
Introducing Code4rena Pro League: The elite tier of professional security
researchers. Learn more →

Acala
Findings & Analysis Report
2024-05-02

Table of contents
• Overview

• About C4

• Wardens

• Summary

• Scope

• Severity Criteria

• High Risk Findings (3)

• [H-01] transfer_share_and_rewards allows for self transfer

• [H-02] Early user can break pool via inflation attack due to no
minimum liquidity check in the incentive contract

• [H-03] transfer_share_and_rewards can be used to transfer
out shares without transferring reward debt due to rounding

• Medium Risk Findings (4)

• [M-01] Claiming rewards while the deduction rate is != 0 ,
allows for repeated withdrawal of redistributed rewards

Acala https://code4rena.com/reports/2024-03-acala

1 of 52 09/06/2024, 14:14

https://code4rena.com/pro
https://code4rena.com/pro
https://code4rena.com/
https://code4rena.com/

• [M-02] Incentive accumulation can be sandwiched with
additional shares to gain advantage over long-term depositors

• [M-03] Unbond_instant removes incorrect amount of shares

• [M-04] Storage can be bloated with low liquidity positions

• Low Risk and Non-Critical Issues

• 01 Admin is a single point of failure

• 02 Consider adding better documentation

• 03 Setters should always have equality checkers

• 04 OnUpdateLoan::happened() should check for when
adjustment == 0

• 05 Protocol does not apply deadlines when dealing with critical
operations

• 06 Fix typos

• 07 Consider using BST instead

• 08 Consider not switching off important clippy protection
methods

• Audit Analysis

• Overview

• Architecture Overview

• Approach Taken in Evaluating Acala

• Acala Modules Analysis

• Call-trace Diagrams

• Codebase Quality

• Systematic Risks and Centralization

• Insights

• Disclosures

Acala https://code4rena.com/reports/2024-03-acala

2 of 52 09/06/2024, 14:14

Code4rena (C4) is an open organization consisting of security researchers,
auditors, developers, and individuals with domain expertise in smart
contracts.

A C4 audit is an event in which community participants, referred to as
Wardens, review, audit, or analyze smart contract logic in exchange for a
bounty provided by sponsoring projects.

During the audit outlined in this document, C4 conducted an analysis of the
Acala smart contract system written in Rust. The audit took place between
March 22 — April 5, 2024.

19 Wardens contributed reports to Acala:

1. carrotsmuggler

2. ZanyBonzy

3. zhaojie

4. AM (StefanAndrei and 0xmatei)

5. ihtishamsudo

6. TheSchnilch

7. Bauchibred

8. djxploit

9. Aymen0909

10. n4nika

Overview

About C4

Wardens

Acala https://code4rena.com/reports/2024-03-acala

3 of 52 09/06/2024, 14:14

https://code4rena.com/@carrotsmuggler
https://code4rena.com/@carrotsmuggler
https://code4rena.com/@ZanyBonzy
https://code4rena.com/@ZanyBonzy
https://code4rena.com/@zhaojie
https://code4rena.com/@zhaojie
https://code4rena.com/@AM
https://code4rena.com/@AM
https://code4rena.com/@StefanAndrei
https://code4rena.com/@StefanAndrei
https://code4rena.com/@0xmatei
https://code4rena.com/@0xmatei
https://code4rena.com/@ihtishamsudo
https://code4rena.com/@ihtishamsudo
https://code4rena.com/@TheSchnilch
https://code4rena.com/@TheSchnilch
https://code4rena.com/@Bauchibred
https://code4rena.com/@Bauchibred
https://code4rena.com/@djxploit
https://code4rena.com/@djxploit
https://code4rena.com/@Aymen0909
https://code4rena.com/@Aymen0909
https://code4rena.com/@n4nika
https://code4rena.com/@n4nika

11. DarkTower (0xrex and haxatron)

12. ABAIKUNANBAEV

13. 0xTheC0der

14. hunter_w3b

15. 0xepley

16. LinKenji

17. Cryptor

This audit was judged by Lambda.

Final report assembled by thebrittfactor.

The C4 analysis yielded an aggregated total of 7 unique vulnerabilities. Of
these vulnerabilities, 3 received a risk rating in the category of HIGH
severity and 4 received a risk rating in the category of MEDIUM severity.

Additionally, C4 analysis included 7 reports detailing issues with a risk rating
of LOW severity or non-critical.

All of the issues presented here are linked back to their original finding.

The code under review can be found within the C4 Acala repository, and is
composed of 3 smart contracts written in the Rust programming language
and includes 1135 lines of Rust code.

Summary

Scope

Severity Criteria

Acala https://code4rena.com/reports/2024-03-acala

4 of 52 09/06/2024, 14:14

https://code4rena.com/@DarkTower
https://code4rena.com/@DarkTower
https://code4rena.com/@0xrex
https://code4rena.com/@0xrex
https://code4rena.com/@haxatron
https://code4rena.com/@haxatron
https://code4rena.com/@ABAIKUNANBAEV
https://code4rena.com/@ABAIKUNANBAEV
https://code4rena.com/@0xTheC0der
https://code4rena.com/@0xTheC0der
https://code4rena.com/@hunter_w3b
https://code4rena.com/@hunter_w3b
https://code4rena.com/@0xepley
https://code4rena.com/@0xepley
https://code4rena.com/@LinKenji
https://code4rena.com/@LinKenji
https://code4rena.com/@Cryptor
https://code4rena.com/@Cryptor
https://code4rena.com/@Lambda
https://code4rena.com/@Lambda
https://twitter.com/brittfactorC4
https://twitter.com/brittfactorC4
https://github.com/code-423n4/2024-03-acala
https://github.com/code-423n4/2024-03-acala

C4 assesses the severity of disclosed vulnerabilities based on three primary
risk categories: high, medium, and low/non-critical.

High-level considerations for vulnerabilities span the following key areas
when conducting assessments:

• Malicious Input Handling

• Escalation of privileges

• Arithmetic

• Gas use

For more information regarding the severity criteria referenced throughout
the submission review process, please refer to the documentation provided
on the C4 website, specifically our section on Severity Categorization.

Submitted by ZanyBonzy, also found by ihtishamsudo

The rewards library holds the transfer_share_and_rewards allows for
self transfer which can be used to double shares and rewards. Important to
note that the function, for now is not in use by the in-scope contracts.
However, I still believe it’s worth pointing out.

Copy and paste the below test into tests.rs. It shows how users Alice and
Bob, by invoking this function, can increase their share/rewards balance.

High Risk Findings (3)

[H-01] transfer_share_and_rewards allows for self
transfer

Proof of Concept

Acala https://code4rena.com/reports/2024-03-acala

5 of 52 09/06/2024, 14:14

https://code4rena.com/
https://code4rena.com/
https://docs.code4rena.com/awarding/judging-criteria/severity-categorization
https://docs.code4rena.com/awarding/judging-criteria/severity-categorization
https://github.com/code-423n4/2024-03-acala-findings/issues/16
https://github.com/code-423n4/2024-03-acala-findings/issues/16
https://github.com/code-423n4/2024-03-acala-findings/issues/61
https://github.com/code-423n4/2024-03-acala-findings/issues/61
https://github.com/code-423n4/2024-03-acala/blob/main/src/orml/rewards/src/tests.rs
https://github.com/code-423n4/2024-03-acala/blob/main/src/orml/rewards/src/tests.rs
https://github.com/code-423n4/2024-03-acala-findings/issues/16
https://github.com/code-423n4/2024-03-acala-findings/issues/16
https://github.com/code-423n4/2024-03-acala-findings/issues/16
https://github.com/code-423n4/2024-03-acala-findings/issues/16
https://github.com/code-423n4/2024-03-acala-findings/issues/16
https://github.com/code-423n4/2024-03-acala-findings/issues/16
https://github.com/code-423n4/2024-03-acala-findings/issues/16

fn transfer_to_self() {
ExtBuilder::default().build().execute_with(|| {

// Open a pool with bob holding 100 shares in the pool
RewardsModule::add_share(&BOB, &DOT_POOL,
// Accumulate rewards
assert_ok!(RewardsModule::accumulate_reward
// Alice deposits into the pool and gets shares, assert th
RewardsModule::add_share(&ALICE, &DOT_POOL,
// Assert that rewards still exist
assert_ok!(RewardsModule::accumulate_reward
// Gets pools info
let pool_info = RewardsModule::pool_infos
// Ensures that reward transfer doesn't affect pool
let new_pool_info = RewardsModule::pool_infos
assert_eq!(pool_info, new_pool_info, "reward transfer does
// Assert that Alice's share/rewards transfer to self succ
assert_ok!(RewardsModule::transfer_share_and_rewards
// Assert that alice's share/reward balance has now increa
assert_eq!(

RewardsModule::shares_and_withdrawn_rewards
(190, vec![(NATIVE_COIN, 190)].into_iter

);
// Alice has discovered infinite money glitch? She tries a
// Alice's transfers shares and rewards again to to self,
assert_ok!(RewardsModule::transfer_share_and_rewards
// Assert that her share/reward balance still increased
assert_eq!(

RewardsModule::shares_and_withdrawn_rewards
(370, vec![(NATIVE_COIN, 370)].into_iter

);
// She transfers a some of her shares/rewards to Bob, whil
assert_ok!(RewardsModule::transfer_share_and_rewards
assert_eq!(

RewardsModule::shares_and_withdrawn_rewards
(300, vec![(NATIVE_COIN, 300)].into_iter

);
assert_eq!(

RewardsModule::shares_and_withdrawn_rewards
(170, vec![(NATIVE_COIN, 70)].into_iter

Acala https://code4rena.com/reports/2024-03-acala

6 of 52 09/06/2024, 14:14

Include a check in the function that returns if who == other .

