.rs#L1658C12-L1658C12.

[24] [Online]. Available:
https://github.com/AstarNetwork/Astar/blob/d9a76ff3f49b7dee423a558d4cdf7
2bfb5f99e63/pallets/dapp-staking-v3/README.md.

[25] [Online]. Available:
https://github.com/AstarNetwork/Astar/blob/f9391d34926f1dbbc48e5fb537367
a970f730b0f/pallets/dapp-staking-v3/src/lib.rs#L1733.

[26] [Online]. Available:
https://github.com/AstarNetwork/Astar/blob/master/pallets/dapp-staking-
v3/README.md.

[27] [Online]. Available:
https://github.com/AstarNetwork/Astar/blob/0cba858fe201c0dfd31f9db12eb44
b1b307d7f51/pallets/dapp-staking-v3/src/types.rs#L198.

[28] [Online]. Available:
https://github.com/AstarNetwork/Astar/blob/0cba858fe201c0dfd31f9db12eb44
b1b307d7f51/pallets/dapp-staking-v3/src/types.rs#L201.

[29] [Online]. Available:
https://github.com/AstarNetwork/Astar/blob/f9391d34926f1dbbc48e5fb537367
a970f730b0f/pallets/inflation/src/lib.rs#L588.

[30] [Online]. Available:
https://github.com/AstarNetwork/Astar/blob/master/pallets/inflation/src/lib.rs#
L354-L386.

