
Scout Bug Fighter on Substrate
Short description: Scout is a bug detection tool, a static analyzer currently available for ink!
and Soroban (Stellar Network) smart contracts. After over one year of development, Scout is a
stable tool providing assistance to both developers and auditors. We are ready for the next
challenge: to provide support for the Substrate pallets, runtime code and node code.
Project Category / Type: Security Tool
Proponent: CoinFabrik
DOT address:
Requested allocation: U$152,000.-

Context of the proposal
At CoinFabrik, we believe that making a blockchain secure requires integrating vulnerability
detection and best practices into the development lifecycle. As proud members of the Polkadot
Assurance Legion (as auditors) and the Polkadot Alpha Program (as developers), we contend
that raising the quality standards of projects before their first audit benefits the entire ecosystem.

This is why we developed Scout: Bug Fighter, a static-analyzer for detecting issues in ink! code.
Simply put, Scout is an easy-to-install open source tool that integrates into the development
process and pinpoints vulnerabilities in the ink! code under analysis.

In 2023, we focused on integrating Scout into the development cycle of ink! smart contracts. In
collaboration with the LAFHiS Laboratory at the University of Buenos Aires, we conducted
research on different detection technologies (static and dynamic analysis) applicable for
detecting bugs in Rust-based smart contracts. With the support of Web3 Foundation Grants and
Aleph Zero Ecosystem Grants, we built Scout, perfecting the tool up to its current state where it
detects up to 33 security-issue classes in ink! code.

Realizing our vision of embedding secure best practices directly into developers' workflows, our
solution empowers developers to identify vulnerabilities as they write their smart contracts.
Scout can be used via a Command Line Interface (CLI), a VSCode Extension, and a GitHub
Action, improving the developer experience by integrating into the secure development lifecycle
of their projects.

https://www.coinfabrik.com/products/scout/
https://www.coinfabrik.com/products/scout/
https://www.coinfabrik.com
https://github.com/polkadot-assurance-legion/pal-docs/blob/main/auditors.md
https://github.com/polkadot-assurance-legion/pal-docs/blob/main/auditors.md
https://github.com/CoinFabrik/scout
https://github.com/CoinFabrik/web3-grant/blob/f37be295455ce4a86ce2d0b6fb94c55128fc71c8/detectors/README.md
https://github.com/CoinFabrik/web3-grant/blob/f37be295455ce4a86ce2d0b6fb94c55128fc71c8/detectors/README.md
https://github.com/CoinFabrik/scout?tab=readme-ov-file#detectors

However, the journey does not stop here: ink! smart contracts are not the only Rust code being
developed to run in the ecosystem. We aim to extend Scout from smart contract development to
Substrate.

This proposal aims to apply static analysis techniques to build issue detectors for
Substrate pallets, runtime code and node code, while also constructing an open dataset
of vulnerable test cases and an analysis framework to structure precision and recall
efforts for the tool. This will pave the way for future work on detection techniques beyond the
scope of static analysis.

Problem statement

Developing secure smart contracts and pallets is crucial as vulnerabilities can lead to significant
losses or compromises within a blockchain network. Developers often inadvertently introduce
vulnerabilities into their code, which, once deployed, can be exploited by attackers at any
moment. For instance, a flaw in minting functions could potentially allow an attacker to mint an
unlimited amount of tokens, leading to severe consequences for the entire parachain.

Detecting these vulnerabilities is not straightforward. The challenge of identifying security flaws
in code has been an open problem for decades, as evidenced by the continuous introduction of
bugs in C code despite 40 years of advancements in analysis tools. The goal of a good analysis
tool is to trigger alerts for real vulnerabilities while minimizing false positives and not missing any
critical flaws. Various computer science techniques have been applied to tackle this issue
across different programming languages, including linting. Linting involves analyzing the syntax
of a program to identify errors or bad practices.

Upon reviewing Polkadot’s open-source stack, we found that while some tools offer basic bug
detection for Substrate pallets, runtime code and node code, they often lack proper
maintenance, user-friendly features, and clear documentation on the identified issues and their
remediation process. This presents an opportunity for Scout to make a difference.