Lambda (judge) increased severity to High

xlc (Acala) confirmed and commented:

Fixed by this PR. Just want to highlight that
transfer_share_and_rewards is not currently used.

Submitted by carrotsmuggler, also found by zhaojie

The incentive contract does not enforce a minimum liquidity limit. This

);
// Bob decides to try it out himself, Assert that it works
assert_ok!(RewardsModule::transfer_share_and_rewards
assert_eq!(

RewardsModule::shares_and_withdrawn_rewards
(270, vec![(NATIVE_COIN, 111)].into_iter

);
assert_ok!(RewardsModule::transfer_share_and_rewards
assert_eq!(

RewardsModule::shares_and_withdrawn_rewards
(370, vec![(NATIVE_COIN, 152)].into_iter

);
});

}

Recommended Mitigation Steps

[H-02] Early user can break pool via inflation attack
due to no minimum liquidity check in the incentive
contract

Acala https://code4rena.com/reports/2024-03-acala

7 of 52 09/06/2024, 14:14

https://github.com/code-423n4/2024-03-acala-findings/issues/16#issuecomment-2045659505
https://github.com/code-423n4/2024-03-acala-findings/issues/16#issuecomment-2045659505
https://github.com/code-423n4/2024-03-acala-findings/issues/16#issuecomment-2046480445
https://github.com/code-423n4/2024-03-acala-findings/issues/16#issuecomment-2046480445
https://github.com/open-web3-stack/open-runtime-module-library/pull/990
https://github.com/open-web3-stack/open-runtime-module-library/pull/990
https://github.com/code-423n4/2024-03-acala-findings/issues/8
https://github.com/code-423n4/2024-03-acala-findings/issues/8
https://github.com/code-423n4/2024-03-acala-findings/issues/55
https://github.com/code-423n4/2024-03-acala-findings/issues/55
https://github.com/code-423n4/2024-03-acala-findings/issues/8
https://github.com/code-423n4/2024-03-acala-findings/issues/8
https://github.com/code-423n4/2024-03-acala-findings/issues/8
https://github.com/code-423n4/2024-03-acala-findings/issues/8
https://github.com/code-423n4/2024-03-acala-findings/issues/8
https://github.com/code-423n4/2024-03-acala-findings/issues/8

means users can have as little as 1 share in the pool. This can lead to
inflation attacks as described below.

Let’s imagine the state of the pool is as follows:

There is a single depositor, with 1000 shares deposited. Rewards have been
accumulated up to 500 tokens. The user can then withdraw 998 shares,
leaving 2 shares. They will also claim the rewards, and leave 1 reward tokens
in the pool. This is the setup for the inflation attack. The user can then
deposit 1 share.

The inflation is calculated as shown below:

Here total_reward=1 , add_amount=1 and initial_total_shares=2 .
So the result is calculated to 0 ; so inflation is 0 .

After this step, the initial_total_shares is updated to 3. Now the user
can deposit 2 wei of shares without changing the inflation amount. Next
iteration, they can deposit 4 shares. This way, the user can deposit 2**n
shares each iteration, and inflate the initial_total_shares without
affecting the reward inflation. This leads to the situation where the
total_shares keeps growing according to the deposit, but the entire
reward inflation mechanism is broken. This lets users steal reward tokens
from other users, and is a high severity issue.

U256::from(add_amount.to_owned().saturated_into::<u128>())
 .saturating_mul(total_reward.to_owned().saturated_into
 .checked_div(initial_total_shares.to_owned().saturated_into
 .unwrap_or_default()
 .as_u128()
 .saturated_into()

Acala https://code4rena.com/reports/2024-03-acala

8 of 52 09/06/2024, 14:14

In fact, whenever the total_reward value is less than the total_shares ,
this issue can be triggered. This is because in those conditions, users can
create deposits and have the reward_inflation evaluate to 0 . 0
reward_inflation basically means later users can steal rewards of earlier
users, as is outlined in the docs. However, this donation attack is more
effective the lower the total_shares in the system.

The situation can be created via the following steps:

1. Since there is no minimum deposit, we can create a situation where the
total_reward < total_shares , and total_shares=2 . This also
works for higher values of total_share , but is most potent in this
stage.

2. User deposits 1 share, or any number of shares as long as
deposit*total_reward/total_shares is less than 1.
reward_inflation will be 0 , while the user gets their shares
accounted for.

3. Since total_shares has now increased, the user can deposit more
shares now, and still have the reward_inflation be 0 . This way, the
user can keep depositing shares and increasing the total_shares
without affecting the reward inflation.

4. Since reward_inflation and thus total_reward has not increased,
but the total_shares have increased, users will lose rewards, since
the rewards are calculated as total_reward * user_shares /
total_shares . This means older users lose shares.

While this vector is generally applicable and can lead to small losses when
there’s a lot of liquidity, this becomes more potent when there is very low
liquidity in the pool. This was the method of attack for the Wise Lending

Proof of Concept

Acala https://code4rena.com/reports/2024-03-acala

9 of 52 09/06/2024, 14:14

hack and is a high severity issue. More details can be found in the blog post
here which outlines the attack scenario with more numbers and examples.

Substrate

Add a minimum liquidity limit. This will ensure the pool never reaches a
liquidity amount so low that rounding errors become significant.

xlc (Acala) confirmed and commented:

It is actually almost impossible to trigger this in production because
anyone can deposit into the incentives pool at any time. I.E. before
rewards starts accumulates.

Fixed by this PR.

Submitted by carrotsmuggler, also found by AM

The function transfer_share_and_rewards can be used to split up the
position in a single account into multiple accounts. The contract sends
some of the shares to be held by the second account, and similarly also
updates the reward debt of the receiving account so that the receiver
cannot take out more rewards than they deserve.

Tools Used

Recommended Mitigation Steps

[H-03] transfer_share_and_rewards can be used to
transfer out shares without transferring reward debt
due to rounding

Acala https://code4rena.com/reports/2024-03-acala

10 of 52 09/06/2024, 14:14

https://twitter.com/kankodu/status/1771229163942474096
https://twitter.com/kankodu/status/1771229163942474096
https://github.com/code-423n4/2024-03-acala-findings/issues/8#issuecomment-2044136472
https://github.com/code-423n4/2024-03-acala-findings/issues/8#issuecomment-2044136472
https://github.com/open-web3-stack/open-runtime-module-library/pull/991
https://github.com/open-web3-stack/open-runtime-module-library/pull/991
https://github.com/code-423n4/2024-03-acala-findings/issues/7
https://github.com/code-423n4/2024-03-acala-findings/issues/7
https://github.com/code-423n4/2024-03-acala-findings/issues/64
https://github.com/code-423n4/2024-03-acala-findings/issues/64
https://github.com/code-423n4/2024-03-acala-findings/issues/7
https://github.com/code-423n4/2024-03-acala-findings/issues/7
https://github.com/code-423n4/2024-03-acala-findings/issues/7
https://github.com/code-423n4/2024-03-acala-findings/issues/7
https://github.com/code-423n4/2024-03-acala-findings/issues/7
https://github.com/code-423n4/2024-03-acala-findings/issues/7
https://github.com/code-423n4/2024-03-acala-findings/issues/7
https://github.com/code-423n4/2024-03-acala-findings/issues/7
https://github.com/code-423n4/2024-03-acala-findings/issues/7

This is calculated in the following snippet. move_balance is the amount of
the reward debt that is to be transferred to the receiver.

Here we see the calculation is simple and by default is rounded down. So if
balance*move_share is lower than share , move_balance evaluates to 0.
So the receiving account’s reward debt is not increased at all!

Since move_balance is 0 , the increased_reward is not updated. This
means the new account now has shares, but no reward debt. So the
receiving account can claim rewards that were already claimed.

This can be done multiple times to drain the reward pool.

The criteria is that balance*move_share has to be lower than share . This
can be achieved by sending a small fraction of the funds to the receiving
account, such that move_share is much lower than share . Also, if
balance , the reward debt of the sender is low, this facilitates the attack
more.

A short POC is shown here demonstrating the issue. The attacker sends to

let move_balance = U256::from(balance.to_owned().saturated_into
 * U256::from(move_share.to_owned().saturated_into::<u128
 / U256::from(share.to_owned().saturated_into::<u128>());

increased_rewards
 .entry(*reward_currency)
 .and_modify(|increased_reward| {
 *increased_reward = increased_reward.saturating_add

Proof of Concept

Acala https://code4rena.com/reports/2024-03-acala

11 of 52 09/06/2024, 14:14

the receiver a small share of their total. The receiver is shown to have no
reward debt, while the sender does have reward debt. This shows that the
receiver can claim rewards already claimed by the sender.

Output:

#[test]
fn test_rounding() {
ExtBuilder::default().build().execute_with(|| {
 RewardsModule::add_share(&ALICE, &DOT_POOL, 1000);

assert_ok!(RewardsModule::accumulate_reward(&DOT_POOL, NATIVE_COIN,
// RewardsModule::add_share(&BOB, &DOT_POOL, 100);

 RewardsModule::claim_rewards(&ALICE, &DOT_POOL);

let user_stat = RewardsModule::shares_and_withdrawn_rewards
println!("ALICE stat before transfer: {:?}", user_stat);
let user_stat = RewardsModule::shares_and_withdrawn_rewards
println!("BOB stat before transfer: {:?}", user_stat);

assert_ok!(RewardsModule::transfer_share_and_rewards(&ALICE, &DOT_POOL

let user_stat = RewardsModule::shares_and_withdrawn_rewards
println!("ALICE stat after transfer: {:?}", user_stat);
let user_stat = RewardsModule::shares_and_withdrawn_rewards
println!("BOB stat after transfer: {:?}", user_stat);

});
}

Output is of the form (${share_balance}, {0: ${reward_debt}})
ALICE stat before transfer: (1000, {0: 100})
BOB stat before transfer: (0, {})
ALICE stat after transfer: (995, {0: 100})
BOB stat after transfer: (5, {0: 0})
test tests::test_rounding ... ok

Acala https://code4rena.com/reports/2024-03-acala

12 of 52 09/06/2024, 14:14

The output shows that ALICE has 1000 shares and 100 reward debt, since
ALICE just claimed her rewards. Alice sends BOB 5 shares. BOB ends up
with 5 shares and 0 reward debt. So BOB can claim rewards again, even
though it’s the same money!

Substrate

The calculation of move_balance should be changed to saturated round
up instead of rounding down. This will ensure that the receiving account’s
reward debt is updated correctly. The saturated rounding up is important
since the reward debt should never be larger than the reward pool, or it will
cause underflow errors when subtracting.

Another option is to revert transfer_share_and_rewards operations if the
reward debt of the receiving account is calculated to be 0 , unless the
sending account ALSO has a reward debt of 0 .

Math

xlc (Acala) confirmed and commented:

Just want to highlight that transfer_share_and_rewards is not
currently used.

We will choose to not fix this issue as the impact are relatively small and a
complete fix is non-trivial. I don’t think it is possible to make profit that is
more than transaction fee anyway.

Tools Used

Recommended Mitigation Steps

Assessed type

Acala https://code4rena.com/reports/2024-03-acala

13 of 52 09/06/2024, 14:14

https://github.com/code-423n4/2024-03-acala-findings/issues/7#issuecomment-2048834971
https://github.com/code-423n4/2024-03-acala-findings/issues/7#issuecomment-2048834971

Submitted by n4nika, also found by ABAIKUNANBAEV and djxploit

If a participant in a pool claims rewards while the deduction rate is != 0 ,
the deducted rewards are redistributed between all the participants.

Since the deduction is redistributed between all participants (since
accumulate_reward distributes to all participating users) including the one
claiming the reward, they can repeatedly claim rewards and receive more of
the rewards pool than they probably should.

Medium Risk Findings (4)

[M-01] Claiming rewards while the deduction rate is !
= 0 , allows for repeated withdrawal of redistributed
rewards

fn payout_reward_and_reaccumulate_reward(
pool_id: PoolId,
who: &T::AccountId,
reward_currency_id: CurrencyId,
payout_amount: Balance,
reaccumulate_amount: Balance,

) -> DispatchResult {
if !reaccumulate_amount.is_zero() {

<orml_rewards::Pallet<T>>::accumulate_reward
}
T::Currency::transfer(reward_currency_id, &Self::
Ok(())

}

Proof of Concept

Acala https://code4rena.com/reports/2024-03-acala

14 of 52 09/06/2024, 14:14

https://github.com/code-423n4/2024-03-acala-findings/issues/103
https://github.com/code-423n4/2024-03-acala-findings/issues/103
https://github.com/code-423n4/2024-03-acala-findings/issues/109
https://github.com/code-423n4/2024-03-acala-findings/issues/109
https://github.com/code-423n4/2024-03-acala-findings/issues/48
https://github.com/code-423n4/2024-03-acala-findings/issues/48
https://github.com/code-423n4/2024-03-acala-findings/issues/103
https://github.com/code-423n4/2024-03-acala-findings/issues/103
https://github.com/code-423n4/2024-03-acala-findings/issues/103
https://github.com/code-423n4/2024-03-acala-findings/issues/103
https://github.com/code-423n4/2024-03-acala-findings/issues/103
https://github.com/code-423n4/2024-03-acala-findings/issues/103
https://github.com/code-423n4/2024-03-acala-findings/issues/103
https://github.com/code-423n4/2024-03-acala-findings/issues/103
https://github.com/code-423n4/2024-03-acala-findings/issues/103
https://github.com/code-423n4/2024-03-acala-findings/issues/103

#[test]
fn repeated_claiming() {

ExtBuilder::default().build().execute_with(|| {
assert_ok!(TokensModule::deposit(BTC, &VAULT::

assert_ok!(IncentivesModule::update_claim_reward_deduction
RuntimeOrigin::signed(ROOT::get()),
vec![(PoolId::Dex(BTC_AUSD_LP), Rate::

));

assert_ok!(IncentivesModule::update_claim_reward_deduction
RuntimeOrigin::signed(ROOT::get()),
vec![(PoolId::Dex(BTC_AUSD_LP), Rate::

));

// 40% deduction rate
assert_ok!(IncentivesModule::update_claim_reward_deduction

RuntimeOrigin::signed(ROOT::get()),
vec![(PoolId::Dex(BTC_AUSD_LP), Rate::

));

// give RewardsSource tokens
TokensModule::deposit(BTC, &RewardsSource::

// add 11 participants with equal shares
TokensModule::deposit(BTC_AUSD_LP, &ALICE::
TokensModule::deposit(BTC_AUSD_LP, &BOB::

// 1000 BTC as reward
IncentivesModule::update_incentive_rewards

// all 11 participants deposit their share
assert_ok!(IncentivesModule::deposit_dex_share
assert_ok!(IncentivesModule::deposit_dex_share

// first accumulation of rewards
IncentivesModule::on_initialize(10);

Acala https://code4rena.com/reports/2024-03-acala

15 of 52 09/06/2024, 14:14

Add the claiming user to accumulate_rewards and implement
reaccumulating excluding the calling user.

xlc (Acala) disputed and commented:

This is intended behaviour and non issue.

Submitted by 0xTheC0der, also found by zhaojie, djxploit, and
carrotsmuggler

Incentives are accumulated periodically in intervals of
T::AccumulatePeriod blocks. Thereby, a fixed incentive reward amount,
which is set via update_incentive_rewards (…), is accumulated among all
deposited shares of a respective pool. This means if only 1 share is
deposited, it is entitled for the all the rewards of this period, if N shares are

// ALICE claims their reward and should receive ((1000 //
assert_ok!(IncentivesModule::claim_rewards
let btc_before = TokensModule::total_balance

// here ALICE should have claimed all their rewards and no
assert_ok!(IncentivesModule::claim_rewards
let btc_after = TokensModule::total_balance

assert_eq!(btc_before, btc_after);
});

}

Recommended Mitigation Steps

[M-02] Incentive accumulation can be sandwiched
with additional shares to gain advantage over long-
term depositors

Acala https://code4rena.com/reports/2024-03-acala

16 of 52 09/06/2024, 14:14

https://github.com/code-423n4/2024-03-acala-findings/issues/103#issuecomment-2048808632
https://github.com/code-423n4/2024-03-acala-findings/issues/103#issuecomment-2048808632
https://github.com/code-423n4/2024-03-acala-findings/issues/88
https://github.com/code-423n4/2024-03-acala-findings/issues/88
https://github.com/code-423n4/2024-03-acala-findings/issues/56
https://github.com/code-423n4/2024-03-acala-findings/issues/56
https://github.com/code-423n4/2024-03-acala-findings/issues/47
https://github.com/code-423n4/2024-03-acala-findings/issues/47
https://github.com/code-423n4/2024-03-acala-findings/issues/10
https://github.com/code-423n4/2024-03-acala-findings/issues/10
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L207
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L207
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L190
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L190
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L280-L311
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L280-L311
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L280-L311
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L280-L311
https://github.com/code-423n4/2024-03-acala-findings/issues/88
https://github.com/code-423n4/2024-03-acala-findings/issues/88
https://github.com/code-423n4/2024-03-acala-findings/issues/88
https://github.com/code-423n4/2024-03-acala-findings/issues/88
https://github.com/code-423n4/2024-03-acala-findings/issues/88
https://github.com/code-423n4/2024-03-acala-findings/issues/88

deposited, the rewards are split among them, etc. (see PoC).

Furthermore, to be eligible for rewards, it is sufficient to deposit (DEX)
shares before accumulate_incentives (…) is called via the
on_initialize hook. This is also demonstrated in the
transfer_reward_and_update_rewards_storage_atomically_when_acc

umulate_incentives_work() test case.

Afterward, rewards can be immediately claimed and (DEX) shares can be
withdrawn without any unbonding period or other block/time related
restrictions.

This leads to the following consequences:

• Users are not incentivized to keep (DEX) shares deposited, but rather to
sandwich the incentive accumulation via deposit, claim & withdraw.

• Since (DEX) shares are only required for a short period of time (> 1
block) to perform the above action, an adversary can borrow vast
amounts of (DEX) shares (or the underlying assets to get them) to
crowd out honest users during the incentive accumulation and
therefore obtain an unfairly high share of the fixed rewards.

For reference, see also the earnings module, where an unbonding period is
explicitly enforced.

The diff below modifies the existing test case
transfer_reward_and_update_rewards_storage_atomically_when_acc

umulate_incentives_work() to demonstrate that the same total reward
amount is accumulated even if twice as many total shares are deposited.
Therefore, it’s possible to crowd out honest users with great short-term
share deposits.