Team
CoinFabrik is a research and development company specialized in Web3, with a strong
background in cybersecurity. Founded in 2014, we have worked on over 350 blockchain-related
projects, EVM based and also for Solana, Algorand, and Polkadot. Beyond development, we

https://wiki.polkadot.network/docs/build-open-source
https://www.coinfabrik.com/

offer security audits through a dedicated in-house team of senior cybersecurity professionals,
currently working on code in Substrate, Solidity, Clarity, Rust, Soroban and TEAL.

Our team has an academic background in computer science and mathematics, with work
experience focused on cybersecurity and software development, including academic
publications, patents turned into products, and conference presentations. Furthermore, we have
an ongoing collaboration on knowledge transfer and open-source projects with the University of
Buenos Aires.

Assigned Team and Roles

The time allocation for each team member is detailed within each milestone. Below, we outline
the specific roles assigned to each team member.

Project Manager (PM): Responsible for the planning, execution, and completion of the project,
ensuring it meets goals, stays on schedule, and adheres to budget while coordinating the team
and managing stakeholder communication. Matias, our Project Manager for this project, has
extensive experience managing similar initiatives, including the successful Scout version for ink!
and Soroban.

Technical Leader (TL): Responsible for the technical direction of the project, code quality and
scalability, guiding the development team, and making key technical decisions. The TL also
contributes as a full-time developer. Victor, our Technical Leader for this project, has prior
experience in managing similar projects and has a strong background in developing
blockchain-based security solutions, as well as Substrate-based ones.

Security Advisor, Senior Substrate Auditor: Responsible for providing expert security
guidance on the project’s direction, while analyzing development results (detectors and outputs)
and assessing overall project outcomes to ensure robust security standards are met. Aureliano,
our Security Advisor for this project, is a senior member of our Auditing Team, bringing
extensive experience in cybersecurity, particularly within Rust-based blockchains and Substrate
auditing, including our recent work with the LAOS Network.

Developers, Rust/Substrate: Responsible for implementing and maintaining the core detection
functionalities of Scout for Substrate runtimes, pallets and node code. The Developers will be
tasked with identifying and building issue test cases, building new static analysis detectors,
refining existing ones, and integrating them into the tool’s different features (CLI, VSCode,
CI/CD). José and Facundo, our Developers for this project, have successfully built static

https://www.coinfabrik.com/blog/laos-network-audit-report/

analysis tools in Rust, contributing to enhanced detection techniques for other Web3
environments, including ink! smart contracts.

Developer Relations (DevRel): Responsible for creating and maintaining project
documentation, including usage guides, issue descriptions, and educational content, while
gathering user feedback and providing technical support. The DevRel bridges the gap between
the development team and end-users, ensuring effective communication, facilitating adoption,
and showcasing new features through tutorials, webinars, and workshops to enhance the user
experience and tool engagement. Arturo, our DevRel for this project and a graduate alumnus of
the Polkadot Blockchain Academy at Berkeley, brings valuable community feedback and a
proven track record in similar roles and tasks for security tooling.

Proposal objectives
Our objectives are to construct a Data Set of vulnerabilities and best practices deviations in
Substrate pallets, runtime code and node code, design and implement static analysis detectors,
and build a working tool that scales to meet the demands of the ecosystem.

Scout will enable developers to seamlessly integrate security into the development lifecycle of
their Substrate projects. By utilizing our detection features—such as hover-over warnings in the
VSCode extension, vulnerability reports generated through our CLI, and CI/CD integrations via
the Scout GitHub Action—developers can effectively identify and resolve security issues,
leading to higher-quality code.

Milestones

We have broken down our proposal into a series of milestones. For each milestone, we describe
the tasks and deliverables.

Milestone 1: Initial Vulnerability Data Set and PoC Detectors (4
weeks)

Tasks:

● Analyze 10+ audited Substrate pallets, runtime code and node code, preparing a
repository with annotated versions of both their vulnerable and fixed states. These
annotations will highlight the vulnerabilities, their locations within the code, and their
classification.

https://polkadot.com/blockchain-academy

● Compile a list of top/relevant vulnerabilities specific to Substrate pallets, runtime and
node code, using audit reports and other publicly available references in the ecosystem
(e.g., this blogpost).