Proof of Concept

Acala https://code4rena.com/reports/2024-03-acala

17 of 52 09/06/2024, 14:14

https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L230-L238
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L230-L238
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L207
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L207
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L207
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L207
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/tests.rs#L1173-L1194
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/tests.rs#L1173-L1194
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/tests.rs#L1173-L1194
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/tests.rs#L1173-L1194
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/tests.rs#L1173-L1194
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/tests.rs#L1173-L1194
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L265-L269
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L265-L269
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L248-L256
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L248-L256
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L207
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L207
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L207
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L207
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/tests.rs#L1144-L1210
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/tests.rs#L1144-L1210
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/tests.rs#L1144-L1210
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/tests.rs#L1144-L1210
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/tests.rs#L1144-L1210
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/tests.rs#L1144-L1210

diff --git a/src/modules/incentives/src/tests.rs b/src/modules/incentives/
index 1370d5b..fa16a08 100644
--- a/src/modules/incentives/src/tests.rs
+++ b/src/modules/incentives/src/tests.rs
@@ -1171,10 +1171,11 @@ fn transfer_reward_and_update_rewards_storage_atom
 assert_eq!(TokensModule::free_balance(AUSD, &VAULT::get())

 RewardsModule::add_share(&ALICE::get(), &PoolId::Loans(LDO
+ RewardsModule::add_share(&BOB::get(), &PoolId::Loans(LDOT)
 assert_eq!(
 RewardsModule::pool_infos(PoolId::Loans(LDOT)),
 PoolInfo {
- total_shares: 1,
+ total_shares: 2,
 ..Default::default()
 }
);
@@ -1188,7 +1189,7 @@ fn transfer_reward_and_update_rewards_storage_atomic
 assert_eq!(
 RewardsModule::pool_infos(PoolId::Loans(LDOT)),
 PoolInfo {
- total_shares: 1,
+ total_shares: 2,
 rewards: vec![(ACA, (30, 0)), (AUSD, (90,
 }
);
@@ -1202,7 +1203,7 @@ fn transfer_reward_and_update_rewards_storage_atomic
 assert_eq!(
 RewardsModule::pool_infos(PoolId::Loans(LDOT)),
 PoolInfo {
- total_shares: 1,
+ total_shares: 2,
 rewards: vec![(ACA, (60, 0)), (AUSD, (90,
 }
);

Recommended Mitigation Steps

Acala https://code4rena.com/reports/2024-03-acala

18 of 52 09/06/2024, 14:14

The present issue scales with the size of T::AccumulatePeriod in terms of
blocks. Therefore, it’s recommended (for fairness) to also track deposited
shares in between the accumulation intervals and scale the incentive
rewards according to the actual deposit duration.

MEV

xlc (Acala) disputed and commented:

Furthermore, to be eligible for rewards, it is sufficient to deposit (DEX)
shares before accumulate_incentives(…) is called via the on_initialize
hook

It is not possible to do perform user triggered action before
on_initialize . To exploit this, attacker will need to acquire a large
number of dex share somehow, deposit it, what for a block, withdraw it,
????, and repeat the same thing on next minute.

Firstly, it is not possible to borrow such amount of share without some
payments, because the lender have the full incentives to deposit the
shares and getting the rewards. It is also not a lost free action to mint
such amount of dex share and redeem them due to potential price
exposure and sandwich risk.

Therefore, it is economically impossible to exploit this behavior and make
a profit.

Lambda (judge) commented:

The described scenario has some stated assumptions with external
requirements (availability of liquidity, possibility to front- and back-run the

Assessed type

Acala https://code4rena.com/reports/2024-03-acala

19 of 52 09/06/2024, 14:14

https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L190
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L190
https://github.com/code-423n4/2024-03-acala-findings/issues/88#issuecomment-2044130090
https://github.com/code-423n4/2024-03-acala-findings/issues/88#issuecomment-2044130090
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L230-L238
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L230-L238
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L207
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L207
https://github.com/code-423n4/2024-03-acala-findings/issues/88#issuecomment-2045614505
https://github.com/code-423n4/2024-03-acala-findings/issues/88#issuecomment-2045614505

transactions risk free, etc…) that may not always hold in practice. But
these are not very unreasonable assumptions and under these
assumptions, a value leak is possible. This, therefore, fulfills the criteria of
a valid medium according to the severity categorization.

Submitted by TheSchnilch, also found by Aymen0909

With unbond_instant , a user can unbond a bonded amount directly
without having to wait. However, they must pay a fee for this:

Here, the mistake is that T::OnUnbonded::happened is called with
final_amount , meaning without a fee. As a result, a portion of the shares
that were added as shares during bonding can no longer be removed. This,
in turn, leads to these shares still receiving rewards that other users cannot
receive.

If you insert a println! statement into the functions bond and
unbond_instant to display the amounts with which
OnBonded::happened and OnUnbonded::happened are called, you will

[M-03] Unbond_instant removes incorrect amount of
shares

let amount = change.change;
let fee = fee_ratio.mul_ceil(amount);
let final_amount = amount.saturating_sub(fee);

let unbalance = T::Currency::withdraw(&who, fee, WithdrawReasons::TRANSFER
T::OnUnstakeFee::on_unbalanced(unbalance);

T::OnUnbonded::happened(&(who.clone(), final_amount));

Acala https://code4rena.com/reports/2024-03-acala

20 of 52 09/06/2024, 14:14

https://github.com/code-423n4/2024-03-acala-findings/issues/24
https://github.com/code-423n4/2024-03-acala-findings/issues/24
https://github.com/code-423n4/2024-03-acala-findings/issues/102
https://github.com/code-423n4/2024-03-acala-findings/issues/102
https://github.com/code-423n4/2024-03-acala-findings/issues/24
https://github.com/code-423n4/2024-03-acala-findings/issues/24
https://github.com/code-423n4/2024-03-acala-findings/issues/24
https://github.com/code-423n4/2024-03-acala-findings/issues/24
https://github.com/code-423n4/2024-03-acala-findings/issues/24
https://github.com/code-423n4/2024-03-acala-findings/issues/24
https://github.com/code-423n4/2024-03-acala-findings/issues/24

see when you execute the following code that not all shares are removed
when the bonded amount of a user is removed with unbond_instant :

For bond:

For unbond_instant :

Code that can be inserted into the file modules/earning/src/tests.rs to test
both functions:

+ println!("change.change: {:?}", change.change);
144: T::OnBonded::happened(&(who.clone(), change.change));
145: Self::deposit_event(Event::Bonded {
146: who,
147: amount: change.change,
148: });

+ println!("final_amount: {:?}", final_amount);
196: T::OnUnbonded::happened(&(who.clone(), final_amount));
197: Self::deposit_event(Event::InstantUnbonded {
198: who,
199: amount: final_amount,
200: fee,
201: });

Acala https://code4rena.com/reports/2024-03-acala

21 of 52 09/06/2024, 14:14

The code can be started with the command cargo test poc -- --
nocapture .

So every time a user calls unbond_instant , some shares will remain in the
reward system and continue to accumulate rewards that other users who
actually bond can no longer get. These shares can then no longer be
removed and are stuck. With a maximum fee of 20%, some shares could
accumulate over a period of time and these shares would accumulate
rewards. The owners of the shares can still claim these rewards. In addition,
one share is no longer the same as one underlying token.

For unbond_instant , the final_amount should not be used to remove
the shares, but change.change should be used instead.

xlc (Acala) confirmed and commented:

See the fix here.

#[test]
fn poc() {

ExtBuilder::default().build().execute_with(|| {
assert_ok!(Earning::bond(RuntimeOrigin::signed

assert_ok!(Earning::unbond_instant(RuntimeOrigin::
});

}

Recommendation

[M-04] Storage can be bloated with low liquidity
positions

Acala https://code4rena.com/reports/2024-03-acala

22 of 52 09/06/2024, 14:14

https://github.com/code-423n4/2024-03-acala-findings/issues/24#issuecomment-2046469357
https://github.com/code-423n4/2024-03-acala-findings/issues/24#issuecomment-2046469357
https://github.com/AcalaNetwork/Acala/pull/2735
https://github.com/AcalaNetwork/Acala/pull/2735
https://github.com/code-423n4/2024-03-acala-findings/issues/17
https://github.com/code-423n4/2024-03-acala-findings/issues/17
https://github.com/code-423n4/2024-03-acala-findings/issues/17
https://github.com/code-423n4/2024-03-acala-findings/issues/17

Submitted by ZanyBonzy, also found by Bauchibred and carrotsmuggler

The deposit_dex_share function enforce no minimum amount that can
be deposited into the pool allows for creating multiple pool positions. This
causes that in a coordinated effort, for a pretty cheap cost, users/attackers
can create multiple low liquidity positions to bloat the runtime storage. This
is very important as substrate framework requires optimization of storage to
prevent bloat which can lead to high maintenance costs for the chain and a
potential DOS. A more in detail explanation can be found here.

The test case below shows how a user can create multiple 1 wei positions,
and it can be added to test.rs.

Proof of Concept

#[test]
fn open_low_liquidity_positions() {

ExtBuilder::default().build().execute_with(|| {
assert_ok!(TokensModule::deposit(BTC_AUSD_LP, &ALICE::
assert_eq!(TokensModule::free_balance(BTC_AUSD_LP, &ALICE:
assert_eq!(

TokensModule::free_balance(BTC_AUSD_LP, &Incentive
0

);
assert_eq!(RewardsModule::pool_infos(PoolId::
assert_eq!(

RewardsModule::shares_and_withdrawn_rewards
Default::default(),

);
assert_ok!(IncentivesModule::deposit_dex_share

RuntimeOrigin::signed(ALICE::get()),
BTC_AUSD_LP,
1

));
assert_ok!(IncentivesModule::deposit_dex_share

RuntimeOrigin::signed(ALICE::get()),

Acala https://code4rena.com/reports/2024-03-acala

23 of 52 09/06/2024, 14:14

https://github.com/code-423n4/2024-03-acala-findings/issues/17
https://github.com/code-423n4/2024-03-acala-findings/issues/17
https://github.com/code-423n4/2024-03-acala-findings/issues/19
https://github.com/code-423n4/2024-03-acala-findings/issues/19
https://github.com/code-423n4/2024-03-acala-findings/issues/9
https://github.com/code-423n4/2024-03-acala-findings/issues/9
https://docs.substrate.io/build/troubleshoot-your-code/#storage
https://docs.substrate.io/build/troubleshoot-your-code/#storage
https://github.com/code-423n4/2024-03-acala/blob/main/src/modules/incentives/src/tests.rs
https://github.com/code-423n4/2024-03-acala/blob/main/src/modules/incentives/src/tests.rs

Introduce a minimum deposit amount.

xlc (Acala) confirmed and commented:

Fixed here.

BTC_AUSD_LP,
1

));
assert_ok!(IncentivesModule::deposit_dex_share

RuntimeOrigin::signed(ALICE::get()),
BTC_AUSD_LP,
1

));
assert_eq!(TokensModule::free_balance(BTC_AUSD_LP, &ALICE:
assert_eq!(

TokensModule::free_balance(BTC_AUSD_LP, &Incentive
3

);
assert_eq!(

RewardsModule::pool_infos(PoolId::
PoolInfo {

total_shares: 3,
..Default::default()

}
);
assert_eq!(

RewardsModule::shares_and_withdrawn_rewards
(3, Default::default())

);
});

}

Recommended Mitigation Steps

Acala https://code4rena.com/reports/2024-03-acala

24 of 52 09/06/2024, 14:14

https://github.com/code-423n4/2024-03-acala-findings/issues/17#issuecomment-2048832258
https://github.com/code-423n4/2024-03-acala-findings/issues/17#issuecomment-2048832258
https://github.com/open-web3-stack/open-runtime-module-library/pull/991
https://github.com/open-web3-stack/open-runtime-module-library/pull/991

For this audit, 7 reports were submitted by wardens detailing low risk and
non-critical issues. The report highlighted below by Bauchibred received
the top score from the judge.

The following wardens also submitted reports: ZanyBonzy, n4nika, AM,
0xTheC0der, zhaojie, and Cryptor.

Multiple instances in code where the admin logic could lead to a brick in
normal functionality.

For example take a look here.

This is an instance where a somewhat admin logic has been applied, note
that this is passed in the config’s constant paller. Now using this search
command, we can see that there are three function calls where the
expected caller is only accepted to be the update incentive related
params .

Inaccess to update incentive related params if anything was to happen to
the UpdateOrigin .

Consider implementing a backdoor that the admins could use to change

Low Risk and Non-Critical Issues

[01] Admin is a single point of failure

/// The origin which may update incentive related params
type UpdateOrigin: EnsureOrigin<Self::RuntimeOrigin>;

Impact

Recommended Mitigation Steps

Acala https://code4rena.com/reports/2024-03-acala

25 of 52 09/06/2024, 14:14

https://github.com/code-423n4/2024-03-acala-findings/issues/38
https://github.com/code-423n4/2024-03-acala-findings/issues/38
https://github.com/code-423n4/2024-03-acala-findings/issues/25
https://github.com/code-423n4/2024-03-acala-findings/issues/25
https://github.com/code-423n4/2024-03-acala-findings/issues/104
https://github.com/code-423n4/2024-03-acala-findings/issues/104
https://github.com/code-423n4/2024-03-acala-findings/issues/94
https://github.com/code-423n4/2024-03-acala-findings/issues/94
https://github.com/code-423n4/2024-03-acala-findings/issues/90
https://github.com/code-423n4/2024-03-acala-findings/issues/90
https://github.com/code-423n4/2024-03-acala-findings/issues/57
https://github.com/code-423n4/2024-03-acala-findings/issues/57
https://github.com/code-423n4/2024-03-acala-findings/issues/26
https://github.com/code-423n4/2024-03-acala-findings/issues/26
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L83-L85
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L83-L85
https://github.com/search?q=repo%3Acode-423n4%2F2024-03-acala%20UpdateOrigin&type=code
https://github.com/search?q=repo%3Acode-423n4%2F2024-03-acala%20UpdateOrigin&type=code
https://github.com/search?q=repo%3Acode-423n4%2F2024-03-acala%20UpdateOrigin&type=code
https://github.com/search?q=repo%3Acode-423n4%2F2024-03-acala%20UpdateOrigin&type=code

the incentive related params if anything were to happen to UpdateOrigin .

This is very rampant in code, for example, take a look here.

[02] Consider adding better documentation

pub fn add_share(who: &T::AccountId, pool: &T::PoolId, add_amount:
if add_amount.is_zero() {

return;
}

PoolInfos::<T>::mutate(pool, |pool_info| {
let initial_total_shares = pool_info.total_shares;
pool_info.total_shares = pool_info.total_shares.

let mut withdrawn_inflation = Vec

pool_info
.rewards
.iter_mut()
.for_each(|(reward_currency, (total_reward

let reward_inflation =
Zero::zero

} else {
U256::from

.

.

.

.

.
};
*total_reward = total_reward.
*total_withdrawn_reward = total_wi

withdrawn_inflation.
});

Acala https://code4rena.com/reports/2024-03-acala

26 of 52 09/06/2024, 14:14

https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/orml/rewards/src/lib.rs#L143-L190
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/orml/rewards/src/lib.rs#L143-L190

Evidently, this function is somewhat complex, i.e. the type of mathematical
operations attached with it. However, that isn’t the main case here. There
are completely no documentations as to why some steps are taken, this
heavily stalls the auditing process as we and other security researchers
don’t know what the intended behaviour is and can’t really sit to break it.

Hard time understanding code for users/devs/auditors lead to bad
integration.

Consider adding better documentations to even if not all functions then at
least the core/complex ones.

SharesAndWithdrawnRewards::<T>::mutate
*share = share.saturating_add
// update withdrawn inflation for each rew
withdrawn_inflation

.into_iter()

.for_each(|(reward_currency, rewar
withdrawn_rewards

.

.

})
.

});
});

});
}

Impact

Recommended Mitigation Steps

[03] Setters should always have equality checkers

Acala https://code4rena.com/reports/2024-03-acala

27 of 52 09/06/2024, 14:14

Take a look here.

This function sets a new share value for a pool, now there are no checks
that new_share != share and as such whenever new_share == share
the protocol unnecessarily (wrongly attempts to remove via
share.saturating_sub(new_share).

Another instance can be seen here, where protocol in all instances of
updating the amounts don’t check if the provided amount is not already the
stored amount and as such unnecessarily updates v , see here.

pub fn set_share(who: &T::AccountId, pool: &T::PoolId, new_share:
let (share, _) = Self::shares_and_withdrawn_rewards

if new_share > share {
Self::add_share(who, pool, new_share.

} else {
Self::remove_share(who, pool, share.

}
}

pub fn update_incentive_rewards(
origin: OriginFor<T>,
updates: Vec<(PoolId, Vec<(CurrencyId, Balance)>)>

) -> DispatchResult {
T::UpdateOrigin::ensure_origin(origin)?;
for (pool_id, update_list) in updates {

if let PoolId::Dex(currency_id) = pool_id
ensure!(currency_id.

}

for (currency_id, amount)
IncentiveRewardAmounts::<T>::

let mut v = maybe_amount.

Acala https://code4rena.com/reports/2024-03-acala

28 of 52 09/06/2024, 14:14

https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/orml/rewards/src/lib.rs#L252-L262
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/orml/rewards/src/lib.rs#L252-L262
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L280-L312
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L280-L312

The same idea can also be applied to this
update_claim_reward_deduction_rates() function.

Unnecessary code execution, flawed implementation.

As a rule of thumb, all setters should always have equality checkers as
passing an equal to the already stored value hints a mistake and maybe this
attempt to add/remove was meant for a different pool.

if amount != v {
v = amount;
Self

});
}

if v.is_zero
*maybe_amount = No

} else {
*maybe_amount = So

}
});

}
}
Ok(())

}

Impact

Recommended Mitigation Steps

[04] OnUpdateLoan::happened() should check for
when adjustment == 0

Acala https://code4rena.com/reports/2024-03-acala

29 of 52 09/06/2024, 14:14

https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L320
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L320

Take a look here.

This function has been used to settle adjustments in protocol. The main
issue about this report is the fact that adding/removing the share is
dependent on if the adjustment is positive or not. This is a somewhat flawed
implementation, as the is_positive() getter would actually return
false for when adjustment == 0 and as such lead to an unnecessary
attempt of removing 0 shares.

Not enough input validation is applied, not the best code structure.