● Identify security issues that can be effectively addressed with static analysis detectors.
● Adapt existing static analyzer detectors for Rust and ink! (as outlined in Context of the

Proposal), currently integrated into Scout, to detect the identified security issues within
Substrate pallets, runtime code and node code.

Deliverables:

● Data Set. An open-source GitHub repository containing annotated Substrate pallets,
runtime code and node code, accompanied by a detailed document listing vulnerability
classes and their locations within the code. The dataset will also be uploaded to Hugging
Face data sets.

● Proof-of-concept version of the detectors. Building on our experience with Scout for ink!
and Soroban, we aim to detect 4 vulnerability classes. The tool will be delivered as
source code in the repository.

Team:

● 1 Project Manager (PM) 80h
● 1 Technical Leader (TL) 160h
● 1 Security Consultant (Senior Substrate Auditor) 40h
● 2 Developers (Rust / Substrate) 320h
● 1 Developer Relations (DevRel) 80h

FTEs: 4.25 / 680 hours

Total Budget for Milestone 1: U$38,000.-

Milestone 2: Extended Vulnerability Data Set and Prototype
Detectors with Precision and Recall (4 weeks)

Tasks:

● Extend the Data Set of vulnerable-projects repository with more annotated pallets,
runtimes, and node code (a second set analyzing at least 10 additional
pallets/runtimes/nodes).

● Extend the list of security issues in Substrate and associated test cases by analyzing the
second set of audited pallets/runtimes/nodes.

● Develop new static analysis detectors for issues identified in the first and current
milestone. Given our experience developing Scout for ink! and Soroban we aim to
deliver at least 5 new detectors.

https://forum.polkadot.network/t/common-vulnerabilities-in-substrate-polkadot-development/3938
https://huggingface.co/datasets
https://huggingface.co/datasets
https://github.com/CoinFabrik/scout
https://github.com/CoinFabrik/scout-soroban/
https://github.com/CoinFabrik/scout
https://github.com/CoinFabrik/scout-soroban/

● Create a framework for running analysis tools, similar to SmartBugs but for Rust, to
structure the subsequent precision and recall efforts on all detectors built. This
framework should run a process that receives a bug detection tool (our static analyzer),
a set of audited substrate projects annotated with vulnerabilities, and produces a report.
This report shall include: what are the vulnerabilities that were detected, what detections
were false positives, and what are the undetected vulnerabilities.

● Analyze precision and recall of static analysis detectors, using the framework developed
against the Data Set of audited Substrate projects with annotated vulnerabilities, to find
what (problematic) vulnerability classes need better detection.

Deliverables:

● Prototype version of the detectors. Given our experience developing Scout for ink! and
Soroban we aim to include detection of at least 5 new issue classes. Delivered as source
code in the repository.

● Extended Data Set. Extended repository of vulnerable pallets, also extending list of
vulnerabilities. Updated Hugging Face data set.

● Open Source Framework, for running analysis tools on Rust code, publicly available on
CoinFabrik’s GitHub repository.

● Detector’s evaluation report on benchmark Data Set. List of suggested vulnerability
classes that appear as false negatives in the report, or have a high rate of false
positives. (See an example of the evaluation report for Scout for Soroban)

Team:

● 1 Project Manager (PM) 80h
● 1 Technical Leader (TL) 160h
● 1 Security Consultant (Senior Substrate Auditor) 40h
● 2 Developers (Rust / Substrate) 320h
● 1 Developer Relations (DevRel) 80h

FTEs: 4.25 / 680 hours

Total Budget for Milestone 2: U$38,000.-

Milestone 3: Prototype Tool Integration with CLI, VSCode, and
CI/CD, Documentation (4 weeks)

Tasks:

● Integrate and Test the Prototype Tool: Implement the following features:
○ Command Line Interface (CLI): Enable various output report formats (HTML,

Markdown, SARIF, JSON) and provide detector filter options.

https://github.com/smartbugs/smartbugs
https://coinfabrik.github.io/scout-soroban/docs/precision-and-recall/first-iteration

○ VSCode Extension: Display hover error indicators and allow users to
enable/disable detectors using inline macros.