Consider checking in the function to ensure that for instances where
adjustment == 0 none of neither add_shares() or remove_shares() is
called.

fn happened(info: &(T::AccountId, CurrencyId, Amount, Balance)) {
let (who, currency_id, adjustment, _previous_amount) = inf
let adjustment_abs = TryInto::<Balance>::

if adjustment.is_positive() {
<orml_rewards::Pallet<T>>::add_share

} else {
<orml_rewards::Pallet<T>>::remove_share

};
}

Impact

Recommended Mitigation Steps

[05] Protocol does not apply deadlines when dealing
with critical operations

Acala https://code4rena.com/reports/2024-03-acala

30 of 52 09/06/2024, 14:14

https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L578-L587
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L578-L587

Consider the code here.

Both functions are used to either deposit/withdraw dex shares from the lps
by passing in the currency which is in short just like a swap, case is that this

fn do_deposit_dex_share(who: &T::AccountId, lp_currency_id: Curren
ensure!(lp_currency_id.is_dex_share_currency_id

T::Currency::transfer(lp_currency_id, who, &
<orml_rewards::Pallet<T>>::add_share(who, &PoolId::

Self::deposit_event(Event::DepositDexShare {
who: who.clone(),
dex_share_type: lp_currency_id,
deposit: amount,

});
Ok(())

}

fn do_withdraw_dex_share(who: &T::AccountId, lp_currency_id: Curre
ensure!(lp_currency_id.is_dex_share_currency_id
ensure!(

<orml_rewards::Pallet<T>>::shares_and_withdrawn_re
Error::<T>::NotEnough,

);

T::Currency::transfer(lp_currency_id, &Self
<orml_rewards::Pallet<T>>::remove_share(who, &PoolId::

Self::deposit_event(Event::WithdrawDexShare {
who: who.clone(),
dex_share_type: lp_currency_id,
withdraw: amount,

});
Ok(())

}
}

Acala https://code4rena.com/reports/2024-03-acala

31 of 52 09/06/2024, 14:14

https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L511-L543
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L511-L543

function does not include any deadline protection whatsoever. The
transaction could be left hanging for a long time and end up being
executed in unfavorable situations.

This is a pretty popular bug case, where no deadlines have been applied
and could lead to users losing funds, sometimes in $USD equivalent since
their transactions might execute under less favorable conditions than
intended.

Consider requesting a deadline to which a user would like their transaction
to be hanging for, and ensure that if the deadline has passed the function
does not get executed.

Take a look here.

The sentence: “Token will finish unbonding after UnbondingPeriod
blocks.” should instead be:

”Tokens will finish unbonding after UnbondingPeriod blocks.”

Impact

Recommended Mitigation Steps

[06] Fix typos

/// Start unbonding tokens up to `amount`.
/// If bonded amount is less than `amount`, then all the r
/// unbonding. Token will finish unbonding after `Unbondin
#[pallet::call_index(1)]
#[pallet::weight(T::WeightInfo::unbond())]
pub fn unbond(origin: OriginFor<T>, #[pallet::compact] amo

//..sip

Acala https://code4rena.com/reports/2024-03-acala

32 of 52 09/06/2024, 14:14

https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/earning/src/lib.rs#L153-L158
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/earning/src/lib.rs#L153-L158

Another instance can be seen here.

The first line should be “Claim all avalaible multi currencies rewards for
specific PoolId .” instead.

Take a look here.

Evidently, the reward infos are stores in a B-Tree map which is in short an
ordered map based on a B-Tree .

B-Trees represent a fundamental compromise between cache-efficiency

/// Claim all available multi currencies rewards for speci
///
/// The dispatch origin of this call must be `Signed` by t
///
/// - `pool_id`: pool type
#[pallet::call_index(2)]
#[pallet::weight(<T as Config>::WeightInfo::claim_rewards(
pub fn claim_rewards(origin: OriginFor<T>, pool_id: PoolId

let who = ensure_signed(origin)?;

Self::do_claim_rewards(who, pool_id)
}

[07] Consider using BST instead

pub struct PoolInfo<Share: HasCompact, Balance: HasCompact, CurrencyId:
/// Total shares amount
pub total_shares: Share,
/// Reward infos <reward_currency, (total_reward, total_withdrawn_
pub rewards: BTreeMap<CurrencyId, (Balance, Balance)>,

}

Acala https://code4rena.com/reports/2024-03-acala

33 of 52 09/06/2024, 14:14

https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L258-L269
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/modules/incentives/src/lib.rs#L258-L269
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/orml/rewards/src/lib.rs#L21-L26
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/orml/rewards/src/lib.rs#L21-L26

and actually minimizing the amount of work performed in a search. In
theory, a binary search tree (BST) is the optimal choice for a sorted map, as
a perfectly balanced BST performs the theoretical minimum amount of
comparisons necessary to find an element (log2n).

Non-optimized method of finding elements.

Consider using binary search trees instead.

Take a look here.

Protocol disallows clippy to run the auto tool to warn about unused units or
too many arguments; whereas too many arguments could be
understandable since it’s for the claim_one() function here. A justification
can’t be made for not wanting to use clippy::unused_unit .

Bad code structure.

Impact

Recommended Mitigation Steps

[08] Consider not switching off important clippy
protection methods

#![cfg_attr(not(feature = "std"), no_std)]
#![allow(clippy::unused_unit)]
#![allow(clippy::too_many_arguments)]

Impact

Recommended Mitigation Steps

Acala https://code4rena.com/reports/2024-03-acala

34 of 52 09/06/2024, 14:14

https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/orml/rewards/src/lib.rs#L1-L3
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/orml/rewards/src/lib.rs#L1-L3
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/orml/rewards/src/lib.rs#L363-L385
https://github.com/code-423n4/2024-03-acala/blob/9c71c05cf2d9f0a2603984c50f76fc8a315d4d65/src/orml/rewards/src/lib.rs#L363-L385

In most cases impleemntations that have unused units are mostly flawed
and should be sorted out.

Lambda (judge) commented:

Some of the other ones are opinionated, but not necessarily invalid.

xlc (Acala) disputed and commented:

[01], [05] and [07] are completely invalid. Others are super minor.

[01] - is 100% not an issue. This is how Substrate pallet works.
[05] - doesn’t make sense. There is no swap happening. The LP tokens
are minted already and this only stake the already minted token.
[07] - doesn’t make sense and wouldn’t make any difference anyway for
the given amount of expected items. It is a premature optimization.

For this audit, 6 analysis reports were submitted by wardens. An analysis
report examines the codebase as a whole, providing observations and
advice on such topics as architecture, mechanism, or approach. The report
highlighted below by DarkTower received the top score from the judge.

The following wardens also submitted reports: hunter_w3b, 0xepley,
LinKenji, Bauchibred, and ZanyBonzy.

“Building the liquidity layer of Web3 finance”.

Acala, at it’s core is a crosschain DeFi network liquidity hub built for

Audit Analysis

Overview

Acala https://code4rena.com/reports/2024-03-acala

35 of 52 09/06/2024, 14:14

https://github.com/code-423n4/2024-03-acala-findings/issues/38#issuecomment-2045716038
https://github.com/code-423n4/2024-03-acala-findings/issues/38#issuecomment-2045716038
https://github.com/code-423n4/2024-03-acala-findings/issues/38#issuecomment-2048811009
https://github.com/code-423n4/2024-03-acala-findings/issues/38#issuecomment-2048811009
https://github.com/code-423n4/2024-03-acala-findings/issues/92
https://github.com/code-423n4/2024-03-acala-findings/issues/92
https://github.com/code-423n4/2024-03-acala-findings/issues/92
https://github.com/code-423n4/2024-03-acala-findings/issues/92
https://github.com/code-423n4/2024-03-acala-findings/issues/91
https://github.com/code-423n4/2024-03-acala-findings/issues/91
https://github.com/code-423n4/2024-03-acala-findings/issues/101
https://github.com/code-423n4/2024-03-acala-findings/issues/101
https://github.com/code-423n4/2024-03-acala-findings/issues/86
https://github.com/code-423n4/2024-03-acala-findings/issues/86
https://github.com/code-423n4/2024-03-acala-findings/issues/51
https://github.com/code-423n4/2024-03-acala-findings/issues/51
https://github.com/code-423n4/2024-03-acala-findings/issues/15
https://github.com/code-423n4/2024-03-acala-findings/issues/15

Polkadot. It is an Ethereum compatible, protocol that consists of a
decentralized finance network and liquidity hub for Polkadot. Acala’s whole
infrastructure also includes a stablecoin network and liquidity staking
platform.

The codebase presented for this interaction is the Acala staking and reward
system. Its review of staking, reward accumulation and distribution as well
as bonding/locking of the staking factor are in-scope for this analysis review
and will be delved into deeper.

For this Analysis report, we focused mainly on the staking module.

During the course of our engagement for conducting this analysis of the
staking, bonding and earning modules, we strived to understand the
architecture/mechanics of the codebase better first. A summarization of
each architecture is as follows:

1. Pools: These facilitate staking in the Acala ecosystem. Pools attract
incentives for the stakers in such pool at every given period. These
incentives can be claimed at any time - with or without a penalty
applied.

2. Rewards: These get paid out to the users and can be referred to as
incentives as we mentioned above. But without pools, there are no
incentives. What’s the point of rewards for stakers when there are zero
stakers? None. Zero point. Rewarding is set aside for legitimate stakers.
There are no rewards for stakers with 0 factors in pools. Each stake
accrues rewards proportional to their staking factor (weight of stake in
the pool for the particular user).