○ CI/CD Scout GitHub Action: Make Scout action available on the GitHub
Marketplace to seamlessly integrate the tool into development pipelines,
providing markdown reports in GitHub Issues and Pull Requests.

● Develop and improve detectors. Address problematic issues identified in Milestone 2.
● Document issue classes and associated detectors.

Deliverables:

● A prototype tool that integrates built detectors with a CLI, a VSCode extension, and a
CI/CD GitHub Action. (See existing VSCode extension and GitHub Action for ink! and
Soroban)

● Additional or improved detectors for problematic issues identified in Milestone 2. Given
our experience developing and improving Scout for ink! and Soroban, we aim to improve
or further develop 3 detectors.

● Comprehensive integration tests for all detectors and features.
● A Documentation Site (using Docusaurus or GitBook) detailing tool usage and an initial

set of detectors, including nine documented detectors developed in Milestones 1 and 2.
(See the documentation pages for Scout on ink! and Soroban)

● A public project GitHub repository and website, along with an alpha tool release for
selected projects and users.

Team:

● 1 Project Manager (PM) 80h
● 1 Technical Leader (TL) 160h
● 1 Security Consultant (Senior Substrate Auditor) 40h
● 2 Developers (Rust / Substrate) 320h
● 1 Developer Relations (DevRel) 80h

FTEs: 4.25 / 680 hours

Total Budget for Milestone 3: U$38,000.-

Milestone 4: Final Precision and Recall Evaluation & Full Tool
Release (4 weeks)

Tasks:

● Conduct final precision and recall evaluation for detectors using the framework
developed in Milestone 2 against Data Set of audited Substrate projects with annotated

https://marketplace.visualstudio.com/items?itemName=CoinFabrik.scout-audit
https://github.com/marketplace/actions/run-scout-action
https://github.com/CoinFabrik/scout/blob/default-do-not-use-scout-reserved/assets/false-positives-report.md
https://coinfabrik.github.io/scout-soroban/docs/precision-and-recall/first-iteration
https://coinfabrik.github.io/scout
https://coinfabrik.github.io/scout-soroban

vulnerabilities, to find what (problematic) remaining vulnerability classes need better
detection.

● Final detector improvements based on precision and recall evaluation.
● Document remaining detectors and issue classes.
● Create video tutorials on tool usage and issue classes.
● Create Release webinar and social media communications.

Deliverables:

● Final precision and recall evaluation report. Responsible disclosure of any sensible
findings to their corresponding projects.

● Improved detectors based on evaluation results. Given our experience developing Scout
for ink! and Soroban, we aim to improve or develop 2 detectors after this final precision
and recall.

● Fully integrated tool with CLI, VSCode Extension, and/or CI/CD GitHub Action.
● Public release of the tool with full documentation, publicly available on documentation

sites (Docusaurus or GitBook)(See documentation examples here and here).
● Video tutorials on how to use the tool, along with one video tutorial for each issue

detected by the tool. Given our experience developing Scout for ink! and Soroban, we
aim to publish between 10 and 15 video tutorials on CoinFabrik’s YouTube channel. (See
Scout video tutorials for other blockchain here).

● Release Webinar.
● Posts on CoinFabrik’s social media.