3. Bonding: Users typically bond their stakes for a period of time. When
that period has elapsed, they can unbond their stake and then

Architecture Overview

Acala https://code4rena.com/reports/2024-03-acala

36 of 52 09/06/2024, 14:14

withdraw it from pools. This is where the penalty we mentioned in Pools
earlier comes in. If a user bonds for 30 days and decides to unbond on
day 10. They can bond but only if they forfeit the penalty fee relative to
their stake factor.

Before we delve in, it was crucial to understand what each module is doing
on a distinct level, i.e. as a separate package, how each module integrates
with the other module. The modules in scope for this audit are three so we
took to understanding each one separately.

We focused mainly on each module’s implementation, safeguards, and
integration with other modules. With the limited time (we only spent ~1hr
each day for 7 days) we had to look into this codebase, we spent the most
of our time covering the above mentioned logic Acala.

We added some inline comments on code snippets we cover in this Analysis
report to provide context for the reader.

• Getting context on Acala from the provided docs: Docs

• Grasping code implementations of staking entry and exit points.

• Brainstorm some attack vectors relevant to doubling rewards, DoS of
rewards & staking functions.

• Set out building a test suite from scratch.

• Further reviews of the staking, earning and bonding modules.

Approach Taken in Evaluating Acala

Days 1-2:

Days 2-4

Days 4-7

Acala https://code4rena.com/reports/2024-03-acala

37 of 52 09/06/2024, 14:14

https://guide.acalaapps.wiki/staking/aca-staking
https://guide.acalaapps.wiki/staking/aca-staking

• Delving deeper into the codebase’s test suite.

• Draft & submission of report.

Acala Modules Analysis

Reward accumulation across Block Initializations

#[pallet::hooks]
impl<T: Config> Hooks<BlockNumberFor<T>> for Pallet

fn on_initialize(now: BlockNumberFor<T>) -> Weight {
// accumulate reward periodically
if now % T::AccumulatePeriod::get

let mut count: u32 = 0;
let shutdown = T::EmergencyShutdown::

for (pool_id, pool_info)
if !pool_info.total_shares.

match pool_id {
// do not accumula
PoolId::

}
_ => {

}
}

}
}

T::WeightInfo::on_initialize
} else {

Acala https://code4rena.com/reports/2024-03-acala

38 of 52 09/06/2024, 14:14

Acala’s staking system has this initialization process per blocks. Let’s break
down this function to tiny bits in order to understand what’s happening in
the code blocks:

• on_initialize is called during block initialization.

• Checks are in place for ensuring the current block number (now) is
greater than the base accumulation period
(T::AccumulatePeriod::get()).

• If point 2 above is true, then we proceed to accumulate rewards by
iterating through all pools stored in orml_rewards::PoolInfos .

• For every one of those pools, we check if the total shares for such pool
is not zero -> if !pool_info.total_shares.is_zero() .

• If the pool shares is indeed not 0, we check to see if the protocol is
under the emergency shutdown i.e like the pausing mechanism of OZ
(T::EmergencyShutdown::is_shutdown()) .

• If the contract is paused, we log a message indicating the skip of
accumulation of incentives for that pool.

• Otherwise, if the contract is not paused, we increment the counter to
move to the next pool and we don’t forget to call
accumulate_incentives for that specific pool we just went through.

• Lastly, we return from the function.

Weight::zero()
}

}
}

User Entry point: Staking

Acala https://code4rena.com/reports/2024-03-acala

39 of 52 09/06/2024, 14:14

Staking LP tokens is the same as deposit_dex_share within the Acala
staking system. Let’s break down this function:

• Users execute this function to stake LP.

• The origin aka user/address must be Signed i.e. only authenticated
accounts can execute this function.

• lp_currency_id : As we have noted in the comment above, this is the
type of LP token being staked.

• amount : the amount of the LP tokens to be staked.

• do_deposit_dex_share : execute the deposit and allocate the shares
to the user.

Going back a bit from this function’s execution, let’s understand that:

• The ensure_signed function call is used to make sure that the origin
is signed by a valid account. If that is not the case, the transaction to
deposit LP tokens reverts.

• The do_deposit_dex_share function is called internally to handle the
rest of the deposit operation. Any errors encountered during this
function’s execution will propagate up also cause the entire transaction
to revert.

pub fn deposit_dex_share(
 origin: OriginFor<T>, // originator of txn
 lp_currency_id: CurrencyId, // lp currency token
 #[pallet::compact] amount: Balance, // amount to LP
) -> DispatchResult { // returns a result

let who = ensure_signed(origin)?; // beneficiary of stake LP
Self::do_deposit_dex_share(&who, lp_currency_id, amount)?;

 Ok(()) // end of txn call
 }

Acala https://code4rena.com/reports/2024-03-acala

40 of 52 09/06/2024, 14:14

• The internal do_deposit_dex_share function first ensures that the
lp_currency_id is a valid DEX share currency ID. This validation is in
place to prevent stakers from attempting to deposit shares into invalid
or non-existent pools.

• When the input validation is complete and the currency is valid, we
transfer the specified amount of LP tokens from the user’s account to
the contract’s account using the T::Currency::transfer function
call.

• Upon the successful transfer of LP tokens from the caller to us, we then
add/mint shares to the user’s balance for the specified DEX pool using
the orml_rewards::Pallet<T>::add_share function call.

• Lastly, we fire the deposit_event providing details of the deposit and
return from the function call.

fn do_deposit_dex_share(who: &T::AccountId, lp_currency_id: CurrencyId, am
ensure!(lp_currency_id.is_dex_share_currency_id(), Error::<T>::Inv

T::Currency::transfer(lp_currency_id, who, &Self::
<orml_rewards::Pallet<T>>::add_share(who, &PoolId::

Self::deposit_event(Event::DepositDexShare {
who: who.clone(),
dex_share_type: lp_currency_id,
deposit: amount,

}); // @note emit the deposit event
Ok(()) // @note return

}

User Exit point: Withdraw

pub fn withdraw_dex_share(
origin: OriginFor<T>,

Acala https://code4rena.com/reports/2024-03-acala

41 of 52 09/06/2024, 14:14

Similar to deposits, withdrawing LP is the same as withdraw_dex_share .
This function allows stakers to withdraw LP tokens, consequently removing/
getting rid of the previously allocated shares of the staker from the Pool.

• Close in relation to the deposit_dex_share function, the origin must
be Signed by the transactor for this transaction call ensuring only
authenticated accounts can call and execute withdraws.

• lp_currency_id : This also represents the type of LP token from
which shares are being withdrawn.

• amount : This last parameter is the amount of LP tokens to be
withdrawn by the caller.

The internal function do_withdraw_dex_share handles most of the
execution process for this function as we will see below:

lp_currency_id: CurrencyId,
#[pallet::compact] amount: Balance,

) -> DispatchResult {
let who = ensure_signed(origin)?;
Self::do_withdraw_dex_share(&who, lp_currency_id, amount)?
Ok(())

}

fn do_withdraw_dex_share(who: &T::AccountId, lp_currency_id: CurrencyId, a
ensure!(lp_currency_id.is_dex_share_currency_id
ensure!(

<orml_rewards::Pallet<T>>::shares_and_withdrawn_re
Error::<T>::NotEnough,

); // @note ensure user has enough shares to withdraw from

T::Currency::transfer(lp_currency_id, &Self
<orml_rewards::Pallet<T>>::remove_share(who, &PoolId::

Self::deposit_event(Event::WithdrawDexShare {

Acala https://code4rena.com/reports/2024-03-acala

42 of 52 09/06/2024, 14:14

As we can see from the function’s implementation and our provided
comments, the function basically ensures users attempting to withdraw:

1. Have sufficient shares balance to withdraw from.

2. Receive their LP token and accrued rewards.

3. Proper withdrawal event is emitted.

The claim_rewards function allows users to claim all available multi-
currency rewards for a specific pool that corresponds to the provided
pool_id argument. Let’s break down the implementation further:

• Similar to both deposit and withdraw functions for LP, the dispatch
origin for this claim call must be Signed by the transactor. In other
words, only authenticated accounts can call this function.

• origin : the origin of the transaction, which must be signed by the

who: who.clone(),
dex_share_type: lp_currency_id,
withdraw: amount,

}); // @note withdraw event emission
Ok(())

}

Reward claims

#[pallet::call_index(2)]
#[pallet::weight(<T as Config>::WeightInfo::claim_rewards())]
pub fn claim_rewards(origin: OriginFor<T>, pool_id: PoolId) -> Dis

let who = ensure_signed(origin)?; // @note is the caller s

Self::do_claim_rewards(who, pool_id) // @note runs the act
}

Acala https://code4rena.com/reports/2024-03-acala

43 of 52 09/06/2024, 14:14

user.

• pool_id : Specification of the pool for which rewards are being
claimed from.

Now, we need to look into the internal do_claimed_rewards function to
completely grasp the call trace.

fn do_claim_rewards(who: T::AccountId, pool_id: PoolId) -> DispatchResult
// orml_rewards will claim rewards for all currencies rewa
<orml_rewards::Pallet<T>>::claim_rewards(&who, &pool_id);

PendingMultiRewards::<T>::mutate_exists(pool_id, &who, |ma
if let Some(pending_multi_rewards) = maybe_pending

let deduction_rate = Self
let deduction_currency = ClaimRewardDeduct

for (currency_id, pending_reward)
if pending_reward.

continue;
}

let deduction_rate =
// only apply deduction ra
if deduction_currency == *

deduction_rate
} else {

Zero::
}

} else {
// apply deduction rate to
deduction_rate

};

let (payout_amount, deduction_amou
let should_deduction_amoun
(

pending_reward.

Acala https://code4rena.com/reports/2024-03-acala

44 of 52 09/06/2024, 14:14

should_deduction_a
)

};

// payout reward to claimer and re
match Self::payout_reward_and_reac

pool_id,
&who,
*currency_id,
payout_amount,
deduction_amount,

) {
Ok(_) => {

// update state
*pending_reward =

Self

});
}
Err(e) => {

log::

);
}

};
}

// clear zero value item of BTreeMap
pending_multi_rewards.retain

// if pending_multi_rewards is default, cl
if pending_multi_rewards.

Acala https://code4rena.com/reports/2024-03-acala

45 of 52 09/06/2024, 14:14

• The function facilitates claiming of rewards for a specific pool by a user.

• Reward claims: We call orml_rewards::Pallet<T>::claim_rewards
to claim rewards for all currencies in the specified pool. Keep in mind
the orml_rewards module handles the rewarding logic.

Deduction calculation: For every pending reward in the
PendingMultiRewards storage, we calculates the deduction amount
based on the configured deduction rate (for each user).

• The deduction rate is determined by claim_reward_deduction_rates
and ClaimRewardDeductionCurrency::<T>::get(pool_id) .

• If a deduction currency is specified, the deduction rate is then applied
to that currency. Otherwise, it is applied to all currencies.

• The deducted amount is then subtracted from the pending reward,
resulting in the actual payout amount.

Reward Payout:

• We then payout_reward_and_reaccumulate_reward to distribute the
rewards to the staker and re-accumulate the deducted amount into the
pool (for the loyalty program Acala enforces).

• If the payout and re-accumulation process is deemed successful, the
pending reward is updated to zero, and an event
(Event::ClaimRewards) is emitted to log the details of the claimed

*maybe_pending_multi_rewards = Non
}

}
});

Ok(())
}

Acala https://code4rena.com/reports/2024-03-acala

46 of 52 09/06/2024, 14:14

rewards.

State mutation and storage reset:

• After processing all pending rewards, the function then keeps only non-
zero value items in the PendingMultiRewards storage.

• If pending_multi_rewards is empty indicating that all rewards have
been claimed, the storage entry is then cleared.

Reward Deduction Rates

pub fn update_claim_reward_deduction_rates(
origin: OriginFor<T>, // @note txn origin
updates: Vec<(PoolId, Rate)>, // @note data struct for the pool to

) -> DispatchResult {
T::UpdateOrigin::ensure_origin(origin)?; // @note ensures caller i
for (pool_id, deduction_rate) in updates { // @note loops through

if let PoolId::Dex(currency_id) = pool_id {
ensure!(currency_id.is_dex_share_currency_id

}
ClaimRewardDeductionRates::<T>::mutate_exists

let mut v = maybe_rate.unwrap_or_default
if deduction_rate != *v.inner() {

v.try_set(deduction_rate).
Self::deposit_event(Event::ClaimRewardDedu

pool: pool_id,
deduction_rate,

});
}

if v.inner().is_zero() {
*maybe_rate = None;

} else {
*maybe_rate = Some(v);

}
Ok(())

Acala https://code4rena.com/reports/2024-03-acala

47 of 52 09/06/2024, 14:14

update_claim_reward_deduction_rates allows for updating claim
reward deduction rates for all reward currencies of a specific Pool

• updates : A somewhat data struct of tuples representing the PoolId
and corresponding deduction rate to be applied.

• For each update in the updates vector/data struct, the function then
proceeds to check if the PoolId corresponds to a valid DEX pool. If
that is the case, we ensure that the associated currency ID is a valid
DEX share currency ID.

• Moving on, for each update , we mutate the
ClaimRewardDeductionRates storage to update the deduction rate
associated with the specified PoolId .

• If the new deduction rate differs from the current rate , it is set, and
the ClaimRewardDeductionRateUpdated event is emitted to log the
update.

• Keep in mind that if the rate attempted to be set is the same as the
current rate , we skip doing the update as it’s pointless in that case to
set an already set state.

• If the deduction rate becomes zero after the update, the
corresponding entry in the ClaimRewardDeductionRates storage is
then removed to conserve storage space.

Note: to view the provided images, please see the original submission here.

})?;
}
Ok(())

}

Call-trace Diagrams

Acala https://code4rena.com/reports/2024-03-acala

48 of 52 09/06/2024, 14:14

https://github.com/code-423n4/2024-03-acala-findings/issues/92
https://github.com/code-423n4/2024-03-acala-findings/issues/92

Here are some of our observations of the Acala codebase’s quality:

The protocol’s function implementations are well documented and easy to
follow. The code blocks in general follow a consistent naming guide that
hints at what the function implementation does and is supposed to return
after execution.

Each architecture component is separated into modules. For example, the
staking module is separate from the reward modules. They each utilize the
other’ implementation as we can see in the staking module where claiming
of rewards borrows code implementation from the rewards code logic.

This effectively makes the codebase manageable as you can change a
function implementation in one module without introducing breaking
changes in other modules that utilize it.

Testing suite for the 3 modules in sope are great. They are normal unit-style
tests but they live in their separate files away from the production code.

In most of the function implementation across the codebase, errors are
handled from the onset of the function’s execution. This is great. It ensures
the call can already be reverted without getting up to the point where the
invalid state resulting from the bad data is reached to bubble up the error.

Codebase Quality

Readability

Maintainability

Performance

Robustness

Acala https://code4rena.com/reports/2024-03-acala

49 of 52 09/06/2024, 14:14

This section of the analysis report covers error handling, slight flaws and
major systemic risks of the covered components in the Acala Staking
System.

Pools are created by Governance in the Acala staking system. So, users are
not able to create arbitrary staking pools which is good. But, a malicious
governor privileged individual can mass create pools with empty stakes that
is zero shares and DoS the entire staking mechanism when we run into
reward accumulation and pool iteration during blocks initialization in the
code snippet below:

Assuming the Governance code becomes vulnerable to malicious actors,

Systematic Risks and Centralization

Pool initialization: /incentives/src/lib.rs

for (pool_id, pool_info) in orml_rewards::PoolInfos::<T>::
if !pool_info.total_shares.is_zero() {
match pool_id {
// do not accumulate incentives for PoolId::Loans after shutdown

 PoolId::Loans(_) if shutdown => {
 log::debug!(
 target: "incentives",

"on_initialize: skip accumulate incentives for pool {:?} after s
 pool_id
);
 }
 _ => {
 count += 1;

Self::accumulate_incentives(pool_id);
 }
 }
 }
}

Acala https://code4rena.com/reports/2024-03-acala

50 of 52 09/06/2024, 14:14

one way to put an end to staking by DoS is mass creation of pools that are
not legitimate and force the loop interaction of pools in the next block
initialization to fail.

The current logic of looping through pools is non scalable. Optimization is
completely thrown out the window this way. I’m sure the team believes
governance will not be malicious or governance code implementation will
always be safe but once any one of these happen to not be the case, the
whole staking model rests on the balance. Instead of looping over pools,
implement caching or use structs to store necessary pool information and
use that during the block initializations. This brings scalability back into the
control of the protocol.

In summary, the Acala codebase review was a great learning experience for
understanding some niche aspects such as their utilization of block
initializations. After having spent a couple days understanding the high level
concept, we finally were able to pull up this report for understanding some
parts of the protocol.

7 hours

xlc (Acala) acknowledged

Note: For full discussion, see here.

Insights

Pool initialization: /incentives/src/lib.rs

Time spent

Acala https://code4rena.com/reports/2024-03-acala

51 of 52 09/06/2024, 14:14

https://github.com/code-423n4/2024-03-acala-findings/issues/92#issuecomment-2044132344
https://github.com/code-423n4/2024-03-acala-findings/issues/92#issuecomment-2044132344
https://github.com/code-423n4/2024-03-acala-findings/issues/92
https://github.com/code-423n4/2024-03-acala-findings/issues/92

C4 is an open organization governed by participants in the community.

C4 audits incentivize the discovery of exploits, vulnerabilities, and bugs in
smart contracts. Security researchers are rewarded at an increasing rate for
finding higher-risk issues. Audit submissions are judged by a knowledgeable
security researcher and Rust developer and disclosed to sponsoring
developers. C4 does not conduct formal verification regarding the provided
code but instead provides final verification.

C4 does not provide any guarantee or warranty regarding the security of
this project. All smart contract software should be used at the sole risk and
responsibility of users.

Top

An open organization | Twitter | Discord | GitHub | Blog | Newsletter | Media kit |
Careers | code4rena.eth

Disclosures

Acala https://code4rena.com/reports/2024-03-acala

52 of 52 09/06/2024, 14:14

https://twitter.com/code4rena
https://twitter.com/code4rena
https://discord.gg/code4rena
https://discord.gg/code4rena
https://github.com/code-423n4/
https://github.com/code-423n4/
https://code4rena.com/blog
https://code4rena.com/blog
https://code4rena.com/newsletter-signup
https://code4rena.com/newsletter-signup
https://github.com/code-423n4/media-kit
https://github.com/code-423n4/media-kit
https://code4rena.com/careers
https://code4rena.com/careers
https://etherscan.io/address/0xC2BC2F890067C511215F9463A064221577A53E10
https://etherscan.io/address/0xC2BC2F890067C511215F9463A064221577A53E10