Team:

● 1 Project Manager (PM) 80h
● 1 Technical Leader (TL) 160h
● 1 Security Consultant (Senior Substrate Auditor) 40h
● 2 Developers (Rust / Substrate) 320h
● 1 Developer Relations (DevRel) 80h

FTEs: 4.25 / 680 hours

Total Budget for Milestone 4: U$38,000.-

Find a condensed version of milestones, deliverables, resources, average hour cost and cost
breakdown per milestones over here

Commercial terms
CoinFabrik accepts PAL commercial agreement, of 50% upfront payment for each proposed
milestone, with the remaining 50% due upon completion of such milestone.

https://github.com/CoinFabrik/scout/blob/default-do-not-use-scout-reserved/assets/false-positives-report.md
https://coinfabrik.github.io/scout-soroban/docs/precision-and-recall/first-iteration
https://coinfabrik.github.io/scout/
https://coinfabrik.github.io/scout-soroban/
https://www.youtube.com/watch?v=L4kGwPDuWgA&list=PLmy8sJH8bR7L_k6-5Ou2eoLuJ3yE7qTAu

References
1. Scouting Vulnerabilities and Detection Techniques in Substrate

https://forum.polkadot.network/t/scouting-vulnerabilities-and-detection-techniques-in-sub
strate/6609#scouting-vulnerabilities-and-detection-techniques-in-substrate-1

2. Common Vulnerabilities in Substrate Polkadot Development
https://forum.polkadot.network/t/common-vulnerabilities-in-substrate-polkadot-developm
ent/3938

3. Verifying Rust - Exploring Verification Options for Substrate
https://forum.polkadot.network/t/verifying-rust-exploring-verification-options-for-substrate/
2109

4. Research on Analysis Techniques and Tools for Identifying Issues in ink! Smart
Contracts
https://github.com/CoinFabrik/web3-grant/blob/f37be295455ce4a86ce2d0b6fb94c55128f
c71c8/detectors/README.md

5. Scout https://github.com/CoinFabrik/scout
6. Scout Actions https://github.com/CoinFabrik/scout-actions
7. Solodit - Finding Aggregation Platform https://solodit.xyz/
8. Smart Contract and DeFi Security Tools: Do They Meet the Needs of Practitioners?

https://arxiv.org/abs/2304.02981
9. Static Application Security Testing (SAST) Tools for Smart Contracts: How Far Are We?

https://arxiv.org/abs/2404.18186
10. Securify: Practical Security Analysis of Smart Contracts https://arxiv.org/pdf/1806.01143
11. SmartBugs 2.0: An Execution Framework for Weakness Detection in Ethereum Smart

Contracts https://arxiv.org/abs/2306.05057

https://forum.polkadot.network/t/scouting-vulnerabilities-and-detection-techniques-in-substrate/6609#scouting-vulnerabilities-and-detection-techniques-in-substrate-1
https://forum.polkadot.network/t/scouting-vulnerabilities-and-detection-techniques-in-substrate/6609#scouting-vulnerabilities-and-detection-techniques-in-substrate-1
https://forum.polkadot.network/t/scouting-vulnerabilities-and-detection-techniques-in-substrate/6609#scouting-vulnerabilities-and-detection-techniques-in-substrate-1
https://forum.polkadot.network/t/common-vulnerabilities-in-substrate-polkadot-development/3938
https://forum.polkadot.network/t/common-vulnerabilities-in-substrate-polkadot-development/3938
https://forum.polkadot.network/t/common-vulnerabilities-in-substrate-polkadot-development/3938
https://forum.polkadot.network/t/verifying-rust-exploring-verification-options-for-substrate/2109
https://forum.polkadot.network/t/verifying-rust-exploring-verification-options-for-substrate/2109
https://forum.polkadot.network/t/verifying-rust-exploring-verification-options-for-substrate/2109
https://github.com/CoinFabrik/web3-grant/blob/f37be295455ce4a86ce2d0b6fb94c55128fc71c8/detectors/README.md
https://github.com/CoinFabrik/web3-grant/blob/f37be295455ce4a86ce2d0b6fb94c55128fc71c8/detectors/README.md
https://github.com/CoinFabrik/web3-grant/blob/f37be295455ce4a86ce2d0b6fb94c55128fc71c8/detectors/README.md
https://github.com/CoinFabrik/scout
https://github.com/CoinFabrik/scout-actions
https://solodit.xyz/
https://arxiv.org/abs/2304.02981
https://arxiv.org/abs/2304.02981
https://arxiv.org/abs/2404.18186
https://arxiv.org/abs/2404.18186
https://arxiv.org/pdf/1806.01143
https://arxiv.org/abs/2306.05057

